Search results for: turbine blade strength
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4319

Search results for: turbine blade strength

3059 Quality Assessment of Hollow Sandcrete Blocks in Minna, Nigeria

Authors: M. Abdullahi, S. Sadiku, Bashar S. Mohammed, J. I. Aguwa

Abstract:

The properties of hollow sandcrete blocks produced in Minna, Nigeria are presented. Sandcrete block is made of cement, water and sand bound together in certain mix proportions. For the purpose of this work, fifty (50) commercial sandcrete block industries were visited in Minna, Nigeria to obtain block samples and aggregates used for the manufacture, and to also take inventory of the mix composition and the production process. Sieve analysis tests were conduction on the soil sample from various block industries to ascertain their quality to be used for block making. The mix ratios were also investigated. Five (5) nine inches (9’’ or 225mm) blocks were obtained from each block industry and tested for dimensional compliance and compressive strength. The result of test shows that the grading of the sand falls within the limit required by BS 882: 1990. The sand particles generally satisfy the grading requirement of overall grading and also fall in at least one of the classification of coarse grading, medium grading or fine grading. This clearly indicates that the quality of the aggregates used for the production of sandcrete blocks in Minna, Nigeria are of good quality in terms of grading and workable mix can easily be achieved to obtain high quality product. Physical examinations of the block sizes show slight deviation from the standard requirement in NIS 87:2000. Compressive strength of hollow sandcrete blocks in range of 0.12 N/mm2 to 0.54 N/mm2 was obtained which is below the recommendable value of 3.45 N/mm2 for load bearing hollow sandcrete blocks. This indicates that these blocks are below the standard for load-bearing sandcrete blocks and cannot be used as load bearing walling units. The mix composition also indicated low cement content resulting in low compressive strength. Most of the commercial block industries visited do not take curing very serious. Water were only sprinkled ones or twice before the blocks were stacked and made readily available for sale. It is recommended that a mix ratio of 1:4 to 1:6 should be used for the production of sandcrete blocks and proper curing practice should be adhered to. Blocks should also be cured for 14 days before making them available for consumers.

Keywords: compressive strength, dimensions, mix proportions, sandcrete blocks

Procedia PDF Downloads 386
3058 Influence of Milled Waste Glass to Clay Ceramic Foam Properties Made by Direct Foaming Route

Authors: A. Shishkin, V. Mironovs, D. Goljandin, A. Korjakins

Abstract:

The goal of this work is to develop sustainable and durable ceramic cellular structures using widely available natural resources- clay and milled waste glass. Present paper describes method of obtaining clay ceramic foam (CCF) with addition of milled waste glass in 5, 7 and 10 wt% by direct foaming with high speed mixer-disperser (HSMD). For more efficient clay and waste glass milling and mixing, the high velocity disintegrator was used. The CCF with 5, 7, and 10 wt% were obtained at 900, 950, 1000 and 1050 °C firing temperature and they have demonstrated mechanical compressive strength for all 12 samples ranging from 3.8 to 14.3 MPa and porosity 76-65%. Obtained CCF has compressive strength 14.3 MPa and porosity 65.3%.

Keywords: ceramic foam, waste glass, clay foam, glass foam, open cell, direct foaming

Procedia PDF Downloads 306
3057 Potential Use of Local Materials as Synthesizing One Part Geopolymer Cement

Authors: Areej Almalkawi, Sameer Hamadna, Parviz Soroushian, Nalin Darsana

Abstract:

The work on indigenous binders in this paper focused on the following indigenous raw materials: red clay, red lava and pumice (as primary aluminosilicate precursors), wood ash and gypsum (as supplementary minerals), and sodium sulfate and lime (as alkali activators). The experimental methods used for evaluation of these indigenous raw materials included laser granulometry, x-ray fluorescence (XRF) spectroscopy, and chemical reactivity. Formulations were devised for transforming these raw materials into alkali aluminosilicate-based hydraulic cements. These formulations were processed into hydraulic cements via simple heating and milling actions to render thermal activation, mechanochemical and size reduction effects. The resulting hydraulic cements were subjected to laser granulometry, heat of hydration and reactivity tests. These cements were also used to prepare mortar mixtures, which were evaluated via performance of compressive strength tests. The measured values of strength were correlated with the reactivity, size distribution and microstructural features of raw materials. Some of the indigenous hydraulic cements produced in this reporting period yielded viable levels of compressive strength. The correlation trends established in this work are being evaluated for development of simple and thorough methods of qualifying indigenous raw materials for use in production of indigenous hydraulic cements.

Keywords: one-part geopolymer cement, aluminosilicate precursors, thermal activation, mechanochemical

Procedia PDF Downloads 312
3056 Reinforcing Fibre Reinforced Polymer (FRP) Bridge Decks with Steel Plates

Authors: M. Alpaslan Koroglu

Abstract:

Fibre reinforced polymer (FRP) bridge decks have become an innovative alternative, and they have offered many advantages, and this has been increasing attention for applications in not only reinforcement of existing bridges decks but also construction of new bridges decks. The advantages of these FRP decks are; lightweight, high-strength FRP materials, corrosion resistance. However, this high strength deck is not ductile. In this study, the behaviour of hybrid FRP-steel decks are investigated. All FRP decks was analysed with the commercial package ABAQUS. In the FE model, the webs and flanges were discretised by 4 nodes shell elements. A full composite action between the steel and the FRP composite was assumed in the FE analysis because the bond-slip behaviour was unknown at that time. The performance of the proposed hybrid FRP deck panel with steel plates was evaluated by means of FE analysis.

Keywords: FRP, deck, bridge, finite element

Procedia PDF Downloads 473
3055 The Mechanical Characteristics of Rammed Earth with Plastic Fibers

Authors: Majdi Al Shdifat, Juan Chiachio, Esther Puertas, María L. Jalón, Álvaro Blanca-Hoyos

Abstract:

In recent years, the world has begun to adopt more sustainable practices in response to today's environmental and climate challenges. The construction sector is one of the most resource-intensive among others, so researchers are testing different types of materials with different processes and methodologies to achieve more environmentally and sustainably friendly buildings. Plastic is one of the most harmful materials for the environment. The global production of plastics has increased dramatically in recent decades, and it is one of the most widely used materials. However, plastic waste is not biodegradable and has a chemical composition that is stable for many years in the environment, both on land and in water bodies. Recycled plastics have been tested to be used in construction in many ways to reduce the amount of plastic in the environment and the use of raw materials in construction. In this context, the main objective of this research is to test the use of plastic fibers with one of the most promising materials to replace cement, which is rammed earth. In fact, rammed earth is considered one of the most environmentally friendly materials due to its use of local raw materials, recyclability, and low embodied energy. In this research, three different types of plastic fibers were used. Then, the blends were evaluated by considering their mechanical properties, including compressive strength and tensile strength. In addition, the non-destructive ultrasonic wave velocity was measured. The result shows excellent potential for the use of plastic fibers in rammed earth, especially in terms of compressive strength.

Keywords: mechanical characterization, plastic fibers reinforcement, rammed earth, sustainable material

Procedia PDF Downloads 68
3054 Effect of Fire Exposure on the Ultimate Strength of Loaded Columns

Authors: Hatem Hamdy Ghieth

Abstract:

In the recent time many fires happened in many skeleton buildings. The fire may be continues for a long time. This fire may cause a collapse of the building. This collapse may be happened due to the time of exposure to fire as well as the rate of the loading to the carrying elements. In this research a laboratory study for reinforced concrete columns under effect of fire with temperature reaches (650 ْ C) on the behavior of columns which loaded with axial load and with exposing to fire temperature only from all sides of columns. the main parameters of this study are level of load applying to the column, and the temperature applied to the fire, this temperatures was 500oC and 650oc. Nine concrete columns with dimensions 20x20x100 cms were casted one of these columns was tested to determine the ultimate load while the least were fired according to the experimental schedule.

Keywords: columns, fire duration, concrete strength, level of loading

Procedia PDF Downloads 434
3053 Statistical Analysis Approach for the e-Glassy Mortar And Radiation Shielding Behaviors Using Anova

Authors: Abadou Yacine, Faid Hayette

Abstract:

Significant investigations were performed on the use and impact on physical properties along with the mechanical strength of the recycled and reused E-glass waste powder. However, it has been modelled how recycled display e-waste glass may affect the characteristics and qualities of dune sand mortar. To be involved in this field, an investigation has been done with the substitution of dune sand for recycled E-glass waste and constant water-cement ratios. The linear relationship between the dune sand mortar and E-glass mortar mix % contributes to the model's reliability. The experimental data was exposed to regression analysis using JMP Statistics software. The regression model with one predictor presented the general form of the equation for the prediction of the five properties' characteristics of dune sand mortar from the substitution ratio of E-waste glass and curing age. The results illustrate that curing a long-term process produced an E-glass waste mortar specimen with the highest compressive strength of 68 MPa in the laboratory environment. Anova analysis indicated that the curing at long-term has the utmost importance on the sorptivity level and ultrasonic pulse velocity loss. Furthermore, the E-glass waste powder percentage has the utmost importance on the compressive strength and improvement in dynamic elasticity modulus. Besides, a significant enhancement of radiation-shielding applications.

Keywords: ANOVA analysis, E-glass waste, durability and sustainability, radiation-shielding

Procedia PDF Downloads 56
3052 A Comparative Study for the Axial Load Capacity of Circular High Strength CFST Columns

Authors: Eylem Guzel, Faruk Osmanoglu, Muhammet Kurucu

Abstract:

The concrete filled steel tube (CFST) columns are commonly used in construction applications such as high-rise buildings and bridges owing to its lots of remarkable benefits. The use of concrete-filled steel tube columns provides large areas by reduction in cross-sectional area of columns. The main aim of this study is to examine the axial load capacities of circular high strength concrete-filled steel tube columns according to Eurocode 4 (EC4) and Chinese Code (DL/T). The results showed that the predictions of EC4 and Chinese Code DL/T are unsafe for all specimens.

Keywords: concrete-filled steel tube column, axial load capacity, Chinese code, Australian standard

Procedia PDF Downloads 395
3051 Which Tempo On The Bench Press Maximizes 1 Rep Max Growth?

Authors: Aiden Wang, Joseph Marino

Abstract:

In this study, we investigated the impact of different tempo variations on 1-repetition maximum (1RM) growth, focusing on the eccentric, isometric, and concentric phases of the lift. Through a 6-week longitudinal study involving 20 individuals with 1-5 years of barbell training experience, we compared the effects of various tempo schemes on bench press performance. Our results revealed that subjects who performed a tempo bench press with a 3-second eccentric phase, 3-second isometric phase, and explosive concentric phase on a weekly basis experienced the most significant increases in 1RM. Notably, this tempo also led to improved technique and stability during the exercise. Our findings provide valuable insights for strength trainers and coaches seeking to optimize bench press performance and overcome strength plateaus effectively.

Keywords: exercise science, powerlifting, barbell, interventionist, longitudinal study

Procedia PDF Downloads 30
3050 Experimental and Computational Analysis of Glass Fiber Reinforced Plastic Beams with Piezoelectric Fibers

Authors: Selin Kunc, Srinivas Koushik Gundimeda, John A. Gallagher, Roselita Fragoudakis

Abstract:

This study investigates the behavior of Glass Fiber Reinforced Plastic (GFRP) laminated beams additionally reinforced with piezoelectric fibers. The electromechanical behavior of piezoelectric materials coupled with high strength/low weight GFRP laminated beams can have significant application in a wide range of industries. Energy scavenging through mechanical vibrations is the focus of this study, and possible applications can be seen in the automotive industry. This study examines the behavior of such composite laminates using Classical Lamination Theory (CLT) under three-point bending conditions. Fiber orientation is optimized for the desired stiffness and deflection that yield maximum energy output. Finite element models using ABAQUS/CAE are verified through experimental testing. The optimum stacking sequences examined are [0o]s, [ 0/45o]s, and [45/-45o]s. Results show the superiority of the stacking sequence [0/45o]s, providing higher strength at a lower weight, and maximum energy output. Furthermore, laminated GFRP beams additionally reinforced with piezoelectric fibers can be used under bending to not only replace metallic component while providing similar strength at a lower weight but also provide an energy output.

Keywords: classical lamination theory (CLT), energy scavenging, glass fiber reinforced plastics (GFRP), piezoelectric fibers

Procedia PDF Downloads 302
3049 The Mechanical Properties of Rammed Earth with Plastic Fibers

Authors: Majdi Al Shdifat, Juan Chiachio, Esther Puertas, María L. Jalón, Álvaro Blanca-Hoyos

Abstract:

In recent years, the world has begun to adopt more sustainable practices in response to today's environmental and climate challenges. The construction sector is one of the most resource-intensive among others, so researchers are testing different types of materials with different processes and methodologies to achieve more environmentally and sustainably friendly buildings.Plastic is one of the most harmful materials for the environment. The global production of plastics has increased dramatically in recent decades, and it is one of the most widely used materials. However, plastic waste is not biodegradable and has a chemical composition that is stable for many years in the environment, both on land and in water bodies. Recycled plastics have been tested to be used in construction in many ways to reduce the amount of plastic in the environment and the use of raw materials in construction. In this context, the main objective of this research is to test the use of plastic fibers with one of the most promising materials to replace cement, which is rammed earth. In fact, rammed earth is considered one of the most environmentally friendly materials due to its use of local raw materials, recyclability, and low embodied energy. In this research, three different types of plastic fibers were used. Then, the blends were evaluated by considering their mechanical properties, including compressive strength and tensile strength. In addition, the non-destructive ultrasonic wave velocity was measured. The result shows excellent potential for the use of plastic fibers in rammed earth, especially in terms of compressive strength.

Keywords: mechanical characterization, plastic fibers reinforcement, rammed earth, sustainable material

Procedia PDF Downloads 65
3048 Production of Bricks Using Mill Waste and Tyre Crumbs at a Low Temperature by Alkali-Activation

Authors: Zipeng Zhang, Yat C. Wong, Arul Arulrajah

Abstract:

Since automobiles became widely popular around the early 20th century, end-of-life tyres have been one of the major types of waste humans encounter. Every minute, there are considerable quantities of tyres being disposed of around the world. Most end-of-life tyres are simply landfilled or simply stockpiled, other than recycling. To address the potential issues caused by tyre waste, incorporating it into construction materials can be a possibility. This research investigated the viability of manufacturing bricks using mill waste and tyre crumb by alkali-activation at a relatively low temperature. The mill waste was extracted from a brick factory located in Melbourne, Australia, and the tyre crumbs were supplied by a local recycling company. As the main precursor, the mill waste was activated by the alkaline solution, which was comprised of sodium hydroxide (8m) and sodium silicate (liquid). The introduction ratio of alkaline solution (relative to the solid weight) and the weight ratio between sodium hydroxide and sodium silicate was fixed at 20 wt.% and 1:1, respectively. The tyre crumb was introduced to substitute part of the mill waste at four ratios by weight, namely 0, 5, 10 and 15%. The mixture of mill waste and tyre crumbs were firstly dry-mixed for 2 min to ensure the homogeneity, followed by a 2.5-min wet mixing after adding the solution. The ready mixture subsequently was press-moulded into blocks with the size of 109 mm in length, 112.5 mm in width and 76 mm in height. The blocks were cured at 50°C with 95% relative humidity for 2 days, followed by a 110°C oven-curing for 1 day. All the samples were then placed under the ambient environment until the age of 7 and 28 days for testing. A series of tests were conducted to evaluate the linear shrinkage, compressive strength and water absorption of the samples. In addition, the microstructure of the samples was examined via the scanning electron microscope (SEM) test. The results showed the highest compressive strength was 17.6 MPa, found in the 28-day-old group using 5 wt.% tyre crumbs. Such strength has been able to satisfy the requirement of ASTM C67. However, the increasing addition of tyre crumb weakened the compressive strength of samples. Apart from the strength, the linear shrinkage and water absorption of all the groups can meet the requirements of the standard. It is worth noting that the use of tyre crumbs tended to decrease the shrinkage and even caused expansion when the tyre content was over 15 wt.%. The research also found that there was a significant reduction in compressive strength for the samples after water absorption tests. In conclusion, the tyre crumbs have the potential to be used as a filler material in brick manufacturing, but more research needs to be done to tackle the durability problem in the future.

Keywords: bricks, mill waste, tyre crumbs, waste recycling

Procedia PDF Downloads 121
3047 Laboratory Study on Behavior of Compacted Soils

Authors: M. M. Mekkakia, M. P Luong, A. Arab

Abstract:

These controlling the water content of compaction are a major concern of fundamental civil engineers. Also, the knowledge of the fundamentals of the behaviour of compacted clay soils is essential to predict and quantify the effects of a change in water content. The study of unsaturated soils is a very complex area which several studies are directed to in recent years. Our job work is to perform tests of Proctor, Oedometer and shear, on samples of unsaturated clay in order to see the influence of water content on the compressibility and the shear strength. The samples were prepared at different amounts of water from water content to optimum water contents close to saturation. This study thus allowed us to measure and monitor the parameters of compressibility and shear strength as a function of water content.

Keywords: laboratory tests, clay, unsaturated soil, atterberg limits, compaction, compressibility, shear

Procedia PDF Downloads 413
3046 Experimental Investigation of The Influence of Cement on Soil-Municipal Solid Waste Incineration Fly ash Mix Properties

Authors: Gehan Aouf, Diala Tabbal, Abd El Rahim Sabsabi, Rashad Aouf

Abstract:

The aim of this study is to assess the viability of utilizing Municipal Solid Waste Incineration Fly Ash (MSWIFA) with Ordinary Portland cement as soil reinforcement materials for geotechnical engineering applications. A detailed experimental program is carried out, followed by analysis of results. Soil samples were prepared by adding Cement to MSWIFA-soil mix at different percentages. Then, a series of laboratory tests were performed, namely: Sieve analysis, Atterberg limits tests, Unconfined compression test, and Proctor tests. A parametric study is conducted to investigate the effect of adding the cement at different percentages on the unconfined compression strength, maximum dry density, and optimum moisture content of clayey soil-MSWIFA The variation of contents of admixtures were 10%, 20%, and 30% for MSWIFA by dry total weight of soil and 10%, 15%, and 20% for Portland cement by dry total weight of the mix. The test results reveal that adding MSWIFA to the soil up to 20% increased the MDD of the mixture and decreased the OMC, then an opposite trend for results were found when the percentage of MSWIFA exceeds 20%. This is due to the low specific gravity of MSWIFA and to the greater water absorption of MSWIFA. The laboratory tests also indicate that the UCS values were found to be increased for all the mixtures with curing periods of 7, 14, and 28 days. It is also observed that the cement increased the strength of the finished product of the mix of soil and MSWIFA.

Keywords: clayey soil, cement, MSWIFA, unconfined compression strength

Procedia PDF Downloads 128
3045 Description of Geotechnical Properties of Jabal Omar

Authors: Ibrahim Abdel Gadir Malik, Dafalla Siddig Dafalla, Osama Abdelgadir El-Bushra

Abstract:

Geological and engineering characteristics of intact rock and the discontinuity surfaces was used to describe and classify rock mass into zones based on mechanical and physical properties. Many conditions terms that affect the rock mas; such as Rock strength, Rock Quality Designation (RQD) value, joint spacing, and condition of joint, water condition with block size, joint roughness, separation, joint hardness, friction angle and weathering were used to classify the rock mass into: Good quality (class II) (RMR values range between 75% and 56%), Good to fair quality (class II to III) (RMR values range between 70% and 55%), Fair quality (class III) (RMR values range between 60% and 50%) and Fair to poor quality (Class III to IV) (RMR values, range between (50% and 35%).

Keywords: rock strength, RQD, joints, weathering

Procedia PDF Downloads 413
3044 Paper Concrete: A Step towards Sustainability

Authors: Hemanth K. Balaga, Prakash Nanthagopalan

Abstract:

Every year a huge amount of paper gets discarded of which only a minute fraction is being recycled and the rest gets dumped as landfills. Paper fibres can be recycled only a limited number of times before they become too short or weak to make high quality recycled paper. This eventually adds to the already big figures of waste paper that is being generated and not recycled. It would be advantageous if this prodigious amount of waste can be utilized as a low-cost sustainable construction material and make it as a value added product. The generic term for the material under investigation is paper-concrete. This is a fibrous mix made of Portland cement, water and pulped paper and/or other aggregates. The advantages of this material include light weight, good heat and sound insulation capability and resistance to flame. The disadvantages include low strength compared to conventional concrete and its hydrophilic nature. The properties vary with the variation of cement and paper content in the mix. In the present study, Portland Pozzolona Cement and news print paper were used for the preparation of paper concrete cubes. Initially, investigations were performed to determine the minimum soaking period required for the softening of the paper fibres. Further different methodologies were explored for proper blending of the pulp with cement paste. The properties of paper concrete vary with the variation of cement to paper to water ratio. The study mainly addresses the parameters of strength and weight loss of the concrete cubes with age and the time that is required for the dry paper fibres to become soft enough in water to bond with the cement. The variation of compressive strength with cement content, water content, and time was studied. The water loss of the cubes with time and the minimum time required for the softening of paper fibres were investigated .Results indicate that the material loses 25-50 percent of the initial weight at the end of 28 days, and a maximum 28 day compressive strength (cubes) of 5.4 Mpa was obtained.

Keywords: soaking time, difference water, minimum water content, maximum water content

Procedia PDF Downloads 254
3043 Proposals of Exposure Limits for Infrasound From Wind Turbines

Authors: M. Pawlaczyk-Łuszczyńska, T. Wszołek, A. Dudarewicz, P. Małecki, M. Kłaczyński, A. Bortkiewicz

Abstract:

Human tolerance to infrasound is defined by the hearing threshold. Infrasound that cannot be heard (or felt) is not annoying and is not thought to have any other adverse or health effects. Recent research has largely confirmed earlier findings. ISO 7196:1995 recommends the use of G-weighted characteristics for the assessment of infrasound. There is a strong correlation between G-weighted SPL and annoyance perception. The aim of this study was to propose exposure limits for infrasound from wind turbines. However, only a few countries have set limits for infrasound. These limits are usually no higher than 85-92 dBG, and none of them are specific to wind turbines. Over the years, a number of studies have been carried out to determine hearing thresholds below 20 Hz. It has been recognized that 10% of young people would be able to perceive 10 Hz at around 90 dB, and it has also been found that the difference in median hearing thresholds between young adults aged around 20 years and older adults aged over 60 years is around 10 dB, irrespective of frequency. This shows that older people (up to about 60 years of age) retain good hearing in the low frequency range, while their sensitivity to higher frequencies is often significantly reduced. In terms of exposure limits for infrasound, the average hearing threshold corresponds to a tone with a G-weighted SPL of about 96 dBG. In contrast, infrasound at Lp,G levels below 85-90 dBG is usually inaudible. The individual hearing threshold can, therefore be 10-15 dB lower than the average threshold, so the recommended limits for environmental infrasound could be 75 dBG or 80 dBG. It is worth noting that the G86 curve has been taken as the threshold of auditory perception of infrasound reached by 90-95% of the population, so the G75 and G80 curves can be taken as the criterion curve for wind turbine infrasound. Finally, two assessment methods and corresponding exposure limit values have been proposed for wind turbine infrasound, i.e. method I - based on G-weighted sound pressure level measurements and method II - based on frequency analysis in 1/3-octave bands in the frequency range 4-20 Hz. Separate limit values have been set for outdoor living areas in the open countryside (Area A) and for noise sensitive areas (Area B). In the case of Method I, infrasound limit values of 80 dBG (for areas A) and 75 dBG (for areas B) have been proposed, while in the case of Method II - criterion curves G80 and G75 have been chosen (for areas A and B, respectively).

Keywords: infrasound, exposure limit, hearing thresholds, wind turbines

Procedia PDF Downloads 77
3042 The Effect of CaO Addition on Mechanical Properties of Ceramic Tiles

Authors: Lucie Vodova, Radomir Sokolar, Jitka Hroudova

Abstract:

Stoneware clay, fired clay (as a grog), calcite waste and class C fly ash in various mixing rations were the basic raw materials for the mixture for production of dry pressed ceramic tiles. Mechanical properties (water absorption, bulk density, apparent porosity, flexural strength) as well as mineralogical composition were studied on samples with different source of calcium oxide after firing at 900, 1000, 1100 and 1200°C. It was found that samples with addition of calcite waste contain dmisteinbergit and anorthite. This minerals help to improve the strength of the body and reduce porosity fired at lower temperatures. Class C fly ash has not significantly influence on properties of the fired body as calcite waste.

Keywords: ceramic tiles, class C fly ash, calcite waste, calcium oxide, anorthite

Procedia PDF Downloads 243
3041 Dissimilar Cu/Al Friction Stir Welding: Sensitivity of the Tool Offset

Authors: Tran Hung Tra, Hao Dinh Duong, Masakazu Okazaki

Abstract:

Copper 1100 and aluminum 1050 plates with a thickness of 5.0 mm are butt-joint using friction stir welding. The tool offset is linearly varied along the welding path. Two welding regimes, using the same linear tool offset but in opposite directions, are applied for fabricating two Cu/Al plates. The material flow is dominated by both tool offset and offset history. The intermetallic compounds layer and interface morphology in each welded plate are formed in a different manner. As a result, the bonding strength and fracture behavior between two welded plates are significantly distinct. The role of interface morphology on fracture behavior is analyzed by the finite element method.

Keywords: Cu/Al dissimilar welding, offset history, interface morphology, intermetallic compounds, strength and fracture

Procedia PDF Downloads 71
3040 Compressive Strength Evaluation of Underwater Concrete Structures Integrating the Combination of Rebound Hardness and Ultrasonic Pulse Velocity Methods with Artificial Neural Networks

Authors: Seunghee Park, Junkyeong Kim, Eun-Seok Shin, Sang-Hun Han

Abstract:

In this study, two kinds of nondestructive evaluation (NDE) techniques (rebound hardness and ultrasonic pulse velocity methods) are investigated for the effective maintenance of underwater concrete structures. A new methodology to estimate the underwater concrete strengths more effectively, named “artificial neural network (ANN) – based concrete strength estimation with the combination of rebound hardness and ultrasonic pulse velocity methods” is proposed and verified throughout a series of experimental works.

Keywords: underwater concrete, rebound hardness, Schmidt hammer, ultrasonic pulse velocity, ultrasonic sensor, artificial neural networks, ANN

Procedia PDF Downloads 526
3039 Effect of Particle Size on Alkali-Activation of Slag

Authors: E. Petrakis, V. Karmali, K. Komnitsas

Abstract:

In this study grinding experiments were performed in a laboratory ball mill using Polish ferronickel slag in order to study the effect of the particle size on alkali activation and the properties of the produced alkali activated materials (AAMs). In this regard, the particle size distribution and the specific surface area of the grinding products in relation to grinding time were assessed. The experimental results show that products with high compressive strength, e.g. higher than 60 MPa, can be produced when the slag median size decreased from 39.9 μm to 11.9 μm. Also, finer fractions are characterized by higher reactivity and result in the production of AAMs with lower porosity and better mechanical properties.

Keywords: alkali activation, compressive strength, grinding time, particle size distribution, slag, structural integrity

Procedia PDF Downloads 133
3038 Factors Affecting the Ultimate Compressive Strength of the Quaternary Calcarenites, North Western Desert, Egypt

Authors: M. A. Rashed, A. S. Mansour, H. Faris, W. Afify

Abstract:

The calcarenites carbonate rocks of the Quaternary ridges, which extend along the northwestern Mediterranean coastal plain of Egypt, represent an excellent model for the transformation of loose sediments to real sedimentary rocks by the different stages of meteoric diagenesis. The depositional and diagenetic fabrics of the rocks, in addition to the strata orientation, highly affect their ultimate compressive strength and other geotechnical properties. There is a marked increase in the compressive strength (UCS) from the first to the fourth ridge rock samples. The lowest values are related to the loose packing, weakly cemented aragonitic ooid sediments with high porosity, besides the irregularly distributed of cement, which result in decreasing the ability of these rocks to withstand crushing under direct pressure. The high (UCS) values are attributed to the low porosity, the presence of micritic cement, the reduction in grain size and the occurrence of micritization and calcretization processes. The strata orientation has a notable effect on the measured (UCS). The lowest values have been recorded for the samples cored in the inclined direction; whereas the highest values have been noticed in most samples cored in the vertical and parallel directions to bedding plane. In case of the inclined direction, the bedding planes were oriented close to the plane of maximum shear stress. The lowest and highest anisotropy values have been recorded for the first and the third ridges rock samples, respectively, which may attributed to the relatively homogeneity and well sorted grain-stone of the first ridge rock samples, and relatively heterogeneity in grain and pore size distribution and degree of cementation of the third ridge rock samples, besides, the abundance of shell fragments with intra-particle pore spaces, which may produce lines of weakness within the rock.

Keywords: compressive strength, anisotropy, calcarenites, Egypt

Procedia PDF Downloads 369
3037 A Study on Bonding Strength, Waterproofing and Flexibility of Environment Friendly, and Cost Effective Cementitious Grout Mixture for Tile Joints

Authors: Gowthamraj Vungarala

Abstract:

This paper presents the experimental investigation on the bond strength, waterproofing abilities and flexibility of tile joint when Ordinary Portland Cement (OPC) or White Portland Cement (WPC) CEM II A-LL 42.5N and porcelain powder graded between 200 microns and 75 microns is mixed with vinyl acetate monomer (VAM), hydroxypropyl methyl cellulose ether, ethylene co-polymer rubber powder and Styrene butyl rubber (SBR). Use of porcelain powder which is tough to decompose as a form of industrial refuse which helps environmental safety and waste usage.

Keywords: styrene butane rubber, hydroxypropyl methyl cellulose ether, vinyl acetate monomer, polymer modified cement, polyethylene, porcelain powder

Procedia PDF Downloads 89
3036 Effect of Cement Amount on California Bearing Ratio Values of Different Soil

Authors: Ayse Pekrioglu Balkis, Sawash Mecid

Abstract:

Due to continued growth and rapid development of road construction in worldwide, road sub-layers consist of soil layers, therefore, identification and recognition of type of soil and soil behavior in different condition help to us to select soil according to specification and engineering characteristic, also if necessary sometimes stabilize the soil and treat undesirable properties of soils by adding materials such as bitumen, lime, cement, etc. If the soil beneath the road is not done according to the standards and construction will need more construction time. In this case, a large part of soil should be removed, transported and sometimes deposited. Then purchased sand and gravel is transported to the site and full depth filled and compacted. Stabilization by cement or other treats gives an opportunity to use the existing soil as a base material instead of removing it and purchasing and transporting better fill materials. Classification of soil according to AASHTOO system and USCS help engineers to anticipate soil behavior and select best treatment method. In this study soil classification and the relation between soil classification and stabilization method is discussed, cement stabilization with different percentages have been selected for soil treatment based on NCHRP. There are different parameters to define the strength of soil. In this study, CBR will be used to define the strength of soil. Cement by percentages, 0%, 3%, 7% and 10% added to soil for evaluation effect of added cement to CBR of treated soil. Implementation of stabilization process by different cement content help engineers to select an economic cement amount for the stabilization process according to project specification and characteristics. Stabilization process in optimum moisture content (OMC) and mixing rate effect on the strength of soil in the laboratory and field construction operation have been performed to see the improvement rate in strength and plasticity. Cement stabilization is quicker than a universal method such as removing and changing field soils. Cement addition increases CBR values of different soil types by the range of 22-69%.

Keywords: California Bearing Ratio, cement stabilization, clayey soil, mechanical properties

Procedia PDF Downloads 393
3035 Nuclear Powered UAV for Surveillances and Aerial Photography

Authors: Rajasekar Elangopandian, Anand Shanmugam

Abstract:

Now-a-days for surveillances unmanned aerial vehicle plays a vital role. Not only for surveillances, aerial photography disaster management and the notice of earth behavior UAV1s envisages meticulously. To reduce the maintenance and fuel nuclear powered Vehicles are greater support. The design consideration is much important for the UAV manufacturing industry and Research and development agency. Eventually design is looking like a pentagon shaped fuselage and black rubber coated paint in order to escape from the enemy radar and other targets. The pentagon shape fuselage has large space to keep the mini nuclear reactor inside and the material is carbon – carbon fiber specially designed by the software called cosmol and hyper mesh 14.2. So the weight consideration will produce the positive result for productivity. The walls of the fuselage are coated with lead and protective shield. A double layer of W/Bi sheet is proposed for radiation protection at the energy range of 70 Kev to 90 Kev. The designed W/bi sheet, only 0.14 mm thick and is 36% light. The properties of the fillers were determined from zeta potential and particle size measurements. The Exposes of the radiation can be attenuated by 3 ways such as minimizing exposure time, Maximizing distance from the radiation source and shielding the whole vehicle. The inside reactor will be switched ON when the UAV starts its cruise. The moderators and the control rods can be inserted by automation technique by newly developed software. The heat generated by the reactor will be used to run the turbine which is fixed inside the UAV called mini turbine with natural rubber composite Shaft radiation shield. Cooling system will be in two mode such as liquid and air cooled. Liquid coolant for the heat regeneration is ordinary water, liquid sodium, helium and the walls are made up of regenerative and radiation protective material. The other components like camera and arms bay will be located at the bottom of the UAV high are specially made products in order to escape from the radiation. They are coated with lead Pb and natural rubber composite material. This technique provides the long rang and endurance for eternal flight mission until we need any changeability of parts or product. This UAV has the special advantage of ` land on String` means it`ll land at electric line to charge the automated electronics. Then the fuel is enriched uranium (< 5% U - 235) contains hundreds of fuel pins. This technique provides eternal duty for surveillances and aerial photography. The landing of the vehicle is ease of operation likewise the takeoff is also easier than any other mechanism which present in nowadays. This UAV gives great immense and immaculate technology for surveillance and target detecting and smashing the target.

Keywords: mini turbine, liquid coolant for the heat regeneration, in order to escape from the radiation, eternal flight mission, it`ll land at electric line

Procedia PDF Downloads 408
3034 Mechanical Properties of the Sugarcane Bagasse Reinforced Polypropylene Composites

Authors: R. L. M. Paiva, M. R. Capri, D. R. Mulinari, C. F. Bandeira, S. R. Montoro

Abstract:

Natural fibers are used in polymer composites to improve mechanical properties, substituting inorganic reinforcing agents produced by non renewable resources. The present study investigates the tensile, flexural and impact behaviors of sugarcane bagasse fibers-polypropylene composite as a function of volume fraction. The surface of the fibers was modified by mercerization treatments to improve the wetting behavior of the apolar polypropylene. The treatment characterization was obtained by infrared spectroscopy and scanning electron microscopy. Results evidence that a good adhesion interfacial between fibers-matrix causing an increase strength and modulus flexural as well as impact strength in the modified fibers/PP composites when compared to the pure PP and unmodified fibers reinforced composites.

Keywords: sugarcane bagasse, polymer composites, mechanical properties, fibers

Procedia PDF Downloads 617
3033 Experimental Investigation on Shear Behaviour of Fibre Reinforced Concrete Beams Using Steel Fibres

Authors: G. Beulah Gnana Ananthi, A. Jaffer Sathick, M. Abirami

Abstract:

Fibre reinforced concrete (FRC) has been widely used in industrial pavements and non-structural elements such as pipes, culverts, tunnels, and precast elements. The strengthening effect of fibres in the concrete matrix is achieved primarily due to the bridging effect of fibres at the crack interfaces. The workability of the concrete was reduced on addition of high percentages of steel fibres. The optimum percentage of addition of steel fibres varies with its aspect ratio. For this study, 1% addition of steel has resulted to be the optimum percentage for both Hooked and Crimped Steel Fibres and was added to the beam specimens. The fibres restrain efficiently the cracks and take up residual stresses beyond the cracking. In this sense, diagonal cracks are effectively stitched up by fibres crossing it. The failure of beams within the shear failure range changed from shear to flexure in the presence of sufficient steel fibre quantity. The shear strength is increased with the addition of steel fibres and had exceeded the enhancement obtained with the transverse reinforcement. However, such increase is not directly in proportion with the quantity of fibres used. Considering all the clarification made in the present experimental investigation, it is concluded that 1% of crimped steel fibres with an aspect ratio of 50 is the best type of steel fibres for replacement of transverse stirrups in high strength concrete beams when compared to the steel fibres with hooked ends.

Keywords: fibre reinforced concrete, steel fibre, shear strength, crack pattern

Procedia PDF Downloads 141
3032 Dielectric Recovery Characteristics of High Voltage Gas Circuit Breakers Operating with CO₂ Mixture

Authors: Peng Lu, Branimir Radisavljevic, Martin Seeger, Daniel Over, Torsten Votteler, Bernardo Galletti

Abstract:

CO₂-based gas mixtures exhibit huge potential as the interruption medium for replacing SF₆ in high voltage switchgears. In this paper, the recovery characteristics of dielectric strength of CO₂-O₂ mixture in the post arc phase after the current zero are presented. As representative examples, the dielectric recovery curves under conditions of different gas filling pressures and short-circuit current amplitudes are presented. A series of dielectric recovery measurements suggests that the dielectric recovery rate is proportional to the mass flux of the blowing gas, and the dielectric strength recovers faster in the case of lower short circuit currents.

Keywords: CO₂ mixture, high voltage circuit breakers, dielectric recovery rate, short-circuit current, mass flux

Procedia PDF Downloads 188
3031 Energy Efficient Retrofitting and Optimization of Dual Mixed Refrigerant Natural Gas Liquefaction Process

Authors: Muhammad Abdul Qyyum, Kinza Qadeer, Moonyong Lee

Abstract:

Globally, liquefied natural gas (LNG) has drawn interest as a green energy source in comparison with other fossil fuels, mainly because of its ease of transport and low carbon dioxide emissions. It is expected that demand for LNG will grow steadily over the next few decades. In addition, because the demand for clean energy is increasing, LNG production facilities are expanding into new natural gas reserves across the globe. However, LNG production is an energy and cost intensive process because of the huge power requirements for compression and refrigeration. Therefore, one of the major challenges in the LNG industry is to improve the energy efficiency of existing LNG processes through economic and ecological strategies. The advancement in expansion devices such as two-phase cryogenic expander (TPE) and cryogenic hydraulic turbine (HT) were exploited for energy and cost benefits in natural gas liquefaction. Retrofitting the conventional Joule–Thompson (JT) valve with TPE and HT have the potential to improve the energy efficiency of LNG processes. This research investigated the potential feasibility of the retrofitting of a dual mixed refrigerant (DMR) process by replacing the isenthalpic expansion with isentropic expansion corresponding to energy efficient LNG production. To fully take the potential benefit of the proposed process retrofitting, the proposed DMR schemes were optimized by using a Coggins optimization approach, which was implemented in Microsoft Visual Studio (MVS) environment and linked to the rigorous HYSYS® model. The results showed that the required energy of the proposed isentropic expansion based DMR process could be saved up to 26.5% in comparison with the conventional isenthalpic based DMR process using the JT valves. Utilization of the recovered energy into boosting the natural gas feed pressure could further improve the energy efficiency of the LNG process up to 34% as compared to the base case. This work will help the process engineers to overcome the challenges relating to energy efficiency and safety concerns of LNG processes. Furthermore, the proposed retrofitting scheme can also be implemented to improve the energy efficiency of other isenthalpic expansion based energy intensive cryogenic processes.

Keywords: cryogenic liquid turbine, Coggins optimization, dual mixed refrigerant, energy efficient LNG process, two-phase expander

Procedia PDF Downloads 145
3030 The Effects of SCMs on the Mechanical Properties and Durability of Fibre Cement Plates

Authors: Ceren Ince, Berkay Zafer Erdem, Shahram Derogar, Nabi Yuzer

Abstract:

Fibre cement plates, often used in construction, generally are made using quartz as an inert material, cement as a binder and cellulose as a fibre. This paper first of all investigates the mechanical properties and durability of fibre cement plates when quartz is both partly and fully replaced with diatomite. Diatomite does not only have lower density compared to quartz but also has high pozzolanic activity. The main objective of this paper is the investigation of the effects of supplementary cementing materials (SCMs) on the short and long term mechanical properties and durability characteristics of fibre cement plates prepared using diatomite. Supplementary cementing materials such as ground granulated blast furnace slug (GGBS) and fly ash (FA) are used in this study. 10, 20, 30 and 40% of GGBS and FA are used as partial replacement materials to cement. Short and long term mechanical properties such as compressive and flexural strengths as well as capillary absorption, sorptivity characteristics and mass were investigated. Consistency and setting time at each replacement levels of SCMs were also recorded. The effects of using supplementary cementing materials on the carbonation and sulphate resistance of fibre cement plates were then experimented. The results, first of all, show that the use of diatomite as a full or partial replacement to quartz resulted in a systematic decrease in total mass of the fibre cement plates. The reduction of mass was largely due to the lower density and finer particle size of diatomite compared to quartz. The use of diatomite did not only reduce the mass of these plates but also increased the compressive strength significantly as a result of its high pozzolanic activity. The replacement levels of both GGBS and FA resulted in a systematic decrease in short term compressive strength with increasing replacement levels. This was essentially expected as the total heat of hydration is much lower in GGBS and FA than that of cement. Long term results however, indicated that the compressive strength of fibre cement plates prepared using both GGBS and FA increases with time and hence the compressive strength of plates prepared using SCMs is either equivalent or more than the compressive strength of plates prepared using cement alone. Durability characteristics of fibre cement plates prepared using SCMs were enhanced significantly. Measurements of capillary absorption and sopritivty characteristics were also indicated that the plates prepared using SCMs has much lower permeability compared to plates prepared cement alone. Much higher resistance to carbonation and sulphate attach were observed with plates prepared using SCMs. The results presented in this paper show that the use of SCMs does not only support the production of more sustainable construction materials but also enhances the mechanical properties and durability characteristics of fibre cement plates.

Keywords: diatomite, fibre, strength, supplementary cementing material

Procedia PDF Downloads 326