Search results for: alternative phase opposition disposition (APOD)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8221

Search results for: alternative phase opposition disposition (APOD)

6931 A Power Management System for Indoor Micro-Drones in GPS-Denied Environments

Authors: Yendo Hu, Xu-Yu Wu, Dylan Oh

Abstract:

GPS-Denied drones open the possibility of indoor applications, including dynamic arial surveillance, inspection, safety enforcement, and discovery. Indoor swarming further enhances these applications in accuracy, robustness, operational time, and coverage. For micro-drones, power management becomes a critical issue, given the battery payload restriction. This paper proposes an application enabling battery replacement solution that extends the micro-drone active phase without human intervention. First, a framework to quantify the effectiveness of a power management solution for a drone fleet is proposed. The operation-to-non-operation ratio, ONR, gives one a quantitative benchmark to measure the effectiveness of a power management solution. Second, a survey was carried out to evaluate the ONR performance for the various solutions. Third, through analysis, this paper proposes a solution tailored to the indoor micro-drone, suitable for swarming applications. The proposed automated battery replacement solution, along with a modified micro-drone architecture, was implemented along with the associated micro-drone. Fourth, the system was tested and compared with the various solutions within the industry. Results show that the proposed solution achieves an ONR value of 31, which is a 1-fold improvement of the best alternative option. The cost analysis shows a manufacturing cost of $25, which makes this approach viable for cost-sensitive markets (e.g., consumer). Further challenges remain in the area of drone design for automated battery replacement, landing pad/drone production, high-precision landing control, and ONR improvements.

Keywords: micro-drone, battery swap, battery replacement, battery recharge, landing pad, power management

Procedia PDF Downloads 122
6930 Development of Biosurfactant-Based Adjuvant for Enhancing Biocontrol Efficiency

Authors: Kanyarat Sikhao, Nichakorn Khondee

Abstract:

Adjuvant is commonly mixed with agricultural spray solution during foliar application to improve the performance of microbial-based biological control, including better spreading, absorption, and penetration on a plant leaf. This research aims to replace chemical surfactants in adjuvant by biosurfactants for reducing a negative impact on antagonistic microorganisms and crops. Biosurfactant was produced from Brevibacterium casei NK8 and used as a cell-free broth solution containing a biosurfactant concentration of 3.7 g/L. The studies of microemulsion formation and phase behavior were applied to obtain the suitable composition of biosurfactant-based adjuvant, consisting of cell-free broth (70-80%), coconut oil-based fatty alcohol C12-14 (3) ethoxylate (1-7%), and sodium chloride (8-30%). The suitable formula, achieving Winsor Type III microemulsion (bicontinuous), was 80% of cell-free broth, 7% of fatty alcohol C12-14 (3) ethoxylate, and 8% sodium chloride. This formula reduced the contact angle of water on parafilm from 70 to 31 degrees. The non-phytotoxicity against plant seed of Oryza sativa and Brassica rapa subsp. pekinensis were obtained from biosurfactant-based adjuvant (germination index equal and above 80%), while sodium dodecyl sulfate and tween80 showed phytotoxic effects to these plant seeds. The survival of Bacillus subtilis in biosurfactant-based adjuvant was higher than sodium dodecyl sulfate and tween80. The mixing of biosurfactant and plant-based surfactant could be considered as a viable, safer, and acceptable alternative to chemical adjuvant for sustainable organic farming.

Keywords: biosurfactant, microemulsion, bio-adjuvant, antagonistic microorganisms

Procedia PDF Downloads 141
6929 Analysis and Evaluation of the Public Responses to Traffic Congestion Pricing Schemes in Urban Streets

Authors: Saeed Sayyad Hagh Shomar

Abstract:

Traffic congestion pricing in urban streets is one of the most suitable options for solving the traffic problems and environment pollutions in the cities of the country. Unlike its acceptable outcomes, there are problems concerning the necessity to pay by the mass. Regarding the fact that public response in order to succeed in this strategy is so influential, studying their response and behavior to get the feedback and improve the strategies is of great importance. In this study, a questionnaire was used to examine the public reactions to the traffic congestion pricing schemes at the center of Tehran metropolis and the factors involved in people’s decision making in accepting or rejecting the congestion pricing schemes were assessed based on the data obtained from the questionnaire as well as the international experiences. Then, by analyzing and comparing the schemes, guidelines to reduce public objections to them are discussed. The results of reviewing and evaluating the public reactions show that all the pros and cons must be considered to guarantee the success of these projects. Consequently, with targeted public education and consciousness-raising advertisements, prior to initiating a scheme and ensuring the mechanism of the implementation after the start of the project, the initial opposition is reduced and, with the gradual emergence of the real and tangible benefits of its implementation, users’ satisfaction will increase.

Keywords: demand management, international experiences, traffic congestion pricing, public acceptance, public reactions, public objection

Procedia PDF Downloads 245
6928 Identification of the Best Blend Composition of Natural Rubber-High Density Polyethylene Blends for Roofing Applications

Authors: W. V. W. H. Wickramaarachchi, S. Walpalage, S. M. Egodage

Abstract:

Thermoplastic elastomer (TPE) is a multifunctional polymeric material which possesses a combination of excellent properties of parent materials. Basically, TPE has a rubber phase and a thermoplastic phase which gives processability as thermoplastics. When the rubber phase is partially or fully crosslinked in the thermoplastic matrix, TPE is called as thermoplastic elastomer vulcanizate (TPV). If the rubber phase is non-crosslinked, it is called as thermoplastic elastomer olefin (TPO). Nowadays TPEs are introduced into the commercial market with different products. However, the application of TPE as a roofing material is limited. Out of the commercially available roofing products from different materials, only single ply roofing membranes and plastic roofing sheets are produced from rubbers and plastics. Natural rubber (NR) and high density polyethylene (HDPE) are used in various industrial applications individually with some drawbacks. Therefore, this study was focused to develop both TPO and TPV blends from NR and HDPE at different compositions and then to identify the best blend composition to use as a roofing material. A series of blends by varying NR loading from 10 wt% to 50 wt%, at 10 wt% intervals, were prepared using a twin screw extruder. Dicumyl peroxide was used as a crosslinker for TPV. The standard properties for a roofing material like tensile properties tear strength, hardness, impact strength, water absorption, swell/gel analysis and thermal characteristics of the blends were investigated. Change of tensile strength after exposing to UV radiation was also studied. Tensile strength, hardness, tear strength, melting temperature and gel content of TPVs show higher values compared to TPOs at every loading studied, while water absorption and swelling index show lower values, suggesting TPVs are more suitable than TPOs for roofing applications. Most of the optimum properties were shown at 10/90 (NR/HDPE) composition. However, high impact strength and gel content were shown at 20/80 (NR/HDPE) composition. Impact strength, as being an energy absorbing property, is the most important for a roofing material in order to resist impact loads. Therefore, 20/80 (NR/HDPE) is identified as the best blend composition. UV resistance and other properties required for a roofing material could be achieved by incorporating suitable additives to TPVs.

Keywords: thermoplastic elastomer, natural rubber, high density polyethylene, roofing material

Procedia PDF Downloads 128
6927 Lattice Twinning and Detwinning Processes in Phase Transformation in Shape Memory Alloys

Authors: Osman Adiguzel

Abstract:

Shape memory effect is a peculiar property exhibited by certain alloy systems and based on martensitic transformation, and shape memory properties are closely related to the microstructures of the material. Shape memory effect is linked with martensitic transformation, which is a solid state phase transformation and occurs with the cooperative movement of atoms by means of lattice invariant shears on cooling from high-temperature parent phase. Lattice twinning and detwinning can be considered as elementary processes activated during the transformation. Thermally induced martensite occurs as martensite variants, in self-accommodating manner and consists of lattice twins. Also, this martensite is called the twinned martensite or multivariant martensite. Deformation of shape memory alloys in martensitic state proceeds through a martensite variant reorientation. The martensite variants turn into the reoriented single variants with deformation, and the reorientation process has great importance for the shape memory behavior. Copper based alloys exhibit this property in metastable β- phase region, which has DO3 –type ordered lattice in ternary case at high temperature, and these structures martensiticaly turn into the layered complex structures with lattice twinning mechanism, on cooling from high temperature parent phase region. The twinning occurs as martensite variants with lattice invariant shears in two opposite directions, <110 > -type directions on the {110}- type plane of austenite matrix. Lattice invariant shear is not uniform in copper based ternary alloys and gives rise to the formation of unusual layered structures, like 3R, 9R, or 18R depending on the stacking sequences on the close-packed planes of the ordered lattice. The unit cell and periodicity are completed through 18 atomic layers in case of 18R-structure. On the other hand, the deformed material recovers the original shape on heating above the austenite finish temperature. Meanwhile, the material returns to the twinned martensite structures (thermally induced martensite structure) in one way (irreversible) shape memory effect on cooling below the martensite finish temperature, whereas the material returns to the detwinned martensite structure (deformed martensite) in two-way (reversible) shape memory effect. Shortly one can say that the microstructural mechanisms, responsible for the shape memory effect are the twinning and detwinning processes as well as martensitic transformation. In the present contribution, x-ray diffraction, transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) studies were carried out on two copper-based ternary alloys, CuZnAl, and CuAlMn.

Keywords: shape memory effect, martensitic transformation, twinning and detwinning, layered structures

Procedia PDF Downloads 429
6926 An Intelligent Prediction Method for Annular Pressure Driven by Mechanism and Data

Authors: Zhaopeng Zhu, Xianzhi Song, Gensheng Li, Shuo Zhu, Shiming Duan, Xuezhe Yao

Abstract:

Accurate calculation of wellbore pressure is of great significance to prevent wellbore risk during drilling. The traditional mechanism model needs a lot of iterative solving procedures in the calculation process, which reduces the calculation efficiency and is difficult to meet the demand of dynamic control of wellbore pressure. In recent years, many scholars have introduced artificial intelligence algorithms into wellbore pressure calculation, which significantly improves the calculation efficiency and accuracy of wellbore pressure. However, due to the ‘black box’ property of intelligent algorithm, the existing intelligent calculation model of wellbore pressure is difficult to play a role outside the scope of training data and overreacts to data noise, often resulting in abnormal calculation results. In this study, the multi-phase flow mechanism is embedded into the objective function of the neural network model as a constraint condition, and an intelligent prediction model of wellbore pressure under the constraint condition is established based on more than 400,000 sets of pressure measurement while drilling (MPD) data. The constraint of the multi-phase flow mechanism makes the prediction results of the neural network model more consistent with the distribution law of wellbore pressure, which overcomes the black-box attribute of the neural network model to some extent. The main performance is that the accuracy of the independent test data set is further improved, and the abnormal calculation values basically disappear. This method is a prediction method driven by MPD data and multi-phase flow mechanism, and it is the main way to predict wellbore pressure accurately and efficiently in the future.

Keywords: multiphase flow mechanism, pressure while drilling data, wellbore pressure, mechanism constraints, combined drive

Procedia PDF Downloads 175
6925 Quantum Chemical Prediction of Standard Formation Enthalpies of Uranyl Nitrates and Its Degradation Products

Authors: Mohamad Saab, Florent Real, Francois Virot, Laurent Cantrel, Valerie Vallet

Abstract:

All spent nuclear fuel reprocessing plants use the PUREX process (Plutonium Uranium Refining by Extraction), which is a liquid-liquid extraction method. The organic extracting solvent is a mixture of tri-n-butyl phosphate (TBP) and hydrocarbon solvent such as hydrogenated tetra-propylene (TPH). By chemical complexation, uranium and plutonium (from spent fuel dissolved in nitric acid solution), are separated from fission products and minor actinides. During a normal extraction operation, uranium is extracted in the organic phase as the UO₂(NO₃)₂(TBP)₂ complex. The TBP solvent can form an explosive mixture called red oil when it comes in contact with nitric acid. The formation of this unstable organic phase originates from the reaction between TBP and its degradation products on the one hand, and nitric acid, its derivatives and heavy metal nitrate complexes on the other hand. The decomposition of the red oil can lead to violent explosive thermal runaway. These hazards are at the origin of several accidents such as the two in the United States in 1953 and 1975 (Savannah River) and, more recently, the one in Russia in 1993 (Tomsk). This raises the question of the exothermicity of reactions that involve TBP and all other degradation products, and calls for a better knowledge of the underlying chemical phenomena. A simulation tool (Alambic) is currently being developed at IRSN that integrates thermal and kinetic functions related to the deterioration of uranyl nitrates in organic and aqueous phases, but not of the n-butyl phosphate. To include them in the modeling scheme, there is an urgent need to obtain the thermodynamic and kinetic functions governing the deterioration processes in liquid phase. However, little is known about the thermodynamic properties, like standard enthalpies of formation, of the n-butyl phosphate molecules and of the UO₂(NO₃)₂(TBP)₂ UO₂(NO₃)₂(HDBP)(TBP) and UO₂(NO₃)₂(HDBP)₂ complexes. In this work, we propose to estimate the thermodynamic properties with Quantum Methods (QM). Thus, in the first part of our project, we focused on the mono, di, and tri-butyl complexes. Quantum chemical calculations have been performed to study several reactions leading to the formation of mono-(H₂MBP), di-(HDBP), and TBP in gas and liquid phases. In the gas phase, the optimal structures of all species were optimized using the B3LYP density functional. Triple-ζ def2-TZVP basis sets were used for all atoms. All geometries were optimized in the gas-phase, and the corresponding harmonic frequencies were used without scaling to compute the vibrational partition functions at 298.15 K and 0.1 Mpa. Accurate single point energies were calculated using the efficient localized LCCSD(T) method to the complete basis set limit. Whenever species in the liquid phase are considered, solvent effects are included with the COSMO-RS continuum model. The standard enthalpies of formation of TBP, HDBP, and H2MBP are finally predicted with an uncertainty of about 15 kJ mol⁻¹. In the second part of this project, we have investigated the fundamental properties of three organic species that mostly contribute to the thermal runaway: UO₂(NO₃)₂(TBP)₂, UO₂(NO₃)₂(HDBP)(TBP), and UO₂(NO₃)₂(HDBP)₂ using the same quantum chemical methods that were used for TBP and its derivatives in both the gas and the liquid phase. We will discuss the structures and thermodynamic properties of all these species.

Keywords: PUREX process, red oils, quantum chemical methods, hydrolysis

Procedia PDF Downloads 189
6924 Residual Stress Around Embedded Particles in Bulk YBa2Cu3Oy Samples

Authors: Anjela Koblischka-Veneva, Michael R. Koblischka

Abstract:

To increase the flux pinning performance of bulk YBa2Cu3O7-δ (YBCO or Y-123) superconductors, it is common to employ secondary phase particles, either Y2BaCuO5 (Y-211) particles created during the growth of the samples or additionally added (nano)particles of various types, embedded in the superconducting Y-123 matrix. As the crystallographic parameters of all the particles indicate a misfit to Y-123, there will be residual strain within the Y-123 matrix around such particles. With a dedicated analysis of electron backscatter diffraction (EBSD) data obtained on various bulk, Y-123 superconductor samples, the strain distribution around such embedded secondary phase particles can be revealed. The results obtained are presented in form of Kernel Average Misorientation (KAM) mappings. Around large Y-211 particles, the strain can be so large that YBCO subgrains are formed. Therefore, it is essential to properly control the particle size as well as their distribution within the bulk sample to obtain the best performance. The impact of the strain distribution on the flux pinning properties is discussed.

Keywords: Bulk superconductors, EBSD, Strain, YBa2Cu3Oy

Procedia PDF Downloads 150
6923 Prospects of Milk Protein as a Potential Alternative of Natural Antibiotic

Authors: Syeda Fahria Hoque Mimmi

Abstract:

Many new and promising treatments for reducing or diminishing the adverse effects of microorganisms are being discovered day by day. On the other hand, the dairy industry is accelerating the economic wheel of Bangladesh. Considering all these facts, new thoughts were developed to isolate milk proteins by the present experiment for opening up a new era of developing natural antibiotics from milk. Lactoferrin, an iron-binding glycoprotein with multifunctional properties, is crucial to strengthening the immune system and also useful for commercial applications. The protein’s iron-binding capacity makes it undoubtedly advantageous to immune system modulation and different bacterial strains. For fulfilling the purpose, 4 of raw and 17 of commercially available milk samples were collected from different farms and stores in Bangladesh (Dhaka, Chittagong, and Cox’s Bazar). Protein quantification by nanodrop technology has confirmed that raw milk samples have better quantities of protein than the commercial ones. All the samples were tested for their antimicrobial activity against 18 pathogens, where raw milk samples showed a higher percentage of antibacterial activity. In addition to this, SDS-PAGE (Sodium Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis) was performed to identify lactoferrin in the milk samples. Lactoferrin was detected in 9 samples from which 4 were raw milk samples. Interestingly, Streptococcus pyogenes, Klebsiella pneumoniae, Bacillus cereus, Pseudomonas aeruginosa, Vibrio cholera, Staphylococcus aureus, and enterotoxigenic E. coli significantly displayed sensitivity against lactoferrin collected from raw milk. Only Bacillus cereus, Pseudomonas aeruginosa, Streptococcus pneumonia, Enterococcus faecalis, and ETEC (Enterotoxigenic Escherichia coli) were susceptible to lactoferrin obtained from a commercial one. This study suggested that lactoferrin might be used as the potential alternative of antibiotics for many diseases and also can be used to reduce microbial deterioration in the food and feed industry.

Keywords: alternative of antibiotics, commercially available milk, lactoferrin, nanodrop technology, pathogens, raw milk

Procedia PDF Downloads 183
6922 A Theory of Vertical Partnerships Model as Responsive Failure in Alternative Arrangement for Infrastructural Development in the Third World Countries: A Comparative Public Administration Analysis

Authors: Cyril Ekuaze

Abstract:

This paper was instigated by a set of assumption drawn at the introduction to a research work on alternative institutional arrangements for sustaining rural infrastructure in developing countries. Of one of such assumption is the one held that, a problem facing developing countries is the sustaining of infrastructural investment long enough to allow the facility to at least repay the cost of the development as been due to insufficient maintenance. On the contrary, this work argues that, most international partnerships relation with developing nations in developing infrastructures is “vertical modeling” with the hierarchical authority and command flow from top to bottom. The work argued that where international donor partners/agencies set out infrastructural development agenda in the developing nations without cognizance of design suitability and capacity for maintenance by the recipient nations; and where public administrative capacity building in the field of science, technology and engineering requisite for design, development and sustenance of infrastructure in the recipient countries are negated, prospective output becomes problematic.

Keywords: vertical partnerships, responsive failure, infrastructural development, developing countries

Procedia PDF Downloads 330
6921 Influence of Thermal Annealing on Phase Composition and Structure of Quartz-Sericite Minerale

Authors: Atabaev I. G., Fayziev Sh. A., Irmatova Sh. K.

Abstract:

Raw materials with high content of Kalium oxide widely used in ceramic technology for prevention or decreasing of deformation of ceramic goods during drying process and under thermal annealing. Becouse to low melting temperature it is also used to decreasing of the temperature of thermal annealing during fabrication of ceramic goods [1,2]. So called “Porceline or China stones” - quartz-sericite (muscovite) minerals is also can be used for prevention of deformation as the content of Kalium oxide in muscovite is rather high (SiO2, + KAl2[AlSi3O10](OH)2). [3] . To estimation of possibility of use of this mineral for ceramic manufacture, in the presented article the influence of thermal processing on phase and a chemical content of this raw material is investigated. As well as to other ceramic raw materials (kaoline, white burning clays) the basic requirements of the industry to quality of "a porcelain stone» are following: small size of particles, relative high uniformity of disrtribution of components and phase, white color after burning, small content of colorant oxides or chromophores (Fe2O3, FeO, TiO2, etc) [4,5]. In the presented work natural minerale from the Boynaksay deposit (Uzbekistan) is investigated. The samples was mechanically polished for investigation by Scanning Electron Microscope. Powder with size of particle up to 63 μm was used to X-ray diffractometry and chemical analysis. The annealing of samples was performed at 900, 1120, 1350oC during 1 hour. Chemical composition of Boynaksay raw material according to chemical analysis presented in the table 1. For comparison the composition of raw materials from Russia and USA are also presented. In the Boynaksay quartz – sericite the average parity of quartz and sericite makes 55-60 and 30-35 % accordingly. The distribution of quartz and sericite phases in raw material was investigated using electron probe scanning electronic microscope «JEOL» JXA-8800R. In the figure 1 the scanning electron microscope (SEM) micrograps of the surface and the distributions of Al, Si and K atoms in the sample are presented. As it seen small granular, white and dense mineral includes quartz, sericite and small content of impurity minerals. Basically, crystals of quartz have the sizes from 80 up to 500 μm. Between quartz crystals the sericite inclusions having a tablet form with radiant structure are located. The size of sericite crystals is ~ 40-250 μm. Using data on interplanar distance [6,7] and ASTM Powder X-ray Diffraction Data it is shown that natural «a porcelain stone» quartz – sericite consists the quartz SiO2, sericite (muscovite type) KAl2[AlSi3O10](OH)2 and kaolinite Al203SiO22Н2О (See Figure 2 and Table 2). As it seen in the figure 3 and table 3a after annealing at 900oC the quartz – sericite contains quartz – SiO2 and muscovite - KAl2[AlSi3O10](OH)2, the peaks related with Kaolinite are absent. After annealing at 1120oC the full disintegration of muscovite and formation of mullite phase Al203 SiO2 is observed (the weak peaks of mullite appears in fig 3b and table 3b). After annealing at 1350oC the samples contains crystal phase of quartz and mullite (figure 3c and table 3с). Well known Mullite gives to ceramics high density, abrasive and chemical stability. Thus the obtained experimental data on formation of various phases during thermal annealing can be used for development of fabrication technology of advanced materials. Conclusion: The influence of thermal annealing in the interval 900-1350oC on phase composition and structure of quartz-sericite minerale is investigated. It is shown that during annealing the phase content of raw material is changed. After annealing at 1350oC the samples contains crystal phase of quartz and mullite (which gives gives to ceramics high density, abrasive and chemical stability).

Keywords: quartz-sericite, kaolinite, mullite, thermal processing

Procedia PDF Downloads 415
6920 Assessing the Viability of Solar Water Pumps Economically, Socially and Environmentally in Soan Valley, Punjab

Authors: Zenab Naseem, Sadia Imran

Abstract:

One of the key solutions to the climate change crisis is to develop renewable energy resources, such as solar and wind power and biogas. This paper explores the socioeconomic and environmental viability of solar energy, based on a case study of the Soan Valley Development Program. Under this project, local farmers were provided solar water pumps at subsidized rates. These have been functional for the last seven years and have gained popularity among the local communities. The study measures the economic viability of using solar energy in agriculture, based on data from 36 households, of which 12 households each use diesel, electric and solar water pumps. Our findings are based on the net present value of each technology type. We also carry out a qualitative assessment of the social impact of solar water pumps relative to diesel and electric pumps. Finally, we conduct an environmental impact assessment, using the lifecycle assessment approach. All three analyses indicate that solar energy is a viable alternative to diesel and electricity.

Keywords: alternative energy sources, pollution control adoption and costs, solar energy pumps, sustainable development

Procedia PDF Downloads 256
6919 An Alternative and Complementary Medicine Method in Vulnerable Pediatric Cancer Patients: Yoga

Authors: Ç. Erdoğan, T. Turan

Abstract:

Pediatric cancer patients experience multiple distressing, challenges, physical symptom such as fatigue, pain, sleep disturbance, and balance impairment that continue years after treatment completion. In recent years, yoga is often used in children with cancer to cope with these symptoms. Yoga practice is defined as a unique physical activity that combines physical practice, breath work and mindfulness/meditation. Yoga is an increasingly popular mind-body practice also characterized as a mindfulness mode of exercise. This study aimed to evaluate the impact of yoga intervention of children with cancer. This article planned searching the literature in this field. It has been determined that individualized yoga is feasible and provides benefits for inpatient children, improves health-related quality of life, physical activity levels, physical fitness. After yoga program, children anxiety score decreases significantly. Additionally, individualized yoga is feasible for inpatient children receiving intensive chemotherapy. As a result, yoga is an alternative and complementary medicine that can be safely used in children with cancer.

Keywords: cancer treatment, children, nursing, yoga

Procedia PDF Downloads 226
6918 Revealing the Nitrogen Reaction Pathway for the Catalytic Oxidative Denitrification of Fuels

Authors: Michael Huber, Maximilian J. Poller, Jens Tochtermann, Wolfgang Korth, Andreas Jess, Jakob Albert

Abstract:

Aside from the desulfurisation, the denitrogenation of fuels is of great importance to minimize the environmental impact of transport emissions. The oxidative reaction pathway of organic nitrogen in the catalytic oxidative denitrogenation could be successfully elucidated. This is the first time such a pathway could be traced in detail in non-microbial systems. It was found that the organic nitrogen is first oxidized to nitrate, which is subsequently reduced to molecular nitrogen via nitrous oxide. Hereby, the organic substrate serves as a reducing agent. The discovery of this pathway is an important milestone for the further development of fuel denitrogenation technologies. The United Nations aims to counteract global warming with Net Zero Emissions (NZE) commitments; however, it is not yet foreseeable when crude oil-based fuels will become obsolete. In 2021, more than 50 million barrels per day (mb/d) were consumed for the transport sector alone. Above all, heteroatoms such as sulfur or nitrogen produce SO₂ and NOx during combustion in the engines, which is not only harmful to the climate but also to health. Therefore, in refineries, these heteroatoms are removed by hy-drotreating to produce clean fuels. However, this catalytic reaction is inhibited by the basic, nitrogenous reactants (e.g., quinoline) as well as by NH3. The ion pair of the nitrogen atom forms strong pi-bonds to the active sites of the hydrotreating catalyst, which dimin-ishes its activity. To maximize the desulfurization and denitrogenation effectiveness in comparison to just extraction and adsorption, selective oxidation is typically combined with either extraction or selective adsorption. The selective oxidation produces more polar compounds that can be removed from the non-polar oil in a separate step. The extraction step can also be carried out in parallel to the oxidation reaction, as a result of in situ separation of the oxidation products (ECODS; extractive catalytic oxidative desulfurization). In this process, H8PV5Mo7O40 (HPA-5) is employed as a homogeneous polyoxometalate (POM) catalyst in an aqueous phase, whereas the sulfur containing fuel components are oxidized after diffusion from the organic fuel phase into the aqueous catalyst phase, to form highly polar products such as H₂SO₄ and carboxylic acids, which are thereby extracted from the organic fuel phase and accumulate in the aqueous phase. In contrast to the inhibiting properties of the basic nitrogen compounds in hydrotreating, the oxidative desulfurization improves with simultaneous denitrification in this system (ECODN; extractive catalytic oxidative denitrogenation). The reaction pathway of ECODS has already been well studied. In contrast, the oxidation of nitrogen compounds in ECODN is not yet well understood and requires more detailed investigations.

Keywords: oxidative reaction pathway, denitrogenation of fuels, molecular catalysis, polyoxometalate

Procedia PDF Downloads 181
6917 An Investigation of the Influence of the Iranian 1979 Revolution on Tehran’s Public Art

Authors: M. Sohrabi Narciss

Abstract:

Urban spaces of Tehran, the capital of Iran, have witnessed many revolts, movements, and protests during the past few decades. After the Iranian Constitutional Revolution, the 1979 Revolution has had a profound impact on Tehran’s urban space. In 1979, the world watched as Iranians demonstrated en masse against the Pahlavi dynastdy which eventually led to its overthrow. Tehran’s public space is replete with images and artwork that depict the overthrow of the Pahlavi regime and the establishment of an Islamic government in Iran. The public artworks related to the 1979 Islamic Revolution reflect the riots, protests, and strikes that the Iranians underwent during the revolution. Many of these artworks try to revitalize the events that occurred in the 1970s by means of collective memory. Almost 4 decades have passed since the revolution and ever since the public artwork has been affected either directly or indirectly by the Iran-Iraq War, the Green Movement, and the rise and fall of various political forces. The present study is an attempt to investigate Tehran’s urban artwork such as urban sculptures and mural paintings organized and supervised by the government and the graffiti drawn by the critics or the opposition groups. To this end, in addition to the available documents, field research and questionnaires were used to qulaitatively analyze the data. This paper tries to address the following questions: 1) what changes have occurred in Tehran’s urban art? 2) Does the public, revolution-related artwork have an effect on people’s vitality? 3) do Iranians find these artworks appealing or not?

Keywords: public space, Tehran, public art, movement, Islamic revolution

Procedia PDF Downloads 197
6916 Wear Behavior of Intermetallic (Ni3Al) Coating at High Temperature

Authors: K. Mehmood, Muhammad Asif Rafiq, A. Nasir Khan, M. Mudassar Rauf

Abstract:

Air plasma spraying system was utilized to deposit Ni3Al coatings on AISI 321 steel samples. After thermal spraying, the nickel aluminide intermetallic coatings were isothermal heat treated at various temperatures. In this regard, temperatures from 500 °C to 800 °C with 100 °C increments were selected. The coatings were soaked for 10, 30, 60 and 100 hours at the mentioned temperatures. These coatings were then tested by a pin on disk method. It was observed that the coatings exposed at comparatively higher temperature experienced lower wear rate. The decrease in wear rate is due to the formation of NiO phase. Further, the as sprayed and heat treated coatings were characterized by other tools such as Microhardness testing, optical and scanning electron microscopy (SEM) and X-Ray diffraction analysis. After isothermal heat treatment, NiO was observed the main phase by X-Ray diffraction technique. Moreover, the surface hardness was also determined higher than cross sectional hardness.

Keywords: air plasma spraying, Ni -20Al, tribometer, intermetallic coating, nickel aluminide

Procedia PDF Downloads 331
6915 An Object-Oriented Modelica Model of the Water Level Swell during Depressurization of the Reactor Pressure Vessel of the Boiling Water Reactor

Authors: Rafal Bryk, Holger Schmidt, Thomas Mull, Ingo Ganzmann, Oliver Herbst

Abstract:

Prediction of the two-phase water mixture level during fast depressurization of the Reactor Pressure Vessel (RPV) resulting from an accident scenario is an important issue from the view point of the reactor safety. Since the level swell may influence the behavior of some passive safety systems, it has been recognized that an assumption which at the beginning may be considered as a conservative one, not necessary leads to a conservative result. This paper discusses outcomes obtained during simulations of the water dynamics and heat transfer during sudden depressurization of a vessel filled up to a certain level with liquid water under saturation conditions and with the rest of the vessel occupied by saturated steam. In case of the pressure decrease e.g. due to the main steam line break, the liquid water evaporates abruptly, being a reason thereby, of strong transients in the vessel. These transients and the sudden emergence of void in the region occupied at the beginning by liquid, cause elevation of the two-phase mixture. In this work, several models calculating the water collapse and swell levels are presented and validated against experimental data. Each of the models uses different approach to calculate void fraction. The object-oriented models were developed with the Modelica modelling language and the OpenModelica environment. The models represent the RPV of the Integral Test Facility Karlstein (INKA) – a dedicated test rig for simulation of KERENA – a new Boiling Water Reactor design of Framatome. The models are based on dynamic mass and energy equations. They are divided into several dynamic volumes in each of which, the fluid may be single-phase liquid, steam or a two-phase mixture. The heat transfer between the wall of the vessel and the fluid is taken into account. Additional heat flow rate may be applied to the first volume of the vessel in order to simulate the decay heat of the reactor core in a similar manner as it is simulated at INKA. The comparison of the simulations results against the reference data shows a good agreement.

Keywords: boiling water reactor, level swell, Modelica, RPV depressurization, thermal-hydraulics

Procedia PDF Downloads 212
6914 A Single Phase ZVT-ZCT Power Factor Correction Boost Converter

Authors: Yakup Sahin, Naim Suleyman Ting, Ismail Aksoy

Abstract:

In this paper, a single phase soft switched Zero Voltage Transition and Zero Current Transition (ZVT-ZCT) Power Factor Correction (PFC) boost converter is proposed. In the proposed PFC converter, the main switch turns on with ZVT and turns off with ZCT without any additional voltage or current stresses. Auxiliary switch turns on and off with zero current switching (ZCS). Also, the main diode turns on with zero voltage switching (ZVS) and turns off with ZCS. The proposed converter has features like low cost, simple control and structure. The output current and voltage are controlled by the proposed PFC converter in wide line and load range. The theoretical analysis of converter is clarified and the operating steps are given in detail. The simulation results of converter are obtained for 500 W and 100 kHz. It is observed that the semiconductor devices operate with soft switching (SS) perfectly. So, the switching power losses are minimum. Also, the proposed converter has 0.99 power factor with sinusoidal current shape.

Keywords: power factor correction, zero-voltage transition, zero-current transition, soft switching

Procedia PDF Downloads 803
6913 Synthesis and Characterization of Chiral Dopant Based on Schiff's Base Structure

Authors: Hong-Min Kim, Da-Som Han, Myong-Hoon Lee

Abstract:

CLCs (Cholesteric liquid crystals) draw tremendous interest due to their potential in various applications such as cholesteric color filters in LCD devices. CLC possesses helical molecular orientation which is induced by a chiral dopant molecules mixed with nematic liquid crystals. The efficiency of a chiral dopant is quantified by the HTP (helical twisting power). In this work, we designed and synthesized a series of new chiral dopants having a Schiff’s base imine structure with different alkyl chain lengths (butyl, hexyl and octyl) from chiral naphthyl amine by two-step reaction. The structures of new chiral dopants were confirmed by 1H-NMR and IR spectroscopy. The properties were investigated by DSC (differential scanning calorimetry calorimetry), POM (polarized optical microscopy) and UV-Vis spectrophotometer. These solid state chiral dopants showed excellent solubility in nematic LC (MLC-6845-000) higher than 17wt%. We prepared the CLC(Cholesteric Liquid Crystal) cell by mixing nematic LC (MLC-6845-000) with different concentrations of chiral dopants and injecting into the sandwich cell of 5μm cell gap with antiparallel alignment. The cholesteric liquid crystal phase was confirmed from POM, in which all the samples showed planar phase, a typical phase of the cholesteric liquid crystals. The HTP (helical twisting power) is one of the most important properties of CLC. We measured the HTP values from the UV-Vis transmittance spectra of CLC cells with varies chiral dopant concentration. The HTP values with different alkyl chains are as follows: butyl chiral dopant=29.8μm-1; hexyl chiral dopant= 31.8μm-1; octyl chiral dopant=27.7μm-1. We obtained the red, green and blue reflection color from CLC cells, which can be used as color filters in LCDs applications.

Keywords: cholesteric liquid crystal, color filter, display, HTP

Procedia PDF Downloads 267
6912 Numerical Investigation of Heat Transfer in Laser Irradiated Biological Samplebased on Dual-Phase-Lag Heat Conduction Model Using Lattice Boltzmann Method

Authors: Shashank Patidar, Sumit Kumar, Atul Srivastava, Suneet Singh

Abstract:

Present work is concerned with the numerical investigation of thermal response of biological tissues during laser-based photo-thermal therapy for destroying cancerous/abnormal cells with minimal damage to the surrounding normal cells. Light propagation through the biological sample is mathematically modelled by transient radiative transfer equation. In the present work, application of the Lattice Boltzmann Method is extended to analyze transport of short-pulse radiation in a participating medium.In order to determine the two-dimensional temperature distribution inside the tissue medium, the RTE has been coupled with Penne’s bio-heat transfer equation based on Fourier’s law by several researchers in last few years.

Keywords: lattice Boltzmann method, transient radiation transfer equation, dual phase lag model

Procedia PDF Downloads 353
6911 Anti-Parasite Targeting with Amino Acid-Capped Nanoparticles Modulates Multiple Cellular Processes in Host

Authors: Oluyomi Stephen Adeyemi, Kentaro Kato

Abstract:

Toxoplasma gondii is the etiological agent of toxoplasmosis, a common parasitic disease capable of infecting a range of hosts, including nearly one-third of the human population. Current treatment options for toxoplasmosis patients are limited. In consequence, toxoplasmosis represents a large global burden that is further enhanced by the shortcomings of the current therapeutic options. These factors underscore the need for better anti-T. gondii agents and/or new treatment approach. In the present study, we sought to find out whether preparing and capping nanoparticles (NPs) in amino acids, would enhance specificity toward the parasite versus the host cell. The selection of amino acids was premised on the fact that T. gondii is auxotrophic for some amino acids. The amino acid-nanoparticles (amino-NPs) were synthesized, purified and characterized following established protocols. Next, we tested to determine the anti-T. gondii activity of the amino-NPs using in vitro experimental model of infection. Overall, our data show evidence that supports enhanced and excellent selective action against the parasite versus the host cells by amino-NPs. The findings are promising and provide additional support that warrants exploring the prospects of NPs as alternative anti-parasite agents. In addition, the anti-parasite action by amino-NPs indicates that nutritional requirement of parasite may represent a viable target in the development of better alternative anti-parasite agents. Furthermore, data suggest the anti-parasite mechanism of the amino-NPs involves multiple cellular processes including the production of reactive oxygen species (ROS), modulation of hypoxia-inducing factor-1 alpha (HIF-1α) as well as the activation of kynurenine pathway. Taken together, findings highlight further, the prospects of NPs as alternative source of anti-parasite agents.

Keywords: drug discovery, infectious diseases, mode of action, nanomedicine

Procedia PDF Downloads 112
6910 Development and Preliminary Testing of the Dutch Version of the Program for the Education and Enrichment of Relational Skills

Authors: Sakinah Idris, Gabrine Jagersma, Bjorn Jaime Van Pelt, Kirstin Greaves-Lord

Abstract:

Background: The PEERS (Program for the Education and Enrichment of Relational Skills) intervention can be considered a well-established, evidence-based intervention in the USA. However, testing the efficacy of cultural adaptations of PEERS is still ongoing. More and more, the involvement of all stakeholders in the development and evaluation of interventions is acknowledged as crucial for the longer term implementation of interventions across settings. Therefore, in the current project, teens with ASD (Autism Spectrum Disorder), their neurotypical peers, parents, teachers, as well as clinicians were involved in the development and evaluation of the Dutch version of PEERS. Objectives: The current presentation covers (1) the formative phase and (2) the preliminary adaptation test phase of the cultural adaptation of evidence-based interventions. In the formative phase, we aim to describe the process of adaptation of the PEERS program to the Dutch culture and care system. In the preliminary adaptation phase, we will present results from the preliminary adaptation test among 32 adolescents with ASD. Methods: In phase 1, a group discussion on common vocabulary was conducted among 70 teenagers (and their teachers) from special and regular education aged 12-18 years old. This inventory concerned 14 key constructs from PEERS, e.g., areas of interests, locations for making friends, common peer groups and crowds inside and outside of school, activities with friends, commonly used ways for electronic communication, ways for handling disagreements, and common teasing comebacks. Also, 15 clinicians were involved in the translation and cultural adaptation process. The translation and cultural adaptation process were guided by the research team, and who included input and feedback from all stakeholders through an iterative feedback incorporation procedure. In phase 2, The parent-reported Social Responsiveness Scale (SRS), the Test of Adolescent Social Skills Knowledge (TASSK), and the Quality of Socialization Questionnaire (QSQ) were assessed pre- and post-intervention to evaluate potential treatment outcome. Results: The most striking cultural adaptation - reflecting the standpoints of all stakeholders - concerned the strategies for handling rumors and gossip, which were suggested to be taught using a similar approach as the teasing comebacks, more in line with ‘down-to-earth’ Dutch standards. The preliminary testing of this adapted version indicated that the adolescents with ASD significantly improved their social knowledge (TASSK; t₃₁ = -10.9, p < .01), social experience (QSQ-Parent; t₃₁ = -4.2, p < .01 and QSQ-Adolescent; t₃₂ = -3.8, p < .01), and in parent-reported social responsiveness (SRS; t₃₃ = 3.9, p < .01). In addition, subjective evaluations of teens with ASD, their parents and clinicians were positive. Conclusions: In order to further scrutinize the effectiveness of the Dutch version of the PEERS intervention, we recommended performing a larger scale randomized control trial (RCT) design, for which we provide several methodological considerations.

Keywords: cultural adaptation, PEERS, preliminary testing, translation

Procedia PDF Downloads 168
6909 Integration of Fuzzy Logic in the Representation of Knowledge: Application in the Building Domain

Authors: Hafida Bouarfa, Mohamed Abed

Abstract:

The main object of our work is the development and the validation of a system indicated Fuzzy Vulnerability. Fuzzy Vulnerability uses a fuzzy representation in order to tolerate the imprecision during the description of construction. At the the second phase, we evaluated the similarity between the vulnerability of a new construction and those of the whole of the historical cases. This similarity is evaluated on two levels: 1) individual similarity: bases on the fuzzy techniques of aggregation; 2) Global similarity: uses the increasing monotonous linguistic quantifiers (RIM) to combine the various individual similarities between two constructions. The third phase of the process of Fuzzy Vulnerability consists in using vulnerabilities of historical constructions narrowly similar to current construction to deduce its estimate vulnerability. We validated our system by using 50 cases. We evaluated the performances of Fuzzy Vulnerability on the basis of two basic criteria, the precision of the estimates and the tolerance of the imprecision along the process of estimation. The comparison was done with estimates made by tiresome and long models. The results are satisfactory.

Keywords: case based reasoning, fuzzy logic, fuzzy case based reasoning, seismic vulnerability

Procedia PDF Downloads 294
6908 Photoluminescence Properties of Lu1.98Er0.02Ti2O7 Pyrochlore (A2B2O7) Phosphor

Authors: Esra Öztürk, Erkul Karacaoglu

Abstract:

Pyrochlores, having compounds of the general formula, A2B2O7 (A and B are metals/rare earths) are important class of materials thanks to having technological applications like in luminescence, ionic conductivity, nuclear waste immobilization etc. The rare earths included pyrochlore compounds have also potential photoluminescence characteristics. In this context, Er3+-activated Lu2Ti2O7 pyrochlore was chosen and synthesized through a high-temperature solid-state reaction route that was sintered under the open atmosphere in this study. The optimal reaction conditions to obtain expected single phase system, the thermal analysis (DTA/TG) were carried out. The X-ray powder diffraction (XRD) was used to determine phase properties of the sample. The photoluminescence (PL) results were done to obtain excitation, emission and decay time properties by a PL spectrometer under room temperature. According to the PL, there are excitation bands at 352 nm, 388 nm, 423 nm and 453 nm that are due to 4I15/2 → 2G7/2, 4I15/2 → 4G11/2 and 4I15/2 → 4F5/2 transitions of Er3+ ions, respectively. The emission bands are placed at 582 nm, 677 nm and 762 nm that are associated with 2H11/2, 4S3/2 → 4I15/2, 4F9/2 → 4I15/2, 4I9/2 → 4I15/2 transitions of Er3+ ions, respectively.

Keywords: Er3+, Lu2Ti2O7, photoluminescence, pyrochlore, rare-earths

Procedia PDF Downloads 271
6907 Effects of a Brisk-Walking Program on Anxiety, Depression and Self-Concept in Adolescents: A Time-Series Design

Authors: Ming Yi Hsu, Hui Jung Chao

Abstract:

The anxiety and depression adolescents in Taiwan experience can cause suicide attempts and result in unfortunate deaths. An effective method for relieving anxiety and depression is brisk walking; a moderate and low intensity aerobic exercise, which uses large muscle groups rhythmically. The research purpose was to investigate the effects of a 12-week, school-based, brisk-walking program in decreasing anxiety and depression, and in improving self-concept among high school students living in central Taiwan. A quasi-experiment using the time series design (T1 T2 X T3 T4) was conducted. The Beck Youth Inventories 2 (BYI-II) Chinese version was given four times: the first time T1 was in the 4th week prior to intervention, T2 was in the intervention week, T3 was in the 6th week after the start of the intervention period and T4 was in the 12th week post intervention. The baseline phase of the time series constituted T1 and T2. The intervention phase constituted T2, T3, and T4. The amounts of brisk walking were recorded by self-report The Generalized Estimating Equation (GEE) was used to examine the effects of brisk walking on anxiety, depression, and self-concept. The independent t-test was used to compare mean scores on three dependent variables between brisk walking over and less than 90-minutes per week. Findings revealed that levels of anxiety and self-concept had nonsignificant change during the baseline phase, while the level of depression increased significantly. In contrast, the study demonstrated significant decreases in anxiety and depression as well as increases in positive self-concept (p=.001, p<.001, p=.017) during the intervention phase. Furthermore, a subgroup analysis was completed on participants who demonstrated elevated anxiety (23.4%), and depression (29.7%), and below average self-concept (18.6%) at baseline (T2). The subgroup of anxious, depressed, or low self-concept participants who received the brisk-walking intervention demonstrated significant decreases in anxiety and depression, and significant increases in self-concept scores. Participants who engaged in brisk walking over 90 minutes per week reported decreased mean scores on anxiety (t=-2.395, p=.035) and depression (t=-2.142, p=.036) in contrast with those who engaged in brisk-walking time less than 90 minutes per week. Regarding the effects on participants whose anxiety, scores were within the normal range at baseline, there was demonstrated significant decrease in the level of anxiety when they increased their time on brisk walking before each term examination. Overall, the brisk-walking program was effective and feasible to promote adolescents’ mental health by decreasing anxiety and depression as well as elevating self-concept. It also helped adolescents from anxiety before term examinations.

Keywords: adolescents, anxiety, depression, self-concept

Procedia PDF Downloads 198
6906 Texture Characterization and Mineralogical Composition of the 1982-1983 Second Phase Galunggung Eruption, West Java Regency, Indonesia

Authors: M. Hanif Irsyada, Rifaldy, Arif Lutfi Namury, Syahreza S. Angkasa, Khalid Rizky, Ricky Aryanto, M. Alfiyan Bagus, Excobar Arman, Fahri Septianto, Firman Najib Wibisana

Abstract:

Galunggung Mountain is an active volcano in Indonesia, precisely on the island of Java. This area is included in the Sunda Sunda arc formed by the tendency of the Australian oceanic plate to Eurasian continental plate. This research was conducted to determine the characteristics and document the mineralogical composition of the Galunggung eruption of the second phase 1982-1983. In fragment samples, petrographic analysis is carried out under a qualitative and quantitative polarizing microscope. This sample was obtained from the second phase eruption in the Cibanjanj formation. Based on the analysis results obtained filter texture characteristics, olivine parallel growth, lamellar structure, glass inclusion, plagioclase zonation and obtained special texture in the gabbroic cummulate. The mineral composition consists of phenocryst plagioclase (41vol%), pyroxene (26vol%), olivin (4vol%) and mineral opaque (29vol%). Microlite minerals consist of plagioclase (31.95vol%), pyroxene (12.09vol%), opaque minerals (55.96vol%). This research is expected to be developed by further researchers to be able to explain in more detail related to Galunggung mountain with 3 phases of eruption that are so intense. Also, it is expected to explain the structural characteristics and mineralogical composition that can be used to determine the origin of all the results of the Galunggung eruption 1982-1983.

Keywords: Galunggung eruption, mineralogical composition, texture characterization, gabbroic cumulate

Procedia PDF Downloads 129
6905 Colombia Fossil Fuel Policies and Their Impact on Urban Air Quality

Authors: Ruth Catacolí, Hector Garcia

Abstract:

Colombia Urban Areas shows a decreasing of their air quality, no matter the actions developed by the Government facing the mitigation of pressure factors related with air pollution. Examples of these actions were the fossil fuel quality improvement policies (FFQI). This study evaluated the impact of three FFQI in the air quality of Bogotá during the period 1990 - 2006: The phase-out of lead in the gasoline; the sulfur reduction in diesel oil consumed in Bogotá and the oxygenation of gasoline through the addition of ethanol. The results indicate that only the policy of phase-out of lead in gasoline has been effective, showing dropping of lead oxides concentration in the air. Some stakeholders believe that the FFQI evaluated in the study are environmental policies, but no one of these policies has been supported by an environmental impact assessment that shows specific benefits in air quality. The research includes some fuel policy elements to achieve positive impact on the air quality in the urban centers of Colombia.

Keywords: policy assessment, fuel quality, urban air quality, air quality management

Procedia PDF Downloads 320
6904 Preparation and Study of Pluronic F127 Monolayers at Air-Water Interface

Authors: Neha Kanodia, M. Kamil

Abstract:

Properties of mono layers of Pluronic F127 at air/water interface have been investigated by using Langmuir trough method. Pluronic F127 is a triblock copolymer of poly (ethyleneoxide) (PEO groups)– poly (propylene oxide) (PO groups)–poly(ethylene oxide) (PEO groups). Surface pressure versus mean molecular area isotherms is studied. The isotherm of the mono layer showed the characteristics of a pancake-to-brush transition upon compression of the mono layer. The effect of adding surfactant (SDS) to polymer and the effect of increasing loading on polymer was also studied. The effect of repeated compression and expansion cycle (or hysteresis curve) is investigated to know about stability of the film formed. Static elasticity of mono layer gives information about molecular arrangement, phase structure and phase transition.

Keywords: surface-pressure, mean molecular area isotherms, hysteresis, static elasticity

Procedia PDF Downloads 449
6903 Automatic Classification of the Stand-to-Sit Phase in the TUG Test Using Machine Learning

Authors: Yasmine Abu Adla, Racha Soubra, Milana Kasab, Mohamad O. Diab, Aly Chkeir

Abstract:

Over the past several years, researchers have shown a great interest in assessing the mobility of elderly people to measure their functional status. Usually, such an assessment is done by conducting tests that require the subject to walk a certain distance, turn around, and finally sit back down. Consequently, this study aims to provide an at home monitoring system to assess the patient’s status continuously. Thus, we proposed a technique to automatically detect when a subject sits down while walking at home. In this study, we utilized a Doppler radar system to capture the motion of the subjects. More than 20 features were extracted from the radar signals, out of which 11 were chosen based on their intraclass correlation coefficient (ICC > 0.75). Accordingly, the sequential floating forward selection wrapper was applied to further narrow down the final feature vector. Finally, 5 features were introduced to the linear discriminant analysis classifier, and an accuracy of 93.75% was achieved as well as a precision and recall of 95% and 90%, respectively.

Keywords: Doppler radar system, stand-to-sit phase, TUG test, machine learning, classification

Procedia PDF Downloads 161
6902 Raman Spectroscopy Analysis of MnTiO₃-TiO₂ Eutectic

Authors: Adrian Niewiadomski, Barbara Surma, Katarzyna Kolodziejak, Dorota A. Pawlak

Abstract:

Oxide-oxide eutectic is attracting increasing interest of scientific community because of their unique properties and numerous potential applications. Some of the most interesting examples of applications are metamaterials, glucose sensors, photoactive materials, thermoelectric materials, and photocatalysts. Their unique properties result from the fact that composite materials consist of two or more phases. As a result, these materials have additive and product properties. Additive properties originate from particular phases while product properties originate from the interaction between phases. MnTiO3-TiO2 eutectic is one of such materials. TiO2 is a well-known semiconductor, and it is used as a photocatalyst. Moreover, it may be used to produce solar cells, in a gas sensing devices and in electrochemistry. MnTiO3 is a semiconductor and antiferromagnetic. Therefore it has potential application in integrated circuits devices, and as a gas and humidity sensor, in non-linear optics and as a visible-light activated photocatalyst. The above facts indicate that eutectic MnTiO3-TiO2 constitutes an extremely promising material that should be studied. Despite that Raman spectroscopy is a powerful method to characterize materials, to our knowledge Raman studies of eutectics are very limited, and there are no studies of the MnTiO3-TiO2 eutectic. While to our knowledge the papers regarding this material are scarce. The MnTiO3-TiO2 eutectic, as well as TiO2 and MnTiO3 single crystals, were grown by the micro-pulling-down method at the Institute of Electronic Materials Technology in Warsaw, Poland. A nitrogen atmosphere was maintained during whole crystal growth process. The as-grown samples of MnTiO3-TiO2 eutectic, as well as TiO2 and MnTiO3 single crystals, are black and opaque. Samples were cut perpendicular to the growth direction. Cross sections were examined with scanning electron microscopy (SEM) and with Raman spectroscopy. The present studies showed that maintaining nitrogen atmosphere during crystal growth process may result in obtaining black TiO2 crystals. SEM and Raman experiments showed that studied eutectic consists of three distinct regions. Furthermore, two of these regions correspond with MnTiO3, while the third region corresponds with the TiO2-xNx phase. Raman studies pointed out that TiO2-xNx phase crystallizes in rutile structure. The studies show that Raman experiments may be successfully used to characterize eutectic materials. The MnTiO3-TiO2 eutectic was grown by the micro-pulling-down method. SEM and micro-Raman experiments were used to establish phase composition of studied eutectic. The studies revealed that the TiO2 phase had been doped with nitrogen. Therefore the TiO2 phase is, in fact, a solid solution with TiO2-xNx composition. The remaining two phases exhibit Raman lines of both rutile TiO2 and MnTiO3. This points out to some kind of coexistence of these phases in studied eutectic.

Keywords: compound materials, eutectic growth and characterization, Raman spectroscopy, rutile TiO₂

Procedia PDF Downloads 195