Search results for: data management system
28610 Stature Prediction from Anthropometry of Extremities among Jordanians
Authors: Amal A. Mashali, Omar Eltaweel, Elerian Ekladious
Abstract:
Stature of an individual has an important role in identification, which is often required in medico-legal practice. The estimation of stature is an important step in the identification of dismembered remains or when only a part of a skeleton is only available as in major disasters or with mutilation. There is no published data on anthropological data among Jordanian population. The present study was designed in order to find out relationship of stature to some anthropometric measures among a sample of Jordanian population and to determine the most accurate and reliable one in predicting the stature of an individual. A cross sectional study was conducted on 336 adult healthy volunteers , free of bone diseases, nutritional diseases and abnormalities in the extremities after taking their consent. Students of Faculty of Medicine, Mutah University helped in collecting the data. The anthropometric measurements (anatomically defined) were stature, humerus length, hand length and breadth, foot length and breadth, foot index and knee height on both right and left sides of the body. The measurements were typical on both sides of the bodies of the studied samples. All the anthropologic data showed significant relation with age except the knee height. There was a significant difference between male and female measurements except for the foot index where F= 0.269. There was a significant positive correlation between the different measures and the stature of the individuals. Three equations were developed for estimation of stature. The most sensitive measure for prediction of a stature was found to be the humerus length.Keywords: foot index, foot length, hand length, humerus length, stature
Procedia PDF Downloads 30628609 Internalizing and Externalizing Problems as Predictors of Student Wellbeing
Authors: Nai-Jiin Yang, Tyler Renshaw
Abstract:
Prior research has suggested that youth internalizing and externalizing problems significantly correlate with student subjective wellbeing (SSW) and achievement problems (SAP). Yet, only a few studies have used data from mental health screener based on the dual-factor model to explore the empirical relationships among internalizing problems, externalizing problems, academic problems, and student wellbeing. This study was conducted through a secondary analysis of previously collected data in school-wide mental health screening activities across secondary schools within a suburban school district in the western United States. The data set included 1880 student responses from a total of two schools. Findings suggest that both internalizing and externalizing problems are substantial predictors of both student wellbeing and academic problems. However, compared to internalizing problems, externalizing problems were a much stronger predictor of academic problems. Moreover, this study did not support academic problems that moderate the relationship between SSW and youth internalizing problems (YIP) and between youth externalizing problems (YEP) and SSW. Lastly, SAP is the strongest predictor of SSW than YIP and YEP.Keywords: academic problems, externalizing problems, internalizing problems, school mental health, student wellbeing, universal mental health screening
Procedia PDF Downloads 8428608 A Generative Adversarial Framework for Bounding Confounded Causal Effects
Authors: Yaowei Hu, Yongkai Wu, Lu Zhang, Xintao Wu
Abstract:
Causal inference from observational data is receiving wide applications in many fields. However, unidentifiable situations, where causal effects cannot be uniquely computed from observational data, pose critical barriers to applying causal inference to complicated real applications. In this paper, we develop a bounding method for estimating the average causal effect (ACE) under unidentifiable situations due to hidden confounders. We propose to parameterize the unknown exogenous random variables and structural equations of a causal model using neural networks and implicit generative models. Then, with an adversarial learning framework, we search the parameter space to explicitly traverse causal models that agree with the given observational distribution and find those that minimize or maximize the ACE to obtain its lower and upper bounds. The proposed method does not make any assumption about the data generating process and the type of the variables. Experiments using both synthetic and real-world datasets show the effectiveness of the method.Keywords: average causal effect, hidden confounding, bound estimation, generative adversarial learning
Procedia PDF Downloads 19128607 Measurement of Operational and Environmental Performance of the Coal-Fired Power Plants in India by Using Data Envelopment Analysis
Authors: Vijay Kumar Bajpai, Sudhir Kumar Singh
Abstract:
In this study, the performance analyses of the twenty five coal-fired power plants (CFPPs) used for electricity generation are carried out through various data envelopment analysis (DEA) models. Three efficiency indices are defined and pursued. During the calculation of the operational performance, energy and non-energy variables are used as input, and net electricity produced is used as desired output. CO2 emitted to the environment is used as the undesired output in the computation of the pure environmental performance while in Model-3 CO2 emissions is considered as detrimental input in the calculation of operational and environmental performance. Empirical results show that most of the plants are operating in increasing returns to scale region and Mettur plant is efficient one with regards to energy use and environment. The result also indicates that the undesirable output effect is insignificant in the research sample. The present study will provide clues to plant operators towards raising the operational and environmental performance of CFPPs.Keywords: coal fired power plants, environmental performance, data envelopment analysis, operational performance
Procedia PDF Downloads 45528606 A Conv-Long Short-term Memory Deep Learning Model for Traffic Flow Prediction
Authors: Ali Reza Sattarzadeh, Ronny J. Kutadinata, Pubudu N. Pathirana, Van Thanh Huynh
Abstract:
Traffic congestion has become a severe worldwide problem, affecting everyday life, fuel consumption, time, and air pollution. The primary causes of these issues are inadequate transportation infrastructure, poor traffic signal management, and rising population. Traffic flow forecasting is one of the essential and effective methods in urban congestion and traffic management, which has attracted the attention of researchers. With the development of technology, undeniable progress has been achieved in existing methods. However, there is a possibility of improvement in the extraction of temporal and spatial features to determine the importance of traffic flow sequences and extraction features. In the proposed model, we implement the convolutional neural network (CNN) and long short-term memory (LSTM) deep learning models for mining nonlinear correlations and their effectiveness in increasing the accuracy of traffic flow prediction in the real dataset. According to the experiments, the results indicate that implementing Conv-LSTM networks increases the productivity and accuracy of deep learning models for traffic flow prediction.Keywords: deep learning algorithms, intelligent transportation systems, spatiotemporal features, traffic flow prediction
Procedia PDF Downloads 17128605 Evolving Paradigm of Right to Development in International Human Rights Law and Its Transformation into the National Legal System: Challenges and Responses in Pakistan
Authors: Naeem Ullah Khan, Kalsoom Khan
Abstract:
No state can be progressive and prosperous in which a large number of people is deprived of their basic economic rights and freedoms. In the contemporary world of globalization, the right to development has gained a momentum force in the domain of International Development Law (IDL) and has integrated into the National Legal System (NLS) of the major developed states. The international experts on human rights argued that the right to development (RTD) is called a third-generation human right which tends to enhance the welfare and prosperity of individuals, and thus, it is a right to a process whose outcomes are human rights despite the controversy on the implications of RTD. In the Pakistan legal system, the RTD has not been expressly stated in the constitution of the Islamic Republic of Pakistan, 1973. However, there are some implied constitutional provisions which reflect the concept of RTD. The jurisprudence on RTD is still an evolving paradigm in the contextual perspective of Pakistan, and the superior court of diverse jurisdiction acts as a catalyst regarding the protection and enforcement of RTD in the interest of the public at large. However, the case law explores the positive inclination of the courts in Pakistan on RTD be incorporated as an express provision in the chapters of fundamental rights; in this scenario, the high court’s of Pakistan under Article 199 and the supreme court of Pakistan under Article 184(3) have exercised jurisdiction on the enforcement of RTD. This paper inter-alia examines the national dimensions of RTD from the standpoint of state practice in Pakistan and it analyzes the experience of judiciary in the protection and enforcement of RTD. Moreover, the paper highlights the social and cultural challenges to Pakistan in the implementation of RTD and possible solution to improve the conditions of human rights in Pakistan. This paper will also highlight the steps taken by Pakistan regarding the awareness, incorporation, and propagation of RTD at the national level.Keywords: globalization, Pakistan, RTD, third-generation right
Procedia PDF Downloads 16828604 The Laser Line Detection for Autonomous Mapping Based on Color Segmentation
Authors: Pavel Chmelar, Martin Dobrovolny
Abstract:
Laser projection or laser footprint detection is today widely used in many fields of robotics, measurement, or electronics. The system accuracy strictly depends on precise laser footprint detection on target objects. This article deals with the laser line detection based on the RGB segmentation and the component labeling. As a measurement device was used the developed optical rangefinder. The optical rangefinder is equipped with vertical sweeping of the laser beam and high quality camera. This system was developed mainly for automatic exploration and mapping of unknown spaces. In the first section is presented a new detection algorithm. In the second section are presented measurements results. The measurements were performed in variable light conditions in interiors. The last part of the article present achieved results and their differences between day and night measurements.Keywords: color segmentation, component labelling, laser line detection, automatic mapping, distance measurement, vector map
Procedia PDF Downloads 43228603 Audio-Visual Recognition Based on Effective Model and Distillation
Authors: Heng Yang, Tao Luo, Yakun Zhang, Kai Wang, Wei Qin, Liang Xie, Ye Yan, Erwei Yin
Abstract:
Recent years have seen that audio-visual recognition has shown great potential in a strong noise environment. The existing method of audio-visual recognition has explored methods with ResNet and feature fusion. However, on the one hand, ResNet always occupies a large amount of memory resources, restricting the application in engineering. On the other hand, the feature merging also brings some interferences in a high noise environment. In order to solve the problems, we proposed an effective framework with bidirectional distillation. At first, in consideration of the good performance in extracting of features, we chose the light model, Efficientnet as our extractor of spatial features. Secondly, self-distillation was applied to learn more information from raw data. Finally, we proposed a bidirectional distillation in decision-level fusion. In more detail, our experimental results are based on a multi-model dataset from 24 volunteers. Eventually, the lipreading accuracy of our framework was increased by 2.3% compared with existing systems, and our framework made progress in audio-visual fusion in a high noise environment compared with the system of audio recognition without visual.Keywords: lipreading, audio-visual, Efficientnet, distillation
Procedia PDF Downloads 13428602 Currency Boards in Crisis: Experience of Baltic Countries
Authors: Gordana Kordić, Petra Palić
Abstract:
The European countries that during the past two decades based their exchange rate regimes on currency board arrangement (CBA) are usually analysed from the perspective of corner solution choice’s stabilisation effects. There is an open discussion on the positive and negative background of a strict exchange rate regime choice, although it should be seen as part of the transition process towards the monetary union membership. The focus of the paper is on the Baltic countries that after two decades of a rigid exchange rate arrangement and strongly influenced by global crisis are finishing their path towards the euro zone. Besides the stabilising capacity, the CBA is highly vulnerable regime, with limited developing potential. The rigidity of the exchange rate (and monetary) system, despite the ensured credibility, do not leave enough (or any) space for the adjustment and/or active crisis management. Still, the Baltics are in a process of recovery, with fiscal consolidation measures combined with (painful and politically unpopular) measures of internal devaluation. Today, two of them (Estonia and Latvia) are members of euro zone, fulfilling their ultimate transition targets, but de facto exchanging one fixed regime with another. The paper analyses the challenges for the CBA in unstable environment since the fixed regimes rely on imported stability and are sensitive to external shocks. With limited monetary instruments, these countries were oriented to the fiscal policies and used a combination of internal devaluation and tax policy measures. Despite their rather quick recovery, our second goal is to analyse the long term influence that the measures had on the national economy.Keywords: currency board arrangement, internal devaluation, exchange rate regime, great recession
Procedia PDF Downloads 26328601 Estimation of Maize Yield by Using a Process-Based Model and Remote Sensing Data in the Northeast China Plain
Authors: Jia Zhang, Fengmei Yao, Yanjing Tan
Abstract:
The accurate estimation of crop yield is of great importance for the food security. In this study, a process-based mechanism model was modified to estimate yield of C4 crop by modifying the carbon metabolic pathway in the photosynthesis sub-module of the RS-P-YEC (Remote-Sensing-Photosynthesis-Yield estimation for Crops) model. The yield was calculated by multiplying net primary productivity (NPP) and the harvest index (HI) derived from the ratio of grain to stalk yield. The modified RS-P-YEC model was used to simulate maize yield in the Northeast China Plain during the period 2002-2011. The statistical data of maize yield from study area was used to validate the simulated results at county-level. The results showed that the Pearson correlation coefficient (R) was 0.827 (P < 0.01) between the simulated yield and the statistical data, and the root mean square error (RMSE) was 712 kg/ha with a relative error (RE) of 9.3%. From 2002-2011, the yield of maize planting zone in the Northeast China Plain was increasing with smaller coefficient of variation (CV). The spatial pattern of simulated maize yield was consistent with the actual distribution in the Northeast China Plain, with an increasing trend from the northeast to the southwest. Hence the results demonstrated that the modified process-based model coupled with remote sensing data was suitable for yield prediction of maize in the Northeast China Plain at the spatial scale.Keywords: process-based model, C4 crop, maize yield, remote sensing, Northeast China Plain
Procedia PDF Downloads 37528600 Forced Vibration of an Auxetic Cylindrical Shell Containing Fluid Under the Influence of Shock Load
Authors: Korosh Khorshidi
Abstract:
Due to the increasing use of different materials, such as auxetic structures, it is necessary to investigate mechanical phenomena, such as vibration, in structures made of these types of materials. This paper examines the forced vibrations of a three-layer cylindrical shell containing inviscid fluid under shock load. All three layers are made of aluminum, and the central layer is made of a re-entrant honeycomb cell structure. Using high-order shear deformation theories (HSDT) and Hamilton’s principle, the governing equations of the system have been extracted and solved by the Galerkin weighted residual method. The outputs of the Abaqus finite element software are used to validate the results. The system is investigated with both simple and clamped support conditions. Finally, this study investigates the influence of the geometrical parameters of the shell and the auxetic structure, as well as the type, intensity, duration, and location of the load, and the effect of the fluid on the dynamic and time responses.Keywords: force vibration, cylindrical shell, auxetic structure, inviscid fluid
Procedia PDF Downloads 4328599 A Pervasive System Architecture for Smart Environments in Internet of Things Context
Authors: Patrick Santos, João Casal, João Santos Luis Varandas, Tiago Alves, Carlos Romeiro, Sérgio Lourenço
Abstract:
Nowadays, technology makes it possible to, in one hand, communicate with various objects of the daily life through the Internet, and in the other, put these objects interacting with each other through this channel. Simultaneously, with the raise of smartphones as the most ubiquitous technology on persons lives, emerge new agents for these devices - Intelligent Personal Assistants. These agents have the goal of helping the user manage and organize his information as well as supporting the user in his/her day-to-day tasks. Moreover, other emergent concept is the Cloud Computing, which allows computation and storage to get out of the users devices, bringing benefits in terms of performance, security, interoperability and others. Connecting these three paradigms, in this work we propose an architecture for an intelligent system which provides an interface that assists the user on smart environments, informing, suggesting actions and allowing to manage the objects of his/her daily life.Keywords: internet of things, cloud, intelligent personal assistant, architecture
Procedia PDF Downloads 51528598 Application of Artificial Intelligence to Schedule Operability of Waterfront Facilities in Macro Tide Dominated Wide Estuarine Harbour
Authors: A. Basu, A. A. Purohit, M. M. Vaidya, M. D. Kudale
Abstract:
Mumbai, being traditionally the epicenter of India's trade and commerce, the existing major ports such as Mumbai and Jawaharlal Nehru Ports (JN) situated in Thane estuary are also developing its waterfront facilities. Various developments over the passage of decades in this region have changed the tidal flux entering/leaving the estuary. The intake at Pir-Pau is facing the problem of shortage of water in view of advancement of shoreline, while jetty near Ulwe faces the problem of ship scheduling due to existence of shallower depths between JN Port and Ulwe Bunder. In order to solve these problems, it is inevitable to have information about tide levels over a long duration by field measurements. However, field measurement is a tedious and costly affair; application of artificial intelligence was used to predict water levels by training the network for the measured tide data for one lunar tidal cycle. The application of two layered feed forward Artificial Neural Network (ANN) with back-propagation training algorithms such as Gradient Descent (GD) and Levenberg-Marquardt (LM) was used to predict the yearly tide levels at waterfront structures namely at Ulwe Bunder and Pir-Pau. The tide data collected at Apollo Bunder, Ulwe, and Vashi for a period of lunar tidal cycle (2013) was used to train, validate and test the neural networks. These trained networks having high co-relation coefficients (R= 0.998) were used to predict the tide at Ulwe, and Vashi for its verification with the measured tide for the year 2000 & 2013. The results indicate that the predicted tide levels by ANN give reasonably accurate estimation of tide. Hence, the trained network is used to predict the yearly tide data (2015) for Ulwe. Subsequently, the yearly tide data (2015) at Pir-Pau was predicted by using the neural network which was trained with the help of measured tide data (2000) of Apollo and Pir-Pau. The analysis of measured data and study reveals that: The measured tidal data at Pir-Pau, Vashi and Ulwe indicate that there is maximum amplification of tide by about 10-20 cm with a phase lag of 10-20 minutes with reference to the tide at Apollo Bunder (Mumbai). LM training algorithm is faster than GD and with increase in number of neurons in hidden layer and the performance of the network increases. The predicted tide levels by ANN at Pir-Pau and Ulwe provides valuable information about the occurrence of high and low water levels to plan the operation of pumping at Pir-Pau and improve ship schedule at Ulwe.Keywords: artificial neural network, back-propagation, tide data, training algorithm
Procedia PDF Downloads 48428597 A Theoretical Study of Multi-Leaf Spring in Seismic Response Control
Authors: M. Ezati Kooshki , H. Pourmohamad
Abstract:
Leaf spring dampers are used for commercial vehicles and heavy tracks. The main function of this damper in these vehicles is protection against damage and providing comfort for drivers by creating suspension between road and vehicle. This paper presents a new device, circular leaf spring damper, which is frequently used on vehicles, aiming to gain seismic protection of structures. Finite element analyses were conducted on several one-story structures using finite element software (Abaqus, v6.10-1). The time history analysis was conducted on the records of Kobe (1995) and San Fernando (1971) ground motions to demonstrate the advantages of using leaf spring in structures as compared to simple bracing system. This paper also suggests extending the use of this damper in structures, considering its large control force despite high cycle fatigue properties and low prices.Keywords: bracing system, finite element analysis, leaf spring, seismic protection, time history analysis
Procedia PDF Downloads 40528596 The Importance of Jewish Influence on Foundation of Manichaean Philosophical and Religious System
Authors: Tatyana Suvorkina
Abstract:
It is indisputable that the problem of the origin of Manichaeism is very complex. Manichaeism is characterized as a syncretic religion, which was influenced by many teachings, but it is difficult to define one which can be called fundamental. The aim of this paper is an attempt to regard Jewish apocalyptic tradition as one of the most defining source of formation of Manichaean systems. To realize this aim a comparison of the Manichean texts and the Jewish apocryphal literature is made. Consideration is given first to the Coptic Manichaean treatise Kephalaia, The Cologne Mani Codex and to books of Enoch. Under the article it is not denied that Manichaeism was influenced by different doctrines and, passed through centuries, it could adapt and strengthen this influence at an even deeper level. But the fact that the Judeo-Christian environment where Mani grew up and where the first sprouts of his teaching were formed had impact on future prophet seems obvious. Nevertheless, attempts to analyze the system of Mani within the Jewish tradition are quite rare, although such studies were carried out for Gnosticism. But Manichaeism, despite the Gnostic features it contains, is not 'one of the Gnostics' to place it under this term among the rest. Frequently, gnostic currents are pointed out as the main sources for the formation of Mani’s teachings. But it seems possible that Mani's interest in Gnosticism was motivated by the fact that he considered it as something close to that interpretation of Hebrew texts, which he aspired to undertake. The question of understanding the Manichaean system is connected not only with Manichaeism but also with other dualistic teachings, which were recognized by contemporaries as Manichaean. It is seen that polemics between Manicheans and Hellenized Christianity separated from Judaism and continued to separate with every century, were polemics between adherents of initially two different worldviews who had, however, a common source. Therefore an analysis of the controversy in the context of interpretations of this common source by disputing parties is seen very important for further study.Keywords: dualism, Jewish apocalypticism, Manichaeism, syncretism
Procedia PDF Downloads 18628595 Utilizing Spatial Uncertainty of On-The-Go Measurements to Design Adaptive Sampling of Soil Electrical Conductivity in a Rice Field
Authors: Ismaila Olabisi Ogundiji, Hakeem Mayowa Olujide, Qasim Usamot
Abstract:
The main reasons for site-specific management for agricultural inputs are to increase the profitability of crop production, to protect the environment and to improve products’ quality. Information about the variability of different soil attributes within a field is highly essential for the decision-making process. Lack of fast and accurate acquisition of soil characteristics remains one of the biggest limitations of precision agriculture due to being expensive and time-consuming. Adaptive sampling has been proven as an accurate and affordable sampling technique for planning within a field for site-specific management of agricultural inputs. This study employed spatial uncertainty of soil apparent electrical conductivity (ECa) estimates to identify adaptive re-survey areas in the field. The original dataset was grouped into validation and calibration groups where the calibration group was sub-grouped into three sets of different measurements pass intervals. A conditional simulation was performed on the field ECa to evaluate the ECa spatial uncertainty estimates by the use of the geostatistical technique. The grouping of high-uncertainty areas for each set was done using image segmentation in MATLAB, then, high and low area value-separate was identified. Finally, an adaptive re-survey was carried out on those areas of high-uncertainty. Adding adaptive re-surveying significantly minimized the time required for resampling whole field and resulted in ECa with minimal error. For the most spacious transect, the root mean square error (RMSE) yielded from an initial crude sampling survey was minimized after an adaptive re-survey, which was close to that value of the ECa yielded with an all-field re-survey. The estimated sampling time for the adaptive re-survey was found to be 45% lesser than that of all-field re-survey. The results indicate that designing adaptive sampling through spatial uncertainty models significantly mitigates sampling cost, and there was still conformity in the accuracy of the observations.Keywords: soil electrical conductivity, adaptive sampling, conditional simulation, spatial uncertainty, site-specific management
Procedia PDF Downloads 13228594 Prediction of Saturated Hydraulic Conductivity Dynamics in an Iowan Agriculture Watershed
Authors: Mohamed Elhakeem, A. N. Thanos Papanicolaou, Christopher Wilson, Yi-Jia Chang
Abstract:
In this study, a physically-based, modelling framework was developed to predict saturated hydraulic conductivity (KSAT) dynamics in the Clear Creek Watershed (CCW), Iowa. The modelling framework integrated selected pedotransfer functions and watershed models with geospatial tools. A number of pedotransfer functions and agricultural watershed models were examined to select the appropriate models that represent the study site conditions. Models selection was based on statistical measures of the models’ errors compared to the KSAT field measurements conducted in the CCW under different soil, climate and land use conditions. The study has shown that the predictions of the combined pedotransfer function of Rosetta and the Water Erosion Prediction Project (WEPP) provided the best agreement to the measured KSAT values in the CCW compared to the other tested models. Therefore, Rosetta and WEPP were integrated with the Geographic Information System (GIS) tools for visualization of the data in forms of geospatial maps and prediction of KSAT variability in CCW due to the seasonal changes in climate and land use activities.Keywords: saturated hydraulic conductivity, pedotransfer functions, watershed models, geospatial tools
Procedia PDF Downloads 26028593 Providing a Suitable Model for Launching New Home Appliances Products to the Market
Authors: Ebrahim Sabermaash Eshghi, Donna Sandsmark
Abstract:
In changing modern economic conditions of the world, one the most important issues facing managers of firms, is increasing the sales and profitability through sales of newly developed products. This is while purpose of decreasing unnecessary costs is one of the most essential programs of smart managers for more implementation with new conditions in current business. In modern life, condition of misgiving is dominant in all of the industries. Accordingly, in this research, influence of different aspects of presenting products to the market is investigated. This study is done through a Quantitative-Qualitative (Interviews and Questionnaire) approach. In sum, 103 of informed managers and experts of Pars-Khazar Company have been examined through census. Validity of measurement tools was approved through judgments of experts. Reliability of tools was gained through Cronbach's alpha coefficient in size of 0.930 and in sum, validity and reliability of tools were approved generally. Results of regression test revealed that the influence of all aspects of product introduction supported the performance of product, positively and significantly. In addition that influence of two new factors raised from the interview, namely Human Resource Management and Management of product’s pre-test on performance of products was approved.Keywords: introducing products, performance, home appliances, price, advertisement, production
Procedia PDF Downloads 21128592 Analysis of State Documents on Environmental Awareness Aspects in Kazakhstan
Authors: Y. A. Kumar
Abstract:
Environmental awareness issues in Kazakhstan are one of the most undermined topics both among the public community and in terms of state rhetoric. In the context of official state documents, so far only two official environmental codes and national programs called Zhasyl Kazakhstan were introduced in the country in 2021. While on the one hand the Environmental Code was introduced with the purpose to modernize, frame and enlist main legislative aspects on various sectors of environmental law in Kazakhstan, on the other hand, the Zhasyl Kazakhstan Program has been implemented as a state program to address with numerous environmental projects various environmental issues ranging from air pollution to waste management as well as aspects related to ecological education and low environmental awareness matters. In this regard, the main goal of this paper is to analyze critically the main content of both of these documents with a particular focus on sections related to environmental awareness-raising aspects. For that, this paper applied a subjective-based content analysis in order to identify interesting insights on regulatory legal aspects, future research streams, and uncovering of improved legislative frameworks in the context of an environmental awareness issue. Apart from that, five open-ended questions were sent out to the Ministry of Ecology, Geology and Natural Resources to obtain primary data on the state’s view in regards to current previous, recent and future aspects of environmental awareness issues in the country.Keywords: Kazakhstan, environmental awareness, environmental code, Zhasyl Kazakhstan, content analysis
Procedia PDF Downloads 9428591 Artificial Neural Network and Statistical Method
Authors: Tomas Berhanu Bekele
Abstract:
Traffic congestion is one of the main problems related to transportation in developed as well as developing countries. Traffic control systems are based on the idea of avoiding traffic instabilities and homogenizing traffic flow in such a way that the risk of accidents is minimized and traffic flow is maximized. Lately, Intelligent Transport Systems (ITS) has become an important area of research to solve such road traffic-related issues for making smart decisions. It links people, roads and vehicles together using communication technologies to increase safety and mobility. Moreover, accurate prediction of road traffic is important to manage traffic congestion. The aim of this study is to develop an ANN model for the prediction of traffic flow and to compare the ANN model with the linear regression model of traffic flow predictions. Data extraction was carried out in intervals of 15 minutes from the video player. Video of mixed traffic flow was taken and then counted during office work in order to determine the traffic volume. Vehicles were classified into six categories, namely Car, Motorcycle, Minibus, mid-bus, Bus, and Truck vehicles. The average time taken by each vehicle type to travel the trap length was measured by time displayed on a video screen.Keywords: intelligent transport system (ITS), traffic flow prediction, artificial neural network (ANN), linear regression
Procedia PDF Downloads 6728590 Optimization of Switched Reluctance Motor for Drive System in Automotive Applications
Authors: A. Peniak, J. Makarovič, P. Rafajdus, P. Dúbravka
Abstract:
The purpose of this work is to optimize a Switched Reluctance Motor (SRM) for an automotive application, specifically for a fully electric car. A new optimization approach is proposed. This unique approach transforms automotive customer requirements into an optimization problem, based on sound knowledge of a SRM theory. The approach combines an analytical and a finite element analysis of the motor to quantify static nonlinear and dynamic performance parameters, as phase currents and motor torque maps, an output power and power losses in order to find the optimal motor as close to the reality as possible, within reasonable time. The new approach yields the optimal motor which is competitive with other types of already proposed motors for automotive applications. This distinctive approach can also be used to optimize other types of electrical motors, when parts specifically related to the SRM are adjusted accordingly.Keywords: automotive, drive system, electric car, finite element method, hybrid car, optimization, switched reluctance motor
Procedia PDF Downloads 52128589 Managing Early Stakeholder Involvement at the Early Stages of a Building Project Life Cycle
Authors: Theophilus O. Odunlami, Hasan Haroglu, Nader Saleh-Matter
Abstract:
The challenges facing the construction industry are often worsened by the compounded nature of projects coupled with the complexity of key stakeholders involved at different stages of the project. Projects are planned to achieve outlined benefits in line with the business case; however, a lack of effective management of key stakeholders can result in unrealistic delivery aspirations, unnecessary re-works, and overruns. The aim of this study is to examine the early stages of a project lifecycle and investigate the stakeholder management and involvement processes and their impact on the successful delivery of the project. The research engaged with conventional construction organisations and project personnel and stakeholders on diverse projects, using a research strategy to analyse existing project case studies, narrative enquiries, interviews, and surveys using a combined qualitative, quantitative, and mixed method of analysis. Research findings have shown that the involvement of stakeholders at different levels during the early stages has pronounced effects on project delivery; it helps to forge synergy and promotes a clear understanding of individual responsibilities, strengths, and weaknesses. This has often fostered a positive sense of productive collaboration right through the early stages of the project. These research findings intend to contribute to the development of a process framework for stakeholder and project team involvement in the early stages of a project. This framework will align with the selection criteria for stakeholders, contractors, and resources, ultimately contributing to the successful completion of projects. The primary question addressed in this study is stakeholder involvement and management of the early stages of a building project life cycle impacts project delivery. Findings showed that early-stage stakeholder involvement and collaboration between project teams and contractors significantly contribute to project success. However, a strong and healthy communication strategy would be required to maintain the flow of value-added ideas among stakeholders at the early stages to benefit the project at the execution stage.Keywords: early stages, project lifecycle, stakeholders, decision-making strategy, project framework
Procedia PDF Downloads 10028588 Oro-Facial Manifestations of Acute Myeloid Leukaemia -A Case Report
Authors: Aamna Tufail, Kajal Kotecha, Iordanis Toursounidis, Ravinder Pabla
Abstract:
Introduction/Aims: Acute Myeloid Leukaemia (AML) is a part of leukaemic group of hematopoietic disorders with a varying range of presentations, including oro-facial manifestations. Early recognition and management are essential for favourable outcomes. Materials and Methods: We present our experience, clinical presentation, and clinical photographs of a patient with previously undiagnosed AML who presented with oral symptoms to the emergency department of our hospital. An analysis of clinical characteristics, diagnostic investigations, and management modalities was performed. Results/Statistics: A 58-year-old man presented to A&E reporting an 11-day history of right sided facial swelling, acute TMJ symptoms, and oral discomfort. A dentist ruled out acute dental causes one day post onset of symptoms. Initial assessment was anatomically inconsistent and did not reveal a routine oral or maxillofacial etiology. Detailed clinical examination demonstrated fever, generalised pallor, swelling and erythema of right nasolabial region, bilateral masseteric tenderness, intraoral palatal ecchymosis, palatal ulceration, buccal and labial petechiae, cervical lymphadenopathy, and haematoma on dorsum of right hand overlying right 2nd metacarpal joint. Suspecting a systemic medical cause, we requested haematological investigations, which revealed neutropenia, thrombocytopenia, and anaemia. Flow cytometry confirmed CD34 + AML. Oral discomfort was managed symptomatically. The patient was referred to a tertiary care centre for acute haematologic care, where he was treated with IV antibiotics and continuing cycles of chemotherapy. Conclusions/Clinical Relevance: Oro-facial manifestations may be the first clinical sign of AML. Awareness of its features is vital in early diagnosis. In this context, dentists and oral medicine specialists can play an important role in detecting clinical signs of haematological disorders such as AML.Keywords: acute myeloid leukaemia, oral symptoms, ulceration, diagnosis, management
Procedia PDF Downloads 6428587 Countercurrent Flow Simulation of Gas-Solid System in a Purge Column Using Computational Fluid Dynamics Techniques
Authors: T. J. Jamaleddine
Abstract:
Purge columns or degasser vessels are widely used in the polyolefin process for removing trapped hydrocarbons and in-excess catalyst residues from the polymer particles. A uniform distribution of purged gases coupled with a plug-flow characteristic inside the column system is desirable to obtain optimum desorption characteristics of trapped hydrocarbon and catalyst residues. Computational Fluid Dynamics (CFD) approach is a promising tool for design optimization of these vessels. The success of this approach is profoundly dependent on the solution strategy and the choice of geometrical layout at the vessel outlet. Filling the column with solids and initially solving for the solids flow minimized numerical diffusion substantially. Adopting a cylindrical configuration at the vessel outlet resulted in less numerical instability and resembled the hydrodynamics flow of solids in the hopper segment reasonably well.Keywords: CFD, degasser vessel, gas-solids flow, gas purging, purge column, species transport
Procedia PDF Downloads 12928586 Consumers' Awareness, Knowledge, and Perception towards Goods and Services Tax in India
Authors: Harjinder Kaur
Abstract:
GST was implemented by government with the expectation to reform the taxation system of India. So this study basically seeks to understand the consumers’ awareness, knowledge and perception about the implementation of GST. To conduct this study, 100 respondents of all demographic profile were randomly selected from the Punjab region of India. To investigate the relationship between demographic profile and level of awareness and knowledge about GST, one way ANOVA test was used and it is found that there is a significant relationship between gender, age and qualification and level of awareness and knowledge. Furthermore, due to the lack of information on GST, the respondents had a high negative perception. The study also reveals that the implementation of GST has resulted in higher prices for goods and services and thus this tax may cause burden to people. Also after implementation of GST financial issues such as inflation, rising cost of living, economic instability have impacted many Indian consumers in terms of their spending. But at the same time it is also perceived that GST is designed to remove the burden of many indirect taxes and aims to develop the more efficient tax system which increases the revenue of country.Keywords: goods and service tax, consumers awareness, knowledge, perception
Procedia PDF Downloads 19228585 Corporate Governance and Performance of Islamic Banks in GCC Countries
Authors: Samir Srairi
Abstract:
This paper investigates the impact of the internal corporate governance on bank performance by constructing a corporate governance index (CGI) for 27 Islamic banks operating in five Arab Gulf countries. Using content analysis on the banks’ annual reports for 3 years (2011-2013), the index construction uses information on six important corporate governance mechanisms, namely board structure, risk management, transparency and disclosure, audit committee, Sharia supervisory board and investment account holders. The results demonstrate that Islamic banks adhere to 54% of the attributes addressed in the CGI. The most frequently reported and disclosed elements are Sharia supervisory board followed by board structure and risk management. The findings related to countries revealed that only two countries, the United Arab Emirates and Bahrain, possess a higher level of CGI. Our regression results provide evidence that Islamic banks with higher levels of corporate governance report high operating performance measured by return on assets and net interest margin. Finally, as of the effect of internal and external factors, we identified four variables that were associated with bank performance, namely size, equity, risk and concentration.Keywords: governance mechanisms, corporate governance index, bank performance, Islamic banks, GCC countries
Procedia PDF Downloads 32528584 The Impact of Transformational Leadership on Individual Attributes
Authors: Bilal Liaqat, Muhammad Umar, Zara Bashir, Hassan Rafique, Mohsin Abbasi, Zarak Khan
Abstract:
Transformational leadership is one of the most studied topics in the organization sciences. However, the impact of transformational leadership on employee’s individual attributes have not yet been studied. Purpose: This research aims to discover the relationship between transformational leadership and employee motivation, performance and creativity. Moreover, the study will also investigate the influence of transformational leadership on employee performance through employee motivation and employee creativity. Design-Methodology-Approach: The data was collected from employees in different organization. This cross-sectional study collected data from employees and the methodology used includes survey data that were collected from employees in organizations. Structured interviews were also conducted to explain the outcomes from the survey. Findings: The results of this study reveal that transformational leadership has a positive impact on employee’s individual attributes. Research Implications: Although this study expands our knowledge about the role of learning orientation between transformational leadership and employee motivation, performance and creativity, the prospects for further research are still present.Keywords: employee creativity, employee motivation, employee performance, transformational leadership
Procedia PDF Downloads 22828583 Effect of Media Reputation on Financial Performance and Abnormal Returns of Corporate Social Responsibility Winner
Authors: Yu-Chen Wei, Dan-Leng Wang
Abstract:
This study examines whether the reputation from media press affect the financial performance and market abnormal returns around the announcement of corporate social responsibility (CSR) award in the Taiwan Stock Market. The differences between this study and prior literatures are that the media reputation of media coverage and net optimism are constructed by using content analyses. The empirical results show the corporation which won CSR awards could promote financial performance next year. The media coverage and net optimism related to CSR winner are higher than the non-CSR companies prior and after the CSR award is announced, and the differences are significant, but the difference would decrease when the day was closing to announcement. We propose that non-CSR companies may try to manipulate media press to increase the coverage and positive image received by investors compared to the CSR winners. The cumulative real returns and abnormal returns of CSR winners did not significantly higher than the non-CSR samples however the leading returns of CSR winners would higher after the award announcement two months. The comparisons of performances between CSR and non-CSR companies could be the consideration of portfolio management for mutual funds and investors.Keywords: corporate social responsibility, financial performance, abnormal returns, media, reputation management
Procedia PDF Downloads 43428582 Systematic and Meta-Analysis of Navigation in Oral and Maxillofacial Trauma and Impact of Machine Learning and AI in Management
Authors: Shohreh Ghasemi
Abstract:
Introduction: Managing oral and maxillofacial trauma is a multifaceted challenge, as it can have life-threatening consequences and significant functional and aesthetic impact. Navigation techniques have been introduced to improve surgical precision to meet this challenge. A machine learning algorithm was also developed to support clinical decision-making regarding treating oral and maxillofacial trauma. Given these advances, this systematic meta-analysis aims to assess the efficacy of navigational techniques in treating oral and maxillofacial trauma and explore the impact of machine learning on their management. Methods: A detailed and comprehensive analysis of studies published between January 2010 and September 2021 was conducted through a systematic meta-analysis. This included performing a thorough search of Web of Science, Embase, and PubMed databases to identify studies evaluating the efficacy of navigational techniques and the impact of machine learning in managing oral and maxillofacial trauma. Studies that did not meet established entry criteria were excluded. In addition, the overall quality of studies included was evaluated using Cochrane risk of bias tool and the Newcastle-Ottawa scale. Results: Total of 12 studies, including 869 patients with oral and maxillofacial trauma, met the inclusion criteria. An analysis of studies revealed that navigation techniques effectively improve surgical accuracy and minimize the risk of complications. Additionally, machine learning algorithms have proven effective in predicting treatment outcomes and identifying patients at high risk for complications. Conclusion: The introduction of navigational technology has great potential to improve surgical precision in oral and maxillofacial trauma treatment. Furthermore, developing machine learning algorithms offers opportunities to improve clinical decision-making and patient outcomes. Still, further studies are necessary to corroborate these results and establish the optimal use of these technologies in managing oral and maxillofacial traumaKeywords: trauma, machine learning, navigation, maxillofacial, management
Procedia PDF Downloads 5828581 The Impact of Physical Exercise on Gestational Diabetes and Maternal Weight Management: A Meta-Analysis
Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei
Abstract:
Physiological changes during pregnancy, such as alterations in the circulatory, respiratory, and musculoskeletal systems, can negatively impact daily physical activity. This reduced activity is often associated with an increased risk of adverse maternal health outcomes, particularly gestational diabetes mellitus (GDM) and excessive weight gain. This meta-analysis aims to evaluate the effectiveness of structured physical exercise interventions during pregnancy in reducing the risk of GDM and managing maternal weight gain. A comprehensive search was conducted across six major databases: PubMed, Cochrane Library, EMBASE, Web of Science, ScienceDirect, and ClinicalTrials.gov, covering the period from database inception until 2023. Randomized controlled trials (RCTs) that explored the effects of physical exercise programs on pregnant women with low physical activity levels were included. The search was performed using EndNote and results were managed using RevMan (Review Manager) for meta-analysis. RCTs involving healthy pregnant women with low levels of physical activity or sedentary lifestyles were selected. These RCTs must have incorporated structured exercise programs during pregnancy and reported on outcomes related to GDM and maternal weight gain. From an initial pool of 5,112 articles, 65 RCTs (involving 11,400 pregnant women) met the inclusion criteria. Data extraction was performed, followed by a quality assessment of the selected studies using the Cochrane Risk of Bias tool. The meta-analysis was conducted using RevMan software, where pooled relative risks (RR) and weighted mean differences (WMD) were calculated using a random-effects model to address heterogeneity across studies. Sensitivity analyses, subgroup analyses (based on factors such as exercise intensity, duration, and pregnancy stage), and publication bias assessments were also conducted. Structured physical exercise during pregnancy led to a significant reduction in the risk of developing GDM (RR = 0.68; P < 0.001), particularly when the exercise program was performed throughout the pregnancy (RR = 0.62; P = 0.035). In addition, maternal weight gain was significantly reduced (WMD = −1.18 kg; 95% CI −1.54 to −0.85; P < 0.001). There were no significant adverse effects reported for either the mother or the neonate, confirming that exercise interventions are safe for both. This meta-analysis highlights the positive impact of regular moderate physical activity during pregnancy in reducing the risk of GDM and managing maternal weight gain. These findings suggest that physical exercise should be encouraged as a routine part of prenatal care. However, more research is required to refine exercise recommendations and determine the most effective interventions based on individual risk factors and pregnancy stages.Keywords: gestational diabetes, maternal weight management, meta-analysis, randomized controlled trials
Procedia PDF Downloads 11