Search results for: approximate computing
43 Platform Virtual for Joint Amplitude Measurement Based in MEMS
Authors: Mauro Callejas-Cuervo, Andrea C. Alarcon-Aldana, Andres F. Ruiz-Olaya, Juan C. Alvarez
Abstract:
Motion capture (MC) is the construction of a precise and accurate digital representation of a real motion. Systems have been used in the last years in a wide range of applications, from films special effects and animation, interactive entertainment, medicine, to high competitive sport where a maximum performance and low injury risk during training and competition is seeking. This paper presents an inertial and magnetic sensor based technological platform, intended for particular amplitude monitoring and telerehabilitation processes considering an efficient cost/technical considerations compromise. Our platform particularities offer high social impact possibilities by making telerehabilitation accessible to large population sectors in marginal socio-economic sector, especially in underdeveloped countries that in opposition to developed countries specialist are scarce, and high technology is not available or inexistent. This platform integrates high-resolution low-cost inertial and magnetic sensors with adequate user interfaces and communication protocols to perform a web or other communication networks available diagnosis service. The amplitude information is generated by sensors then transferred to a computing device with adequate interfaces to make it accessible to inexperienced personnel, providing a high social value. Amplitude measurements of the platform virtual system presented a good fit to its respective reference system. Analyzing the robotic arm results (estimation error RMSE 1=2.12° and estimation error RMSE 2=2.28°), it can be observed that during arm motion in any sense, the estimation error is negligible; in fact, error appears only during sense inversion what can easily be explained by the nature of inertial sensors and its relation to acceleration. Inertial sensors present a time constant delay which acts as a first order filter attenuating signals at large acceleration values as is the case for a change of sense in motion. It can be seen a damped response of platform virtual in other images where error analysis show that at maximum amplitude an underestimation of amplitude is present whereas at minimum amplitude estimations an overestimation of amplitude is observed. This work presents and describes the platform virtual as a motion capture system suitable for telerehabilitation with the cost - quality and precision - accessibility relations optimized. These particular characteristics achieved by efficiently using the state of the art of accessible generic technology in sensors and hardware, and adequate software for capture, transmission analysis and visualization, provides the capacity to offer good telerehabilitation services, reaching large more or less marginal populations where technologies and specialists are not available but accessible with basic communication networks.Keywords: inertial sensors, joint amplitude measurement, MEMS, telerehabilitation
Procedia PDF Downloads 25942 Electromagnetic Modeling of a MESFET Transistor Using the Moments Method Combined with Generalised Equivalent Circuit Method
Authors: Takoua Soltani, Imen Soltani, Taoufik Aguili
Abstract:
The communications' and radar systems' demands give rise to new developments in the domain of active integrated antennas (AIA) and arrays. The main advantages of AIA arrays are the simplicity of fabrication, low cost of manufacturing, and the combination between free space power and the scanner without a phase shifter. The integrated active antenna modeling is the coupling between the electromagnetic model and the transport model that will be affected in the high frequencies. Global modeling of active circuits is important for simulating EM coupling, interaction between active devices and the EM waves, and the effects of EM radiation on active and passive components. The current review focuses on the modeling of the active element which is a MESFET transistor immersed in a rectangular waveguide. The proposed EM analysis is based on the Method of Moments combined with the Generalised Equivalent Circuit method (MOM-GEC). The Method of Moments which is the most common and powerful software as numerical techniques have been used in resolving the electromagnetic problems. In the class of numerical techniques, MOM is the dominant technique in solving of Maxwell and Transport’s integral equations for an active integrated antenna. In this situation, the equivalent circuit is introduced to the development of an integral method formulation based on the transposition of field problems in a Generalised equivalent circuit that is simpler to treat. The method of Generalised Equivalent Circuit (MGEC) was suggested in order to represent integral equations circuits that describe the unknown electromagnetic boundary conditions. The equivalent circuit presents a true electric image of the studied structures for describing the discontinuity and its environment. The aim of our developed method is to investigate the antenna parameters such as the input impedance and the current density distribution and the electric field distribution. In this work, we propose a global EM modeling of the MESFET AsGa transistor using an integral method. We will begin by describing the modeling structure that allows defining an equivalent EM scheme translating the electromagnetic equations considered. Secondly, the projection of these equations on common-type test functions leads to a linear matrix equation where the unknown variable represents the amplitudes of the current density. Solving this equation resulted in providing the input impedance, the distribution of the current density and the electric field distribution. From electromagnetic calculations, we were able to present the convergence of input impedance for different test function number as a function of the guide mode numbers. This paper presents a pilot study to find the answer to map out the variation of the existing current evaluated by the MOM-GEC. The essential improvement of our method is reducing computing time and memory requirements in order to provide a sufficient global model of the MESFET transistor.Keywords: active integrated antenna, current density, input impedance, MESFET transistor, MOM-GEC method
Procedia PDF Downloads 19841 Efficient Computer-Aided Design-Based Multilevel Optimization of the LS89
Authors: A. Chatel, I. S. Torreguitart, T. Verstraete
Abstract:
The paper deals with a single point optimization of the LS89 turbine using an adjoint optimization and defining the design variables within a CAD system. The advantage of including the CAD model in the design system is that higher level constraints can be imposed on the shape, allowing the optimized model or component to be manufactured. However, CAD-based approaches restrict the design space compared to node-based approaches where every node is free to move. In order to preserve a rich design space, we develop a methodology to refine the CAD model during the optimization and to create the best parameterization to use at each time. This study presents a methodology to progressively refine the design space, which combines parametric effectiveness with a differential evolutionary algorithm in order to create an optimal parameterization. In this manuscript, we show that by doing the parameterization at the CAD level, we can impose higher level constraints on the shape, such as the axial chord length, the trailing edge radius and G2 geometric continuity between the suction side and pressure side at the leading edge. Additionally, the adjoint sensitivities are filtered out and only smooth shapes are produced during the optimization process. The use of algorithmic differentiation for the CAD kernel and grid generator allows computing the grid sensitivities to machine accuracy and avoid the limited arithmetic precision and the truncation error of finite differences. Then, the parametric effectiveness is computed to rate the ability of a set of CAD design parameters to produce the design shape change dictated by the adjoint sensitivities. During the optimization process, the design space is progressively enlarged using the knot insertion algorithm which allows introducing new control points whilst preserving the initial shape. The position of the inserted knots is generally assumed. However, this assumption can hinder the creation of better parameterizations that would allow producing more localized shape changes where the adjoint sensitivities dictate. To address this, we propose using a differential evolutionary algorithm to maximize the parametric effectiveness by optimizing the location of the inserted knots. This allows the optimizer to gradually explore larger design spaces and to use an optimal CAD-based parameterization during the course of the optimization. The method is tested on the LS89 turbine cascade and large aerodynamic improvements in the entropy generation are achieved whilst keeping the exit flow angle fixed. The trailing edge and axial chord length, which are kept fixed as manufacturing constraints. The optimization results show that the multilevel optimizations were more efficient than the single level optimization, even though they used the same number of design variables at the end of the multilevel optimizations. Furthermore, the multilevel optimization where the parameterization is created using the optimal knot positions results in a more efficient strategy to reach a better optimum than the multilevel optimization where the position of the knots is arbitrarily assumed.Keywords: adjoint, CAD, knots, multilevel, optimization, parametric effectiveness
Procedia PDF Downloads 11040 Innovations and Challenges: Multimodal Learning in Cybersecurity
Authors: Tarek Saadawi, Rosario Gennaro, Jonathan Akeley
Abstract:
There is rapidly growing demand for professionals to fill positions in Cybersecurity. This is recognized as a national priority both by government agencies and the private sector. Cybersecurity is a very wide technical area which encompasses all measures that can be taken in an electronic system to prevent criminal or unauthorized use of data and resources. This requires defending computers, servers, networks, and their users from any kind of malicious attacks. The need to address this challenge has been recognized globally but is particularly acute in the New York metropolitan area, home to some of the largest financial institutions in the world, which are prime targets of cyberattacks. In New York State alone, there are currently around 57,000 jobs in the Cybersecurity industry, with more than 23,000 unfilled positions. The Cybersecurity Program at City College is a collaboration between the Departments of Computer Science and Electrical Engineering. In Fall 2020, The City College of New York matriculated its first students in theCybersecurity Master of Science program. The program was designed to fill gaps in the previous offerings and evolved out ofan established partnership with Facebook on Cybersecurity Education. City College has designed a program where courses, curricula, syllabi, materials, labs, etc., are developed in cooperation and coordination with industry whenever possible, ensuring that students graduating from the program will have the necessary background to seamlessly segue into industry jobs. The Cybersecurity Program has created multiple pathways for prospective students to obtain the necessary prerequisites to apply in order to build a more diverse student population. The program can also be pursued on a part-time basis which makes it available to working professionals. Since City College’s Cybersecurity M.S. program was established to equip students with the advanced technical skills needed to thrive in a high-demand, rapidly-evolving field, it incorporates a range of pedagogical formats. From its outset, the Cybersecurity program has sought to provide both the theoretical foundations necessary for meaningful work in the field along with labs and applied learning projects aligned with skillsets required by industry. The efforts have involved collaboration with outside organizations and with visiting professors designing new courses on topics such as Adversarial AI, Data Privacy, Secure Cloud Computing, and blockchain. Although the program was initially designed with a single asynchronous course in the curriculum with the rest of the classes designed to be offered in-person, the advent of the COVID-19 pandemic necessitated a move to fullyonline learning. The shift to online learning has provided lessons for future development by providing examples of some inherent advantages to the medium in addition to its drawbacks. This talk will address the structure of the newly-implemented Cybersecurity Master’s Program and discuss the innovations, challenges, and possible future directions.Keywords: cybersecurity, new york, city college, graduate degree, master of science
Procedia PDF Downloads 14739 Detection of Curvilinear Structure via Recursive Anisotropic Diffusion
Authors: Sardorbek Numonov, Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Dongeun Choi, Byung-Woo Hong
Abstract:
The detection of curvilinear structures often plays an important role in the analysis of images. In particular, it is considered as a crucial step for the diagnosis of chronic respiratory diseases to localize the fissures in chest CT imagery where the lung is divided into five lobes by the fissures that are characterized by linear features in appearance. However, the characteristic linear features for the fissures are often shown to be subtle due to the high intensity variability, pathological deformation or image noise involved in the imaging procedure, which leads to the uncertainty in the quantification of anatomical or functional properties of the lung. Thus, it is desired to enhance the linear features present in the chest CT images so that the distinctiveness in the delineation of the lobe is improved. We propose a recursive diffusion process that prefers coherent features based on the analysis of structure tensor in an anisotropic manner. The local image features associated with certain scales and directions can be characterized by the eigenanalysis of the structure tensor that is often regularized via isotropic diffusion filters. However, the isotropic diffusion filters involved in the computation of the structure tensor generally blur geometrically significant structure of the features leading to the degradation of the characteristic power in the feature space. Thus, it is required to take into consideration of local structure of the feature in scale and direction when computing the structure tensor. We apply an anisotropic diffusion in consideration of scale and direction of the features in the computation of the structure tensor that subsequently provides the geometrical structure of the features by its eigenanalysis that determines the shape of the anisotropic diffusion kernel. The recursive application of the anisotropic diffusion with the kernel the shape of which is derived from the structure tensor leading to the anisotropic scale-space where the geometrical features are preserved via the eigenanalysis of the structure tensor computed from the diffused image. The recursive interaction between the anisotropic diffusion based on the geometry-driven kernels and the computation of the structure tensor that determines the shape of the diffusion kernels yields a scale-space where geometrical properties of the image structure are effectively characterized. We apply our recursive anisotropic diffusion algorithm to the detection of curvilinear structure in the chest CT imagery where the fissures present curvilinear features and define the boundary of lobes. It is shown that our algorithm yields precise detection of the fissures while overcoming the subtlety in defining the characteristic linear features. The quantitative evaluation demonstrates the robustness and effectiveness of the proposed algorithm for the detection of fissures in the chest CT in terms of the false positive and the true positive measures. The receiver operating characteristic curves indicate the potential of our algorithm as a segmentation tool in the clinical environment. This work was supported by the MISP(Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by the IITP(Institute for Information and Communications Technology Promotion).Keywords: anisotropic diffusion, chest CT imagery, chronic respiratory disease, curvilinear structure, fissure detection, structure tensor
Procedia PDF Downloads 23238 The Effect of Artificial Intelligence on Mobile Phones and Communication Systems
Authors: Ibram Khalafalla Roshdy Shokry
Abstract:
This paper gives service feel multiple get entry to (CSMA) verbal exchange model based totally totally on SoC format method. Such model can be used to guide the modelling of the complex c084d04ddacadd4b971ae3d98fecfb2a communique systems, consequently use of such communication version is an crucial method in the creation of excessive general overall performance conversation. SystemC has been selected as it gives a homogeneous format drift for complicated designs (i.e. SoC and IP based format). We use a swarm device to validate CSMA designed version and to expose how advantages of incorporating communication early within the layout process. The wireless conversation created via the modeling of CSMA protocol that may be used to attain conversation among all of the retailers and to coordinate get proper of entry to to the shared medium (channel).The device of automobiles with wi-fiwireless communique abilities is expected to be the important thing to the evolution to next era intelligent transportation systems (ITS). The IEEE network has been continuously operating at the development of an wireless vehicular communication protocol for the enhancement of wi-fi get admission to in Vehicular surroundings (WAVE). Vehicular verbal exchange systems, known as V2X, help car to car (V2V) and automobile to infrastructure (V2I) communications. The wi-ficiencywireless of such communication systems relies upon on several elements, amongst which the encircling surroundings and mobility are prominent. as a result, this observe makes a speciality of the evaluation of the actual performance of vehicular verbal exchange with unique cognizance on the effects of the actual surroundings and mobility on V2X verbal exchange. It begins by wi-fi the actual most range that such conversation can guide and then evaluates V2I and V2V performances. The Arada LocoMate OBU transmission device changed into used to check and evaluate the effect of the transmission range in V2X verbal exchange. The evaluation of V2I and V2V communique takes the real effects of low and excessive mobility on transmission under consideration.Multiagent systems have received sizeable attention in numerous wi-fields, which include robotics, independent automobiles, and allotted computing, where a couple of retailers cooperate and speak to reap complicated duties. wi-figreen communication among retailers is a critical thing of these systems, because it directly influences their usual performance and scalability. This scholarly work gives an exploration of essential communication factors and conducts a comparative assessment of diverse protocols utilized in multiagent systems. The emphasis lies in scrutinizing the strengths, weaknesses, and applicability of those protocols across diverse situations. The studies additionally sheds light on rising tendencies within verbal exchange protocols for multiagent systems, together with the incorporation of device mastering strategies and the adoption of blockchain-based totally solutions to make sure comfy communique. those developments offer valuable insights into the evolving landscape of multiagent structures and their verbal exchange protocols.Keywords: communication, multi-agent systems, protocols, consensussystemC, modelling, simulation, CSMA
Procedia PDF Downloads 2537 Improved Soil and Snow Treatment with the Rapid Update Cycle Land-Surface Model for Regional and Global Weather Predictions
Authors: Tatiana G. Smirnova, Stan G. Benjamin
Abstract:
Rapid Update Cycle (RUC) land surface model (LSM) was a land-surface component in several generations of operational weather prediction models at the National Center for Environment Prediction (NCEP) at the National Oceanic and Atmospheric Administration (NOAA). It was designed for short-range weather predictions with an emphasis on severe weather and originally was intentionally simple to avoid uncertainties from poorly known parameters. Nevertheless, the RUC LSM, when coupled with the hourly-assimilating atmospheric model, can produce a realistic evolution of time-varying soil moisture and temperature, as well as the evolution of snow cover on the ground surface. This result is possible only if the soil/vegetation/snow component of the coupled weather prediction model has sufficient skill to avoid long-term drift. RUC LSM was first implemented in the operational NCEP Rapid Update Cycle (RUC) weather model in 1998 and later in the Weather Research Forecasting Model (WRF)-based Rapid Refresh (RAP) and High-resolution Rapid Refresh (HRRR). Being available to the international WRF community, it was implemented in operational weather models in Austria, New Zealand, and Switzerland. Based on the feedback from the US weather service offices and the international WRF community and also based on our own validation, RUC LSM has matured over the years. Also, a sea-ice module was added to RUC LSM for surface predictions over the Arctic sea-ice. Other modifications include refinements to the snow model and a more accurate specification of albedo, roughness length, and other surface properties. At present, RUC LSM is being tested in the regional application of the Unified Forecast System (UFS). The next generation UFS-based regional Rapid Refresh FV3 Standalone (RRFS) model will replace operational RAP and HRRR at NCEP. Over time, RUC LSM participated in several international model intercomparison projects to verify its skill using observed atmospheric forcing. The ESM-SnowMIP was the last of these experiments focused on the verification of snow models for open and forested regions. The simulations were performed for ten sites located in different climatic zones of the world forced with observed atmospheric conditions. While most of the 26 participating models have more sophisticated snow parameterizations than in RUC, RUC LSM got a high ranking in simulations of both snow water equivalent and surface temperature. However, ESM-SnowMIP experiment also revealed some issues in the RUC snow model, which will be addressed in this paper. One of them is the treatment of grid cells partially covered with snow. RUC snow module computes energy and moisture budgets of snow-covered and snow-free areas separately by aggregating the solutions at the end of each time step. Such treatment elevates the importance of computing in the model snow cover fraction. Improvements to the original simplistic threshold-based approach have been implemented and tested both offline and in the coupled weather model. The detailed description of changes to the snow cover fraction and other modifications to RUC soil and snow parameterizations will be described in this paper.Keywords: land-surface models, weather prediction, hydrology, boundary-layer processes
Procedia PDF Downloads 8836 Valuing Social Sustainability in Agriculture: An Approach Based on Social Outputs’ Shadow Prices
Authors: Amer Ait Sidhoum
Abstract:
Interest in sustainability has gained ground among practitioners, academics and policy-makers due to growing stakeholders’ awareness of environmental and social concerns. This is particularly true for agriculture. However, relatively little research has been conducted on the quantification of social sustainability and the contribution of social issues to the agricultural production efficiency. This research's main objective is to propose a method for evaluating prices of social outputs, more precisely shadow prices, by allowing for the stochastic nature of agricultural production that is to say for production uncertainty. In this article, the assessment of social outputs’ shadow prices is conducted within the methodological framework of nonparametric Data Envelopment Analysis (DEA). An output-oriented directional distance function (DDF) is implemented to represent the technology of a sample of Catalan arable crop farms and derive the efficiency scores the overall production technology of our sample is assumed to be the intersection of two different sub-technologies. The first sub-technology models the production of random desirable agricultural outputs, while the second sub-technology reflects the social outcomes from agricultural activities. Once a nonparametric production technology has been represented, the DDF primal approach can be used for efficiency measurement, while shadow prices are drawn from the dual representation of the DDF. Computing shadow prices is a method to assign an economic value to non-marketed social outcomes. Our research uses cross sectional, farm-level data collected in 2015 from a sample of 180 Catalan arable crop farms specialized in the production of cereals, oilseeds and protein (COP) crops. Our results suggest that our sample farms show high performance scores, from 85% for the bad state of nature to 88% for the normal and ideal crop growing conditions. This suggests that farm performance is increasing with an improvement in crop growth conditions. Results also show that average shadow prices of desirable state-contingent output and social outcomes for efficient and inefficient farms are positive, suggesting that the production of desirable marketable outputs and of non-marketable outputs makes a positive contribution to the farm production efficiency. Results also indicate that social outputs’ shadow prices are contingent upon the growing conditions. The shadow prices follow an upward trend as crop-growing conditions improve. This finding suggests that these efficient farms prefer to allocate more resources in the production of desirable outputs than of social outcomes. To our knowledge, this study represents the first attempt to compute shadow prices of social outcomes while accounting for the stochastic nature of the production technology. Our findings suggest that the decision-making process of the efficient farms in dealing with social issues are stochastic and strongly dependent on the growth conditions. This implies that policy-makers should adjust their instruments according to the stochastic environmental conditions. An optimal redistribution of rural development support, by increasing the public payment with the improvement in crop growth conditions, would likely enhance the effectiveness of public policies.Keywords: data envelopment analysis, shadow prices, social sustainability, sustainable farming
Procedia PDF Downloads 12635 Numerical Optimization of Cooling System Parameters for Multilayer Lithium Ion Cell and Battery Packs
Authors: Mohammad Alipour, Ekin Esen, Riza Kizilel
Abstract:
Lithium-ion batteries are a commonly used type of rechargeable batteries because of their high specific energy and specific power. With the growing popularity of electric vehicles and hybrid electric vehicles, increasing attentions have been paid to rechargeable Lithium-ion batteries. However, safety problems, high cost and poor performance in low ambient temperatures and high current rates, are big obstacles for commercial utilization of these batteries. By proper thermal management, most of the mentioned limitations could be eliminated. Temperature profile of the Li-ion cells has a significant role in the performance, safety, and cycle life of the battery. That is why little temperature gradient can lead to great loss in the performances of the battery packs. In recent years, numerous researchers are working on new techniques to imply a better thermal management on Li-ion batteries. Keeping the battery cells within an optimum range is the main objective of battery thermal management. Commercial Li-ion cells are composed of several electrochemical layers each consisting negative-current collector, negative electrode, separator, positive electrode, and positive current collector. However, many researchers have adopted a single-layer cell to save in computing time. Their hypothesis is that thermal conductivity of the layer elements is so high and heat transfer rate is so fast. Therefore, instead of several thin layers, they model the cell as one thick layer unit. In previous work, we showed that single-layer model is insufficient to simulate the thermal behavior and temperature nonuniformity of the high-capacity Li-ion cells. We also studied the effects of the number of layers on thermal behavior of the Li-ion batteries. In this work, first thermal and electrochemical behavior of the LiFePO₄ battery is modeled with 3D multilayer cell. The model is validated with the experimental measurements at different current rates and ambient temperatures. Real time heat generation rate is also studied at different discharge rates. Results showed non-uniform temperature distribution along the cell which requires thermal management system. Therefore, aluminum plates with mini-channel system were designed to control the temperature uniformity. Design parameters such as channel number and widths, inlet flow rate, and cooling fluids are optimized. As cooling fluids, water and air are compared. Pressure drop and velocity profiles inside the channels are illustrated. Both surface and internal temperature profiles of single cell and battery packs are investigated with and without cooling systems. Our results show that using optimized Mini-channel cooling plates effectively controls the temperature rise and uniformity of the single cells and battery packs. With increasing the inlet flow rate, cooling efficiency could be reached up to 60%.Keywords: lithium ion battery, 3D multilayer model, mini-channel cooling plates, thermal management
Procedia PDF Downloads 16434 Investigation of Software Integration for Simulations of Buoyancy-Driven Heat Transfer in a Vehicle Underhood during Thermal Soak
Authors: R. Yuan, S. Sivasankaran, N. Dutta, K. Ebrahimi
Abstract:
This paper investigates the software capability and computer-aided engineering (CAE) method of modelling transient heat transfer process occurred in the vehicle underhood region during vehicle thermal soak phase. The heat retention from the soak period will be beneficial to the cold start with reduced friction loss for the second 14°C worldwide harmonized light-duty vehicle test procedure (WLTP) cycle, therefore provides benefits on both CO₂ emission reduction and fuel economy. When vehicle undergoes soak stage, the airflow and the associated convective heat transfer around and inside the engine bay is driven by the buoyancy effect. This effect along with thermal radiation and conduction are the key factors to the thermal simulation of the engine bay to obtain the accurate fluids and metal temperature cool-down trajectories and to predict the temperatures at the end of the soak period. Method development has been investigated in this study on a light-duty passenger vehicle using coupled aerodynamic-heat transfer thermal transient modelling method for the full vehicle under 9 hours of thermal soak. The 3D underhood flow dynamics were solved inherently transient by the Lattice-Boltzmann Method (LBM) method using the PowerFlow software. This was further coupled with heat transfer modelling using the PowerTHERM software provided by Exa Corporation. The particle-based LBM method was capable of accurately handling extremely complicated transient flow behavior on complex surface geometries. The detailed thermal modelling, including heat conduction, radiation, and buoyancy-driven heat convection, were integrated solved by PowerTHERM. The 9 hours cool-down period was simulated and compared with the vehicle testing data of the key fluid (coolant, oil) and metal temperatures. The developed CAE method was able to predict the cool-down behaviour of the key fluids and components in agreement with the experimental data and also visualised the air leakage paths and thermal retention around the engine bay. The cool-down trajectories of the key components obtained for the 9 hours thermal soak period provide vital information and a basis for the further development of reduced-order modelling studies in future work. This allows a fast-running model to be developed and be further imbedded with the holistic study of vehicle energy modelling and thermal management. It is also found that the buoyancy effect plays an important part at the first stage of the 9 hours soak and the flow development during this stage is vital to accurately predict the heat transfer coefficients for the heat retention modelling. The developed method has demonstrated the software integration for simulating buoyancy-driven heat transfer in a vehicle underhood region during thermal soak with satisfying accuracy and efficient computing time. The CAE method developed will allow integration of the design of engine encapsulations for improving fuel consumption and reducing CO₂ emissions in a timely and robust manner, aiding the development of low-carbon transport technologies.Keywords: ATCT/WLTC driving cycle, buoyancy-driven heat transfer, CAE method, heat retention, underhood modeling, vehicle thermal soak
Procedia PDF Downloads 15433 Stochastic Matrices and Lp Norms for Ill-Conditioned Linear Systems
Authors: Riadh Zorgati, Thomas Triboulet
Abstract:
In quite diverse application areas such as astronomy, medical imaging, geophysics or nondestructive evaluation, many problems related to calibration, fitting or estimation of a large number of input parameters of a model from a small amount of output noisy data, can be cast as inverse problems. Due to noisy data corruption, insufficient data and model errors, most inverse problems are ill-posed in a Hadamard sense, i.e. existence, uniqueness and stability of the solution are not guaranteed. A wide class of inverse problems in physics relates to the Fredholm equation of the first kind. The ill-posedness of such inverse problem results, after discretization, in a very ill-conditioned linear system of equations, the condition number of the associated matrix can typically range from 109 to 1018. This condition number plays the role of an amplifier of uncertainties on data during inversion and then, renders the inverse problem difficult to handle numerically. Similar problems appear in other areas such as numerical optimization when using interior points algorithms for solving linear programs leads to face ill-conditioned systems of linear equations. Devising efficient solution approaches for such system of equations is therefore of great practical interest. Efficient iterative algorithms are proposed for solving a system of linear equations. The approach is based on a preconditioning of the initial matrix of the system with an approximation of a generalized inverse leading to a stochastic preconditioned matrix. This approach, valid for non-negative matrices, is first extended to hermitian, semi-definite positive matrices and then generalized to any complex rectangular matrices. The main results obtained are as follows: 1) We are able to build a generalized inverse of any complex rectangular matrix which satisfies the convergence condition requested in iterative algorithms for solving a system of linear equations. This completes the (short) list of generalized inverse having this property, after Kaczmarz and Cimmino matrices. Theoretical results on both the characterization of the type of generalized inverse obtained and the convergence are derived. 2) Thanks to its properties, this matrix can be efficiently used in different solving schemes as Richardson-Tanabe or preconditioned conjugate gradients. 3) By using Lp norms, we propose generalized Kaczmarz’s type matrices. We also show how Cimmino's matrix can be considered as a particular case consisting in choosing the Euclidian norm in an asymmetrical structure. 4) Regarding numerical results obtained on some pathological well-known test-cases (Hilbert, Nakasaka, …), some of the proposed algorithms are empirically shown to be more efficient on ill-conditioned problems and more robust to error propagation than the known classical techniques we have tested (Gauss, Moore-Penrose inverse, minimum residue, conjugate gradients, Kaczmarz, Cimmino). We end on a very early prospective application of our approach based on stochastic matrices aiming at computing some parameters (such as the extreme values, the mean, the variance, …) of the solution of a linear system prior to its resolution. Such an approach, if it were to be efficient, would be a source of information on the solution of a system of linear equations.Keywords: conditioning, generalized inverse, linear system, norms, stochastic matrix
Procedia PDF Downloads 13632 Early Diagnosis of Myocardial Ischemia Based on Support Vector Machine and Gaussian Mixture Model by Using Features of ECG Recordings
Authors: Merve Begum Terzi, Orhan Arikan, Adnan Abaci, Mustafa Candemir
Abstract:
Acute myocardial infarction is a major cause of death in the world. Therefore, its fast and reliable diagnosis is a major clinical need. ECG is the most important diagnostic methodology which is used to make decisions about the management of the cardiovascular diseases. In patients with acute myocardial ischemia, temporary chest pains together with changes in ST segment and T wave of ECG occur shortly before the start of myocardial infarction. In this study, a technique which detects changes in ST/T sections of ECG is developed for the early diagnosis of acute myocardial ischemia. For this purpose, a database of real ECG recordings that contains a set of records from 75 patients presenting symptoms of chest pain who underwent elective percutaneous coronary intervention (PCI) is constituted. 12-lead ECG’s of the patients were recorded before and during the PCI procedure. Two ECG epochs, which are the pre-inflation ECG which is acquired before any catheter insertion and the occlusion ECG which is acquired during balloon inflation, are analyzed for each patient. By using pre-inflation and occlusion recordings, ECG features that are critical in the detection of acute myocardial ischemia are identified and the most discriminative features for the detection of acute myocardial ischemia are extracted. A classification technique based on support vector machine (SVM) approach operating with linear and radial basis function (RBF) kernels to detect ischemic events by using ST-T derived joint features from non-ischemic and ischemic states of the patients is developed. The dataset is randomly divided into training and testing sets and the training set is used to optimize SVM hyperparameters by using grid-search method and 10fold cross-validation. SVMs are designed specifically for each patient by tuning the kernel parameters in order to obtain the optimal classification performance results. As a result of implementing the developed classification technique to real ECG recordings, it is shown that the proposed technique provides highly reliable detections of the anomalies in ECG signals. Furthermore, to develop a detection technique that can be used in the absence of ECG recording obtained during healthy stage, the detection of acute myocardial ischemia based on ECG recordings of the patients obtained during ischemia is also investigated. For this purpose, a Gaussian mixture model (GMM) is used to represent the joint pdf of the most discriminating ECG features of myocardial ischemia. Then, a Neyman-Pearson type of approach is developed to provide detection of outliers that would correspond to acute myocardial ischemia. Neyman – Pearson decision strategy is used by computing the average log likelihood values of ECG segments and comparing them with a range of different threshold values. For different discrimination threshold values and number of ECG segments, probability of detection and probability of false alarm values are computed, and the corresponding ROC curves are obtained. The results indicate that increasing number of ECG segments provide higher performance for GMM based classification. Moreover, the comparison between the performances of SVM and GMM based classification showed that SVM provides higher classification performance results over ECG recordings of considerable number of patients.Keywords: ECG classification, Gaussian mixture model, Neyman–Pearson approach, support vector machine
Procedia PDF Downloads 16231 Big Data and Health: An Australian Perspective Which Highlights the Importance of Data Linkage to Support Health Research at a National Level
Authors: James Semmens, James Boyd, Anna Ferrante, Katrina Spilsbury, Sean Randall, Adrian Brown
Abstract:
‘Big data’ is a relatively new concept that describes data so large and complex that it exceeds the storage or computing capacity of most systems to perform timely and accurate analyses. Health services generate large amounts of data from a wide variety of sources such as administrative records, electronic health records, health insurance claims, and even smart phone health applications. Health data is viewed in Australia and internationally as highly sensitive. Strict ethical requirements must be met for the use of health data to support health research. These requirements differ markedly from those imposed on data use from industry or other government sectors and may have the impact of reducing the capacity of health data to be incorporated into the real time demands of the Big Data environment. This ‘big data revolution’ is increasingly supported by national governments, who have invested significant funds into initiatives designed to develop and capitalize on big data and methods for data integration using record linkage. The benefits to health following research using linked administrative data are recognised internationally and by the Australian Government through the National Collaborative Research Infrastructure Strategy Roadmap, which outlined a multi-million dollar investment strategy to develop national record linkage capabilities. This led to the establishment of the Population Health Research Network (PHRN) to coordinate and champion this initiative. The purpose of the PHRN was to establish record linkage units in all Australian states, to support the implementation of secure data delivery and remote access laboratories for researchers, and to develop the Centre for Data Linkage for the linkage of national and cross-jurisdictional data. The Centre for Data Linkage has been established within Curtin University in Western Australia; it provides essential record linkage infrastructure necessary for large-scale, cross-jurisdictional linkage of health related data in Australia and uses a best practice ‘separation principle’ to support data privacy and security. Privacy preserving record linkage technology is also being developed to link records without the use of names to overcome important legal and privacy constraint. This paper will present the findings of the first ‘Proof of Concept’ project selected to demonstrate the effectiveness of increased record linkage capacity in supporting nationally significant health research. This project explored how cross-jurisdictional linkage can inform the nature and extent of cross-border hospital use and hospital-related deaths. The technical challenges associated with national record linkage, and the extent of cross-border population movements, were explored as part of this pioneering research project. Access to person-level data linked across jurisdictions identified geographical hot spots of cross border hospital use and hospital-related deaths in Australia. This has implications for planning of health service delivery and for longitudinal follow-up studies, particularly those involving mobile populations.Keywords: data integration, data linkage, health planning, health services research
Procedia PDF Downloads 21630 Design of an Automated Deep Learning Recurrent Neural Networks System Integrated with IoT for Anomaly Detection in Residential Electric Vehicle Charging in Smart Cities
Authors: Wanchalerm Patanacharoenwong, Panaya Sudta, Prachya Bumrungkun
Abstract:
The paper focuses on the development of a system that combines Internet of Things (IoT) technologies and deep learning algorithms for anomaly detection in residential Electric Vehicle (EV) charging in smart cities. With the increasing number of EVs, ensuring efficient and reliable charging systems has become crucial. The aim of this research is to develop an integrated IoT and deep learning system for detecting anomalies in residential EV charging and enhancing EV load profiling and event detection in smart cities. This approach utilizes IoT devices equipped with infrared cameras to collect thermal images and household EV charging profiles from the database of Thailand utility, subsequently transmitting this data to a cloud database for comprehensive analysis. The methodology includes the use of advanced deep learning techniques such as Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) algorithms. IoT devices equipped with infrared cameras are used to collect thermal images and EV charging profiles. The data is transmitted to a cloud database for comprehensive analysis. The researchers also utilize feature-based Gaussian mixture models for EV load profiling and event detection. Moreover, the research findings demonstrate the effectiveness of the developed system in detecting anomalies and critical profiles in EV charging behavior. The system provides timely alarms to users regarding potential issues and categorizes the severity of detected problems based on a health index for each charging device. The system also outperforms existing models in event detection accuracy. This research contributes to the field by showcasing the potential of integrating IoT and deep learning techniques in managing residential EV charging in smart cities. The system ensures operational safety and efficiency while also promoting sustainable energy management. The data is collected using IoT devices equipped with infrared cameras and is stored in a cloud database for analysis. The collected data is then analyzed using RNN, LSTM, and feature-based Gaussian mixture models. The approach includes both EV load profiling and event detection, utilizing a feature-based Gaussian mixture model. This comprehensive method aids in identifying unique power consumption patterns among EV owners and outperforms existing models in event detection accuracy. In summary, the research concludes that integrating IoT and deep learning techniques can effectively detect anomalies in residential EV charging and enhance EV load profiling and event detection accuracy. The developed system ensures operational safety and efficiency, contributing to sustainable energy management in smart cities.Keywords: cloud computing framework, recurrent neural networks, long short-term memory, Iot, EV charging, smart grids
Procedia PDF Downloads 6429 “laws Drifting Off While Artificial Intelligence Thriving” – A Comparative Study with Special Reference to Computer Science and Information Technology
Authors: Amarendar Reddy Addula
Abstract:
Definition of Artificial Intelligence: Artificial intelligence is the simulation of mortal intelligence processes by machines, especially computer systems. Explicit operations of AI comprise expert systems, natural language processing, and speech recognition, and machine vision. Artificial Intelligence (AI) is an original medium for digital business, according to a new report by Gartner. The last 10 times represent an advance period in AI’s development, prodded by the confluence of factors, including the rise of big data, advancements in cipher structure, new machine literacy ways, the materialization of pall computing, and the vibrant open- source ecosystem. Influence of AI to a broader set of use cases and druggies and its gaining fashionability because it improves AI’s versatility, effectiveness, and rigidity. Edge AI will enable digital moments by employing AI for real- time analytics closer to data sources. Gartner predicts that by 2025, further than 50 of all data analysis by deep neural networks will do at the edge, over from lower than 10 in 2021. Responsible AI is a marquee term for making suitable business and ethical choices when espousing AI. It requires considering business and societal value, threat, trust, translucency, fairness, bias mitigation, explainability, responsibility, safety, sequestration, and nonsupervisory compliance. Responsible AI is ever more significant amidst growing nonsupervisory oversight, consumer prospects, and rising sustainability pretensions. Generative AI is the use of AI to induce new vestiges and produce innovative products. To date, generative AI sweats have concentrated on creating media content similar as photorealistic images of people and effects, but it can also be used for law generation, creating synthetic irregular data, and designing medicinals and accoutrements with specific parcels. AI is the subject of a wide- ranging debate in which there's a growing concern about its ethical and legal aspects. Constantly, the two are varied and nonplussed despite being different issues and areas of knowledge. The ethical debate raises two main problems the first, abstract, relates to the idea and content of ethics; the alternate, functional, and concerns its relationship with the law. Both set up models of social geste, but they're different in compass and nature. The juridical analysis is grounded on anon-formalistic scientific methodology. This means that it's essential to consider the nature and characteristics of the AI as a primary step to the description of its legal paradigm. In this regard, there are two main issues the relationship between artificial and mortal intelligence and the question of the unitary or different nature of the AI. From that theoretical and practical base, the study of the legal system is carried out by examining its foundations, the governance model, and the nonsupervisory bases. According to this analysis, throughout the work and in the conclusions, International Law is linked as the top legal frame for the regulation of AI.Keywords: artificial intelligence, ethics & human rights issues, laws, international laws
Procedia PDF Downloads 9428 An Integrated Lightweight Naïve Bayes Based Webpage Classification Service for Smartphone Browsers
Authors: Mayank Gupta, Siba Prasad Samal, Vasu Kakkirala
Abstract:
The internet world and its priorities have changed considerably in the last decade. Browsing on smart phones has increased manifold and is set to explode much more. Users spent considerable time browsing different websites, that gives a great deal of insight into user’s preferences. Instead of plain information classifying different aspects of browsing like Bookmarks, History, and Download Manager into useful categories would improve and enhance the user’s experience. Most of the classification solutions are server side that involves maintaining server and other heavy resources. It has security constraints and maybe misses on contextual data during classification. On device, classification solves many such problems, but the challenge is to achieve accuracy on classification with resource constraints. This on device classification can be much more useful in personalization, reducing dependency on cloud connectivity and better privacy/security. This approach provides more relevant results as compared to current standalone solutions because it uses content rendered by browser which is customized by the content provider based on user’s profile. This paper proposes a Naive Bayes based lightweight classification engine targeted for a resource constraint devices. Our solution integrates with Web Browser that in turn triggers classification algorithm. Whenever a user browses a webpage, this solution extracts DOM Tree data from the browser’s rendering engine. This DOM data is a dynamic, contextual and secure data that can’t be replicated. This proposal extracts different features of the webpage that runs on an algorithm to classify into multiple categories. Naive Bayes based engine is chosen in this solution for its inherent advantages in using limited resources compared to other classification algorithms like Support Vector Machine, Neural Networks, etc. Naive Bayes classification requires small memory footprint and less computation suitable for smartphone environment. This solution has a feature to partition the model into multiple chunks that in turn will facilitate less usage of memory instead of loading a complete model. Classification of the webpages done through integrated engine is faster, more relevant and energy efficient than other standalone on device solution. This classification engine has been tested on Samsung Z3 Tizen hardware. The Engine is integrated into Tizen Browser that uses Chromium Rendering Engine. For this solution, extensive dataset is sourced from dmoztools.net and cleaned. This cleaned dataset has 227.5K webpages which are divided into 8 generic categories ('education', 'games', 'health', 'entertainment', 'news', 'shopping', 'sports', 'travel'). Our browser integrated solution has resulted in 15% less memory usage (due to partition method) and 24% less power consumption in comparison with standalone solution. This solution considered 70% of the dataset for training the data model and the rest 30% dataset for testing. An average accuracy of ~96.3% is achieved across the above mentioned 8 categories. This engine can be further extended for suggesting Dynamic tags and using the classification for differential uses cases to enhance browsing experience.Keywords: chromium, lightweight engine, mobile computing, Naive Bayes, Tizen, web browser, webpage classification
Procedia PDF Downloads 16327 A Review of Data Visualization Best Practices: Lessons for Open Government Data Portals
Authors: Bahareh Ansari
Abstract:
Background: The Open Government Data (OGD) movement in the last decade has encouraged many government organizations around the world to make their data publicly available to advance democratic processes. But current open data platforms have not yet reached to their full potential in supporting all interested parties. To make the data useful and understandable for everyone, scholars suggested that opening the data should be supplemented by visualization. However, different visualizations of the same information can dramatically change an individual’s cognitive and emotional experience in working with the data. This study reviews the data visualization literature to create a list of the methods empirically tested to enhance users’ performance and experience in working with a visualization tool. This list can be used in evaluating the OGD visualization practices and informing the future open data initiatives. Methods: Previous reviews of visualization literature categorized the visualization outcomes into four categories including recall/memorability, insight/comprehension, engagement, and enjoyment. To identify the papers, a search for these outcomes was conducted in the abstract of the publications of top-tier visualization venues including IEEE Transactions for Visualization and Computer Graphics, Computer Graphics, and proceedings of the CHI Conference on Human Factors in Computing Systems. The search results are complemented with a search in the references of the identified articles, and a search for 'open data visualization,' and 'visualization evaluation' keywords in the IEEE explore and ACM digital libraries. Articles are included if they provide empirical evidence through conducting controlled user experiments, or provide a review of these empirical studies. The qualitative synthesis of the studies focuses on identification and classifying the methods, and the conditions under which they are examined to positively affect the visualization outcomes. Findings: The keyword search yields 760 studies, of which 30 are included after the title/abstract review. The classification of the included articles shows five distinct methods: interactive design, aesthetic (artistic) style, storytelling, decorative elements that do not provide extra information including text, image, and embellishment on the graphs), and animation. Studies on decorative elements show consistency on the positive effects of these elements on user engagement and recall but are less consistent in their examination of the user performance. This inconsistency could be attributable to the particular data type or specific design method used in each study. The interactive design studies are consistent in their findings of the positive effect on the outcomes. Storytelling studies show some inconsistencies regarding the design effect on user engagement, enjoyment, recall, and performance, which could be indicative of the specific conditions required for the use of this method. Last two methods, aesthetics and animation, have been less frequent in the included articles, and provide consistent positive results on some of the outcomes. Implications for e-government: Review of the visualization best-practice methods show that each of these methods is beneficial under specific conditions. By using these methods in a potentially beneficial condition, OGD practices can promote a wide range of individuals to involve and work with the government data and ultimately engage in government policy-making procedures.Keywords: best practices, data visualization, literature review, open government data
Procedia PDF Downloads 10626 Modelling of Reactive Methodologies in Auto-Scaling Time-Sensitive Services With a MAPE-K Architecture
Authors: Óscar Muñoz Garrigós, José Manuel Bernabeu Aubán
Abstract:
Time-sensitive services are the base of the cloud services industry. Keeping low service saturation is essential for controlling response time. All auto-scalable services make use of reactive auto-scaling. However, reactive auto-scaling has few in-depth studies. This presentation shows a model for reactive auto-scaling methodologies with a MAPE-k architecture. Queuing theory can compute different properties of static services but lacks some parameters related to the transition between models. Our model uses queuing theory parameters to relate the transition between models. It associates MAPE-k related times, the sampling frequency, the cooldown period, the number of requests that an instance can handle per unit of time, the number of incoming requests at a time instant, and a function that describes the acceleration in the service's ability to handle more requests. This model is later used as a solution to horizontally auto-scale time-sensitive services composed of microservices, reevaluating the model’s parameters periodically to allocate resources. The solution requires limiting the acceleration of the growth in the number of incoming requests to keep a constrained response time. Business benefits determine such limits. The solution can add a dynamic number of instances and remains valid under different system sizes. The study includes performance recommendations to improve results according to the incoming load shape and business benefits. The exposed methodology is tested in a simulation. The simulator contains a load generator and a service composed of two microservices, where the frontend microservice depends on a backend microservice with a 1:1 request relation ratio. A common request takes 2.3 seconds to be computed by the service and is discarded if it takes more than 7 seconds. Both microservices contain a load balancer that assigns requests to the less loaded instance and preemptively discards requests if they are not finished in time to prevent resource saturation. When load decreases, instances with lower load are kept in the backlog where no more requests are assigned. If the load grows and an instance in the backlog is required, it returns to the running state, but if it finishes the computation of all requests and is no longer required, it is permanently deallocated. A few load patterns are required to represent the worst-case scenario for reactive systems: the following scenarios test response times, resource consumption and business costs. The first scenario is a burst-load scenario. All methodologies will discard requests if the rapidness of the burst is high enough. This scenario focuses on the number of discarded requests and the variance of the response time. The second scenario contains sudden load drops followed by bursts to observe how the methodology behaves when releasing resources that are lately required. The third scenario contains diverse growth accelerations in the number of incoming requests to observe how approaches that add a different number of instances can handle the load with less business cost. The exposed methodology is compared against a multiple threshold CPU methodology allocating/deallocating 10 or 20 instances, outperforming the competitor in all studied metrics.Keywords: reactive auto-scaling, auto-scaling, microservices, cloud computing
Procedia PDF Downloads 9325 A Vision-Based Early Warning System to Prevent Elephant-Train Collisions
Authors: Shanaka Gunasekara, Maleen Jayasuriya, Nalin Harischandra, Lilantha Samaranayake, Gamini Dissanayake
Abstract:
One serious facet of the worsening Human-Elephant conflict (HEC) in nations such as Sri Lanka involves elephant-train collisions. Endangered Asian elephants are maimed or killed during such accidents, which also often result in orphaned or disabled elephants, contributing to the phenomenon of lone elephants. These lone elephants are found to be more likely to attack villages and showcase aggressive behaviour, which further exacerbates the overall HEC. Furthermore, Railway Services incur significant financial losses and disruptions to services annually due to such accidents. Most elephant-train collisions occur due to a lack of adequate reaction time. This is due to the significant stopping distance requirements of trains, as the full braking force needs to be avoided to minimise the risk of derailment. Thus, poor driver visibility at sharp turns, nighttime operation, and poor weather conditions are often contributing factors to this problem. Initial investigations also indicate that most collisions occur in localised “hotspots” where elephant pathways/corridors intersect with railway tracks that border grazing land and watering holes. Taking these factors into consideration, this work proposes the leveraging of recent developments in Convolutional Neural Network (CNN) technology to detect elephants using an RGB/infrared capable camera around known hotspots along the railway track. The CNN was trained using a curated dataset of elephants collected on field visits to elephant sanctuaries and wildlife parks in Sri Lanka. With this vision-based detection system at its core, a prototype unit of an early warning system was designed and tested. This weatherised and waterproofed unit consists of a Reolink security camera which provides a wide field of view and range, an Nvidia Jetson Xavier computing unit, a rechargeable battery, and a solar panel for self-sufficient functioning. The prototype unit was designed to be a low-cost, low-power and small footprint device that can be mounted on infrastructures such as poles or trees. If an elephant is detected, an early warning message is communicated to the train driver using the GSM network. A mobile app for this purpose was also designed to ensure that the warning is clearly communicated. A centralized control station manages and communicates all information through the train station network to ensure coordination among important stakeholders. Initial results indicate that detection accuracy is sufficient under varying lighting situations, provided comprehensive training datasets that represent a wide range of challenging conditions are available. The overall hardware prototype was shown to be robust and reliable. We envision a network of such units may help contribute to reducing the problem of elephant-train collisions and has the potential to act as an important surveillance mechanism in dealing with the broader issue of human-elephant conflicts.Keywords: computer vision, deep learning, human-elephant conflict, wildlife early warning technology
Procedia PDF Downloads 22624 Backward-Facing Step Measurements at Different Reynolds Numbers Using Acoustic Doppler Velocimetry
Authors: Maria Amelia V. C. Araujo, Billy J. Araujo, Brian Greenwood
Abstract:
The flow over a backward-facing step is characterized by the presence of flow separation, recirculation and reattachment, for a simple geometry. This type of fluid behaviour takes place in many practical engineering applications, hence the reason for being investigated. Historically, fluid flows over a backward-facing step have been examined in many experiments using a variety of measuring techniques such as laser Doppler velocimetry (LDV), hot-wire anemometry, particle image velocimetry or hot-film sensors. However, some of these techniques cannot conveniently be used in separated flows or are too complicated and expensive. In this work, the applicability of the acoustic Doppler velocimetry (ADV) technique is investigated to such type of flows, at various Reynolds numbers corresponding to different flow regimes. The use of this measuring technique in separated flows is very difficult to find in literature. Besides, most of the situations where the Reynolds number effect is evaluated in separated flows are in numerical modelling. The ADV technique has the advantage in providing nearly non-invasive measurements, which is important in resolving turbulence. The ADV Nortek Vectrino+ was used to characterize the flow, in a recirculating laboratory flume, at various Reynolds Numbers (Reh = 3738, 5452, 7908 and 17388) based on the step height (h), in order to capture different flow regimes, and the results compared to those obtained using other measuring techniques. To compare results with other researchers, the step height, expansion ratio and the positions upstream and downstream the step were reproduced. The post-processing of the AVD records was performed using a customized numerical code, which implements several filtering techniques. Subsequently, the Vectrino noise level was evaluated by computing the power spectral density for the stream-wise horizontal velocity component. The normalized mean stream-wise velocity profiles, skin-friction coefficients and reattachment lengths were obtained for each Reh. Turbulent kinetic energy, Reynolds shear stresses and normal Reynolds stresses were determined for Reh = 7908. An uncertainty analysis was carried out, for the measured variables, using the moving block bootstrap technique. Low noise levels were obtained after implementing the post-processing techniques, showing their effectiveness. Besides, the errors obtained in the uncertainty analysis were relatively low, in general. For Reh = 7908, the normalized mean stream-wise velocity and turbulence profiles were compared directly with those acquired by other researchers using the LDV technique and a good agreement was found. The ADV technique proved to be able to characterize the flow properly over a backward-facing step, although additional caution should be taken for measurements very close to the bottom. The ADV measurements showed reliable results regarding: a) the stream-wise velocity profiles; b) the turbulent shear stress; c) the reattachment length; d) the identification of the transition from transitional to turbulent flows. Despite being a relatively inexpensive technique, acoustic Doppler velocimetry can be used with confidence in separated flows and thus very useful for numerical model validation. However, it is very important to perform adequate post-processing of the acquired data, to obtain low noise levels, thus decreasing the uncertainty.Keywords: ADV, experimental data, multiple Reynolds number, post-processing
Procedia PDF Downloads 14823 Temporal and Spacial Adaptation Strategies in Aerodynamic Simulation of Bluff Bodies Using Vortex Particle Methods
Authors: Dario Milani, Guido Morgenthal
Abstract:
Fluid dynamic computation of wind caused forces on bluff bodies e.g light flexible civil structures or high incidence of ground approaching airplane wings, is one of the major criteria governing their design. For such structures a significant dynamic response may result, requiring the usage of small scale devices as guide-vanes in bridge design to control these effects. The focus of this paper is on the numerical simulation of the bluff body problem involving multiscale phenomena induced by small scale devices. One of the solution methods for the CFD simulation that is relatively successful in this class of applications is the Vortex Particle Method (VPM). The method is based on a grid free Lagrangian formulation of the Navier-Stokes equations, where the velocity field is modeled by particles representing local vorticity. These vortices are being convected due to the free stream velocity as well as diffused. This representation yields the main advantages of low numerical diffusion, compact discretization as the vorticity is strongly localized, implicitly accounting for the free-space boundary conditions typical for this class of FSI problems, and a natural representation of the vortex creation process inherent in bluff body flows. When the particle resolution reaches the Kolmogorov dissipation length, the method becomes a Direct Numerical Simulation (DNS). However, it is crucial to note that any solution method aims at balancing the computational cost against the accuracy achievable. In the classical VPM method, if the fluid domain is discretized by Np particles, the computational cost is O(Np2). For the coupled FSI problem of interest, for example large structures such as long-span bridges, the aerodynamic behavior may be influenced or even dominated by small structural details such as barriers, handrails or fairings. For such geometrically complex and dimensionally large structures, resolving the complete domain with the conventional VPM particle discretization might become prohibitively expensive to compute even for moderate numbers of particles. It is possible to reduce this cost either by reducing the number of particles or by controlling its local distribution. It is also possible to increase the accuracy of the solution without increasing substantially the global computational cost by computing a correction of the particle-particle interaction in some regions of interest. In this paper different strategies are presented in order to extend the conventional VPM method to reduce the computational cost whilst resolving the required details of the flow. The methods include temporal sub stepping to increase the accuracy of the particles convection in certain regions as well as dynamically re-discretizing the particle map to locally control the global and the local amount of particles. Finally, these methods will be applied on a test case and the improvements in the efficiency as well as the accuracy of the proposed extension to the method are presented. The important benefits in terms of accuracy and computational cost of the combination of these methods will be thus presented as long as their relevant applications.Keywords: adaptation, fluid dynamic, remeshing, substepping, vortex particle method
Procedia PDF Downloads 26222 Mixed Mode Fracture Analyses Using Finite Element Method of Edge Cracked Heavy Annulus Pulley
Authors: Bijit Kalita, K. V. N. Surendra
Abstract:
The pulley works under both compressive loading due to contacting belt in tension and central torque due to cause rotation. In a power transmission system, the belt pulley assemblies offer a contact problem in the form of two mating cylindrical parts. In this work, we modeled a pulley as a heavy two-dimensional circular disk. Stress analysis due to contact loading in the pulley mechanism is performed. Finite element analysis (FEA) is conducted for a pulley to investigate the stresses experienced on its inner and outer periphery. In most of the heavy-duty applications, most frequently used mechanisms to transmit power in applications such as automotive engines, industrial machines, etc. is Belt Drive. Usually, very heavy circular disks are used as pulleys. A pulley could be entitled as a drum and may have a groove between two flanges around the circumference. A rope, belt, cable or chain can be the driving element of a pulley system that runs over the pulley inside the groove. A pulley is experienced by normal and shear tractions on its contact region in the process of motion transmission. The region may be belt-pulley contact surface or pulley-shaft contact surface. In 1895, Hertz solved the elastic contact problem for point contact and line contact of an ideal smooth object. Afterward, this hypothesis is generally utilized for computing the actual contact zone. Detailed stress analysis in such contact region of such pulleys is quite necessary to prevent early failure. In this paper, the results of the finite element analyses carried out on the compressed disk of a belt pulley arrangement using fracture mechanics concepts are shown. Based on the literature on contact stress problem induced in the wide field of applications, generated stress distribution on the shaft-pulley and belt-pulley interfaces due to the application of high-tension and torque was evaluated in this study using FEA concepts. Finally, the results obtained from ANSYS (APDL) were compared with the Hertzian contact theory. The study is mainly focused on the fatigue life estimation of a rotating part as a component of an engine assembly using the most famous Paris equation. Digital Image Correlation (DIC) analyses have been performed using the open-source software. From the displacement computed using the images acquired at a minimum and maximum force, displacement field amplitude is computed. From these fields, the crack path is defined and stress intensity factors and crack tip position are extracted. A non-linear least-squares projection is used for the purpose of the estimation of fatigue crack growth. Further study will be extended for the various application of rotating machinery such as rotating flywheel disk, jet engine, compressor disk, roller disk cutter etc., where Stress Intensity Factor (SIF) calculation plays a significant role on the accuracy and reliability of a safe design. Additionally, this study will be progressed to predict crack propagation in the pulley using maximum tangential stress (MTS) criteria for mixed mode fracture.Keywords: crack-tip deformations, contact stress, stress concentration, stress intensity factor
Procedia PDF Downloads 12421 Sentinel-2 Based Burn Area Severity Assessment Tool in Google Earth Engine
Authors: D. Madhushanka, Y. Liu, H. C. Fernando
Abstract:
Fires are one of the foremost factors of land surface disturbance in diverse ecosystems, causing soil erosion and land-cover changes and atmospheric effects affecting people's lives and properties. Generally, the severity of the fire is calculated as the Normalized Burn Ratio (NBR) index. This is performed manually by comparing two images obtained afterward. Then by using the bitemporal difference of the preprocessed satellite images, the dNBR is calculated. The burnt area is then classified as either unburnt (dNBR<0.1) or burnt (dNBR>= 0.1). Furthermore, Wildfire Severity Assessment (WSA) classifies burnt areas and unburnt areas using classification levels proposed by USGS and comprises seven classes. This procedure generates a burn severity report for the area chosen by the user manually. This study is carried out with the objective of producing an automated tool for the above-mentioned process, namely the World Wildfire Severity Assessment Tool (WWSAT). It is implemented in Google Earth Engine (GEE), which is a free cloud-computing platform for satellite data processing, with several data catalogs at different resolutions (notably Landsat, Sentinel-2, and MODIS) and planetary-scale analysis capabilities. Sentinel-2 MSI is chosen to obtain regular processes related to burnt area severity mapping using a medium spatial resolution sensor (15m). This tool uses machine learning classification techniques to identify burnt areas using NBR and to classify their severity over the user-selected extent and period automatically. Cloud coverage is one of the biggest concerns when fire severity mapping is performed. In WWSAT based on GEE, we present a fully automatic workflow to aggregate cloud-free Sentinel-2 images for both pre-fire and post-fire image compositing. The parallel processing capabilities and preloaded geospatial datasets of GEE facilitated the production of this tool. This tool consists of a Graphical User Interface (GUI) to make it user-friendly. The advantage of this tool is the ability to obtain burn area severity over a large extent and more extended temporal periods. Two case studies were carried out to demonstrate the performance of this tool. The Blue Mountain national park forest affected by the Australian fire season between 2019 and 2020 is used to describe the workflow of the WWSAT. This site detected more than 7809 km2, using Sentinel-2 data, giving an error below 6.5% when compared with the area detected on the field. Furthermore, 86.77% of the detected area was recognized as fully burnt out, of which high severity (17.29%), moderate-high severity (19.63%), moderate-low severity (22.35%), and low severity (27.51%). The Arapaho and Roosevelt National Forest Park, California, the USA, which is affected by the Cameron peak fire in 2020, is chosen for the second case study. It was found that around 983 km2 had burned out, of which high severity (2.73%), moderate-high severity (1.57%), moderate-low severity (1.18%), and low severity (5.45%). These spots also can be detected through the visual inspection made possible by cloud-free images generated by WWSAT. This tool is cost-effective in calculating the burnt area since satellite images are free and the cost of field surveys is avoided.Keywords: burnt area, burnt severity, fires, google earth engine (GEE), sentinel-2
Procedia PDF Downloads 23520 A Computer-Aided System for Tooth Shade Matching
Authors: Zuhal Kurt, Meral Kurt, Bilge T. Bal, Kemal Ozkan
Abstract:
Shade matching and reproduction is the most important element of success in prosthetic dentistry. Until recently, shade matching procedure was implemented by dentists visual perception with the help of shade guides. Since many factors influence visual perception; tooth shade matching using visual devices (shade guides) is highly subjective and inconsistent. Subjective nature of this process has lead to the development of instrumental devices. Nowadays, colorimeters, spectrophotometers, spectroradiometers and digital image analysing systems are used for instrumental shade selection. Instrumental devices have advantages that readings are quantifiable, can obtain more rapidly and simply, objectively and precisely. However, these devices have noticeable drawbacks. For example, translucent structure and irregular surfaces of teeth lead to defects on measurement with these devices. Also between the results acquired by devices with different measurement principles may make inconsistencies. So, its obligatory to search for new methods for dental shade matching process. A computer-aided system device; digital camera has developed rapidly upon today. Currently, advances in image processing and computing have resulted in the extensive use of digital cameras for color imaging. This procedure has a much cheaper process than the use of traditional contact-type color measurement devices. Digital cameras can be taken by the place of contact-type instruments for shade selection and overcome their disadvantages. Images taken from teeth show morphology and color texture of teeth. In last decades, a new method was recommended to compare the color of shade tabs taken by a digital camera using color features. This method showed that visual and computer-aided shade matching systems should be used as concatenated. Recently using methods of feature extraction techniques are based on shape description and not used color information. However, color is mostly experienced as an essential property in depicting and extracting features from objects in the world around us. When local feature descriptors with color information are extended by concatenating color descriptor with the shape descriptor, that descriptor will be effective on visual object recognition and classification task. Therefore, the color descriptor is to be used in combination with a shape descriptor it does not need to contain any spatial information, which leads us to use local histograms. This local color histogram method is remain reliable under variation of photometric changes, geometrical changes and variation of image quality. So, coloring local feature extraction methods are used to extract features, and also the Scale Invariant Feature Transform (SIFT) descriptor used to for shape description in the proposed method. After the combination of these descriptors, the state-of-art descriptor named by Color-SIFT will be used in this study. Finally, the image feature vectors obtained from quantization algorithm are fed to classifiers such as Nearest Neighbor (KNN), Naive Bayes or Support Vector Machines (SVM) to determine label(s) of the visual object category or matching. In this study, SVM are used as classifiers for color determination and shade matching. Finally, experimental results of this method will be compared with other recent studies. It is concluded from the study that the proposed method is remarkable development on computer aided tooth shade determination system.Keywords: classifiers, color determination, computer-aided system, tooth shade matching, feature extraction
Procedia PDF Downloads 44419 Big Data Applications for the Transport Sector
Authors: Antonella Falanga, Armando Cartenì
Abstract:
Today, an unprecedented amount of data coming from several sources, including mobile devices, sensors, tracking systems, and online platforms, characterizes our lives. The term “big data” not only refers to the quantity of data but also to the variety and speed of data generation. These data hold valuable insights that, when extracted and analyzed, facilitate informed decision-making. The 4Vs of big data - velocity, volume, variety, and value - highlight essential aspects, showcasing the rapid generation, vast quantities, diverse sources, and potential value addition of these kinds of data. This surge of information has revolutionized many sectors, such as business for improving decision-making processes, healthcare for clinical record analysis and medical research, education for enhancing teaching methodologies, agriculture for optimizing crop management, finance for risk assessment and fraud detection, media and entertainment for personalized content recommendations, emergency for a real-time response during crisis/events, and also mobility for the urban planning and for the design/management of public and private transport services. Big data's pervasive impact enhances societal aspects, elevating the quality of life, service efficiency, and problem-solving capacities. However, during this transformative era, new challenges arise, including data quality, privacy, data security, cybersecurity, interoperability, the need for advanced infrastructures, and staff training. Within the transportation sector (the one investigated in this research), applications span planning, designing, and managing systems and mobility services. Among the most common big data applications within the transport sector are, for example, real-time traffic monitoring, bus/freight vehicle route optimization, vehicle maintenance, road safety and all the autonomous and connected vehicles applications. Benefits include a reduction in travel times, road accidents and pollutant emissions. Within these issues, the proper transport demand estimation is crucial for sustainable transportation planning. Evaluating the impact of sustainable mobility policies starts with a quantitative analysis of travel demand. Achieving transportation decarbonization goals hinges on precise estimations of demand for individual transport modes. Emerging technologies, offering substantial big data at lower costs than traditional methods, play a pivotal role in this context. Starting from these considerations, this study explores the usefulness impact of big data within transport demand estimation. This research focuses on leveraging (big) data collected during the COVID-19 pandemic to estimate the evolution of the mobility demand in Italy. Estimation results reveal in the post-COVID-19 era, more than 96 million national daily trips, about 2.6 trips per capita, with a mobile population of more than 37.6 million Italian travelers per day. Overall, this research allows us to conclude that big data better enhances rational decision-making for mobility demand estimation, which is imperative for adeptly planning and allocating investments in transportation infrastructures and services.Keywords: big data, cloud computing, decision-making, mobility demand, transportation
Procedia PDF Downloads 6218 Overview of Research Contexts about XR Technologies in Architectural Practice
Authors: Adeline Stals
Abstract:
The transformation of architectural design practices has been underway for almost forty years due to the development and democratization of computer technology. New and more efficient tools are constantly being proposed to architects, amplifying a technological wave that sometimes stimulates them, sometimes overwhelms them, depending essentially on their digital culture and the context (socio-economic, structural, organizational) in which they work on a daily basis. Our focus is on VR, AR, and MR technologies dedicated to architecture. The commercialization of affordable headsets like the Oculus Rift, the HTC Vive or more low-tech like the Google CardBoard, makes it more accessible to benefit from these technologies. In that regard, researchers report the growing interest of these tools for architects, given the new perspectives they open up in terms of workflow, representation, collaboration, and client’s involvement. However, studies rarely mention the consequences of the sample studied on results. Our research provides an overview of VR, AR, and MR researches among a corpus of papers selected from conferences and journals. A closer look at the sample of these research projects highlights the necessity to take into consideration the context of studies in order to develop tools truly dedicated to the real practices of specific architect profiles. This literature review formalizes milestones for future challenges to address. The methodology applied is based on a systematic review of two sources of publications. The first one is the Cumincad database, which regroups publications from conferences exclusively about digital in architecture. Additionally, the second part of the corpus is based on journal publications. Journals have been selected considering their ranking on Scimago. Among the journals in the predefined category ‘architecture’ and in Quartile 1 for 2018 (last update when consulted), we have retained the ones related to the architectural design process: Design Studies, CoDesign, Architectural Science Review, Frontiers of Architectural Research and Archnet-IJAR. Beside those journals, IJAC, not classified in the ‘architecture’ category, is selected by the author for its adequacy with architecture and computing. For all requests, the search terms were ‘virtual reality’, ‘augmented reality’, and ‘mixed reality’ in title and/or keywords for papers published between 2015 and 2019 (included). This frame time is defined considering the fast evolution of these technologies in the past few years. Accordingly, the systematic review covers 202 publications. The literature review on studies about XR technologies establishes the state of the art of the current situation. It highlights that studies are mostly based on experimental contexts with controlled conditions (pedagogical, e.g.) or on practices established in large architectural offices of international renown. However, few studies focus on the strategies and practices developed by offices of smaller size, which represent the largest part of the market. Indeed, a European survey studying the architectural profession in Europe in 2018 reveals that 99% of offices are composed of less than ten people, and 71% of only one person. The study also showed that the number of medium-sized offices is continuously decreasing in favour of smaller structures. In doing so, a frontier seems to remain between the worlds of research and practice, especially for the majority of small architectural practices having a modest use of technology. This paper constitutes a reference for the next step of the research and for further worldwide researches by facilitating their contextualization.Keywords: architectural design, literature review, SME, XR technologies
Procedia PDF Downloads 11017 Role of Toll Like Receptor-2 in Female Genital Tuberculosis Disease Infection and Its Severity
Authors: Swati Gautam, Salman Akhtar, S. P. Jaiswar, Amita Jain
Abstract:
Background: FGTB is now a major global health problem mostly in developing countries including India. In humans, Mycobacterium Tuberculosis (M.tb) is a causating agent of infection. High index of suspicion is required for early diagnosis due to asymptomatic presentation of FGTB disease. In macrophages Toll Like Receptor-2 (TLR-2) is one which mediated host’s immune response to M.tb. The expression of TLR-2 on macrophages is important to determine the fate of innate immune responses to M.tb. TLR-2 have two work. First its high expression on macrophages worsen the outer of infection and another side, it maintains M.tb to its dormant stage avoids activation of M.tb from latent phase. Single Nucleotide Polymorphism (SNP) of TLR-2 gene plays an important role in susceptibility to TB among different populations and subsequently, in the development of infertility. Methodology: This Case-Control study was done in the Department of Obs and Gynae and Department of Microbiology at King George’s Medical University, U.P, Lucknow, India. Total 300 subjects (150 Cases and 150 Controls) were enrolled in the study. All subjects were enrolled only after fulfilling the given inclusion and exclusion criteria. Inclusion criteria: Age 20-35 years, menstrual-irregularities, positive on Acid-Fast Bacilli (AFB), TB-PCR, (LJ/MGIT) culture in Endometrial Aspiration (EA). Exclusion criteria: Koch’s active, on ATT, PCOS, and Endometriosis fibroid women, positive on Gonococal and Chlamydia. Blood samples were collected in EDTA tubes from cases and healthy control women (HCW) and genomic DNA extraction was carried out by salting-out method. Genotyping of TLR2 genetic variants (Arg753Gln and Arg677Trp) were performed by using single amplification refractory mutation system (ARMS) PCR technique. PCR products were analyzed by electrophoresis on 1.2% agarose gel and visualized by gel-doc. Statistical analysis of the data was performed using the SPSS 16.3 software and computing odds ratio (OR) with 95% CI. Linkage Disequiliribium (LD) analysis was done by SNP stats online software. Results: In TLR-2 (Arg753Gln) polymorphism significant risk of FGTB observed with GG homozygous mutant genotype (OR=13, CI=0.71-237.7, p=0.05), AG heterozygous mutant genotype (OR=13.7, CI=0.76-248.06, p=0.03) however, G allele (OR=1.09, CI=0.78-1.52, p=0.67) individually was not associated with FGTB. In TLR-2 (Arg677Trp) polymorphism a significant risk of FGTB observed with TT homozygous mutant genotype (OR= 0.020, CI=0.001-0.341, p < 0.001), CT heterozygous mutant genotype (OR=0.53, CI=0.33-0.86, p=0.014) and T allele (OR=0.463, CI=0.32-0.66, p < 0.001). TT mutant genotype was only found in FGTB cases and frequency of CT heterozygous more in control group as compared to FGTB group. So, CT genotype worked as protective mutation for FGTB susceptibility group. In haplotype analysis of TLR-2 genetic variants, four possible combinations, i.e. (G-T, A-C, G-C, and A-T) were obtained. The frequency of haplotype A-C was significantly higher in FGTB cases (0.32). Control group did not show A-C haplotype and only found in FGTB cases. Conclusion: In conclusion, study showed a significant association with both genetic variants of TLR-2 of FGTB disease. Moreover, the presence of specific associated genotype/alleles suggest the possibility of disease severity and clinical approach aimed to prevent extensive damage by disease and also helpful for early detection of disease.Keywords: ARMS, EDTA, FGTB, TLR
Procedia PDF Downloads 30716 Big Data Applications for Transportation Planning
Authors: Antonella Falanga, Armando Cartenì
Abstract:
"Big data" refers to extremely vast and complex sets of data, encompassing extraordinarily large and intricate datasets that require specific tools for meaningful analysis and processing. These datasets can stem from diverse origins like sensors, mobile devices, online transactions, social media platforms, and more. The utilization of big data is pivotal, offering the chance to leverage vast information for substantial advantages across diverse fields, thereby enhancing comprehension, decision-making, efficiency, and fostering innovation in various domains. Big data, distinguished by its remarkable attributes of enormous volume, high velocity, diverse variety, and significant value, represent a transformative force reshaping the industry worldwide. Their pervasive impact continues to unlock new possibilities, driving innovation and advancements in technology, decision-making processes, and societal progress in an increasingly data-centric world. The use of these technologies is becoming more widespread, facilitating and accelerating operations that were once much more complicated. In particular, big data impacts across multiple sectors such as business and commerce, healthcare and science, finance, education, geography, agriculture, media and entertainment and also mobility and logistics. Within the transportation sector, which is the focus of this study, big data applications encompass a wide variety, spanning across optimization in vehicle routing, real-time traffic management and monitoring, logistics efficiency, reduction of travel times and congestion, enhancement of the overall transportation systems, but also mitigation of pollutant emissions contributing to environmental sustainability. Meanwhile, in public administration and the development of smart cities, big data aids in improving public services, urban planning, and decision-making processes, leading to more efficient and sustainable urban environments. Access to vast data reservoirs enables deeper insights, revealing hidden patterns and facilitating more precise and timely decision-making. Additionally, advancements in cloud computing and artificial intelligence (AI) have further amplified the potential of big data, enabling more sophisticated and comprehensive analyses. Certainly, utilizing big data presents various advantages but also entails several challenges regarding data privacy and security, ensuring data quality, managing and storing large volumes of data effectively, integrating data from diverse sources, the need for specialized skills to interpret analysis results, ethical considerations in data use, and evaluating costs against benefits. Addressing these difficulties requires well-structured strategies and policies to balance the benefits of big data with privacy, security, and efficient data management concerns. Building upon these premises, the current research investigates the efficacy and influence of big data by conducting an overview of the primary and recent implementations of big data in transportation systems. Overall, this research allows us to conclude that big data better provide to enhance rational decision-making for mobility choices and is imperative for adeptly planning and allocating investments in transportation infrastructures and services.Keywords: big data, public transport, sustainable mobility, transport demand, transportation planning
Procedia PDF Downloads 6015 Single Crystal Growth in Floating-Zone Method and Properties of Spin Ladders: Quantum Magnets
Authors: Rabindranath Bag, Surjeet Singh
Abstract:
Materials in which the electrons are strongly correlated provide some of the most challenging and exciting problems in condensed matter physics today. After the discovery of high critical temperature superconductivity in layered or two-dimensional copper oxides, many physicists got attention in cuprates and it led to an upsurge of interest in the synthesis and physical properties of copper-oxide based material. The quest to understand superconducting mechanism in high-temperature cuprates, drew physicist’s attention to somewhat simpler compounds consisting of spin-chains or one-dimensional lattice of coupled spins. Low-dimensional quantum magnets are of huge contemporary interest in basic sciences as well emerging technologies such as quantum computing and quantum information theory, and heat management in microelectronic devices. Spin ladder is an example of quasi one-dimensional quantum magnets which provides a bridge between one and two dimensional materials. One of the examples of quasi one-dimensional spin-ladder compounds is Sr14Cu24O41, which exhibits a lot of interesting and exciting physical phenomena in low dimensional systems. Very recently, the ladder compound Sr14Cu24O41 was shown to exhibit long-distance quantum entanglement crucial to quantum information theory. Also, it is well known that hole-compensation in this material results in very high (metal-like) anisotropic thermal conductivity at room temperature. These observations suggest that Sr14Cu24O41 is a potential multifunctional material which invites further detailed investigations. To investigate these properties one must needs a large and high quality of single crystal. But these systems are showing incongruently melting behavior, which brings many difficulties to grow a large and quality of single crystals. Hence, we are using TSFZ (Travelling Solvent Floating Zone) method to grow the high quality of single crystals of the low dimensional magnets. Apart from this, it has unique crystal structure (alternating stacks of plane containing edge-sharing CuO2 chains, and the plane containing two-leg Cu2O3 ladder with intermediate Sr layers along the b- axis), which is also incommensurate in nature. It exhibits abundant physical phenomenon such as spin dimerization, crystallization of charge holes and charge density wave. The maximum focus of research so far involved in introducing defects on A-site (Sr). However, apart from the A-site (Sr) doping, there are only few studies in which the B-site (Cu) doping of polycrystalline Sr14Cu24O41 have been discussed and the reason behind this is the possibility of two doping sites for Cu (CuO2 chain and Cu2O3 ladder). Therefore, in our present work, the crystals (pristine and Cu-site doped) were grown by using TSFZ method by tuning the growth parameters. The Laue diffraction images, optical polarized microscopy and Scanning Electron Microscopy (SEM) images confirm the quality of the grown crystals. Here, we report the single crystal growth, magnetic and transport properties of Sr14Cu24O41 and its lightly doped variants (magnetic and non-magnetic) containing less than 1% of Co, Ni, Al and Zn impurities. Since, any real system will have some amount of weak disorder, our studies on these ladder compounds with controlled dilute disorder would be significant in the present context.Keywords: low-dimensional quantum magnets, single crystal, spin-ladder, TSFZ technique
Procedia PDF Downloads 27414 A Proposed Framework for Better Managing Small Group Projects on an Undergraduate Foundation Programme at an International University Campus
Authors: Sweta Rout-Hoolash
Abstract:
Each year, selected students from around 20 countries begin their degrees at Middlesex University with the International Foundation Program (IFP), developing the skills required for academic study at a UK university. The IFP runs for 30 learning/teaching weeks at Middlesex University Mauritius Branch Campus, which is an international campus of UK’s Middlesex University. Successful IFP students join their degree courses already settled into life at their chosen campus (London, Dubai, Mauritius or Malta) and confident that they understand what is required for degree study. Although part of the School of Science and Technology, in Mauritius it prepares students for undergraduate level across all Schools represented on campus – including disciplines such as Accounting, Business, Computing, Law, Media and Psychology. The researcher has critically reviewed the framework and resources in the curriculum for a particular six week period of IFP study (dedicated group work phase). Despite working together closely for 24 weeks, IFP students approach the final 6 week small group work project phase with mainly inhibitive feelings. It was observed that students did not engage effectively in the group work exercise. Additionally, groups who seemed to be working well did not necessarily produce results reflecting effective collaboration, nor individual members’ results which were better than prior efforts. The researcher identified scope for change and innovation in the IFP curriculum and how group work is introduced and facilitated. The study explores the challenges of groupwork in the context of the Mauritius campus, though it is clear that the implications of the project are not restricted to one campus only. The presentation offers a reflective review on the previous structure put in place for the management of small group assessed projects on the programme from both the student and tutor perspective. The focus of the research perspective is the student voice, by taking into consideration past and present IFP students’ experiences as written in their learning journals. Further, it proposes the introduction of a revised framework to help students take greater ownership of the group work process in order to engage more effectively with the learning outcomes of this crucial phase of the programme. The study has critically reviewed recent and seminal literature on how to achieve greater student ownership during this phase especially under an environment of assessed multicultural group work. The presentation proposes several new approaches for encouraging students to take more control of the collaboration process. Detailed consideration is given to how the proposed changes impact on the work of other stakeholders, or partners to student learning. Clear proposals are laid out for evaluation of the different approaches intended to be implemented during the upcoming academic year (student voice through their own submitted reflections, focus group interviews and through the assessment results). The proposals presented are all realistic and have the potential to transform students’ learning. Furthermore, the study has engaged with the UK Professional Standards Framework for teaching and supporting learning in higher education, and demonstrates practice at the level of ‘fellow’ of the Higher Education Academy (HEA).Keywords: collaborative peer learning, enhancing learning experiences, group work assessment, learning communities, multicultural diverse classrooms, studying abroad
Procedia PDF Downloads 327