Search results for: magnetic lines of force
3393 Laser Writing on Vitroceramic Disks for Petabyte Data Storage
Authors: C. Busuioc, S. I. Jinga, E. Pavel
Abstract:
The continuous need of more non-volatile memories with a higher storage capacity, smaller dimensions and weight, as well as lower costs, has led to the exploration of optical lithography on active media, as well as patterned magnetic composites. In this context, optical lithography is a technique that can provide a significant decrease of the information bit size to the nanometric scale. However, there are some restrictions that arise from the need of breaking the optical diffraction limit. Major achievements have been obtained by employing a vitoceramic material as active medium and a laser beam operated at low power for the direct writing procedure. Thus, optical discs with ultra-high density were fabricated by a conventional melt-quenching method starting from analytical purity reagents. They were subsequently used for 3D recording based on their photosensitive features. Naturally, the next step consists in the elucidation of the composition and structure of the active centers, in correlation with the use of silver and rare-earth compounds for the synthesis of the optical supports. This has been accomplished by modern characterization methods, namely transmission electron microscopy coupled with selected area electron diffraction, scanning transmission electron microscopy and electron energy loss spectroscopy. The influence of laser diode parameters, silver concentration and fluorescent compounds formation on the writing process and final material properties was investigated. The results indicate performances in terms of capacity with two order of magnitude higher than other reported information storage systems. Moreover, the fluorescent photosensitive vitroceramics may be integrated in other applications which appeal to nanofabrication as the driving force in electronics and photonics fields.Keywords: data storage, fluorescent compounds, laser writing, vitroceramics
Procedia PDF Downloads 2253392 A Mathematical Description of a Growing Cell Colony Based on the Mechanical Bidomain Model
Authors: Debabrata Auddya, Bradley J. Roth
Abstract:
The mechanical bidomain model is used to describe a colony of cells growing on a substrate. Analytical expressions are derived for the intracellular and extracellular displacements. Mechanotransduction events are driven by the difference between the displacements in the two spaces, corresponding to the force acting on integrins. The equation for the displacement consists of two terms: one proportional to the radius that is the same in the intracellular and extracellular spaces (the monodomain term) and one that is proportional to a modified Bessel function that is responsible for mechanotransduction (the bidomain term). The model predicts that mechanotransduction occurs within a few length constants of the colony’s edge, and an expression for the length constant contains the intracellular and extracellular shear moduli and the spring constant of the integrins coupling the two spaces. The model predictions are qualitatively consistent with experiments on human embryonic stem cell colonies, in which differentiation is localized near the edge.Keywords: cell colony, integrin, mechanical bidomain model, stem cell, stress-strain, traction force
Procedia PDF Downloads 2383391 Investigation of the Effect of Impulse Voltage to Flashover by Using Water Jet
Authors: Harun Gülan, Muhsin Tunay Gencoglu, Mehmet Cebeci
Abstract:
The main function of the insulators used in high voltage (HV) transmission lines is to insulate the energized conductor from the pole and hence from the ground. However, when the insulators fail to perform this insulation function due to various effects, failures occur. The deterioration of the insulation results either from breakdown or surface flashover. The surface flashover is caused by the layer of pollution that forms conductivity on the surface of the insulator, such as salt, carbonaceous compounds, rain, moisture, fog, dew, industrial pollution and desert dust. The source of the majority of failures and interruptions in HV lines is surface flashover. This threatens the continuity of supply and causes significant economic losses. Pollution flashover in HV insulators is still a serious problem that has not been fully resolved. In this study, a water jet test system has been established in order to investigate the behavior of insulators under dirty conditions and to determine their flashover performance. Flashover behavior of the insulators is examined by applying impulse voltages in the test system. This study aims to investigate the insulator behaviour under high impulse voltages. For this purpose, a water jet test system was installed and experimental results were obtained over a real system and analyzed. By using the water jet test system instead of the actual insulator, the damage to the insulator as a result of the flashover that would occur under impulse voltage was prevented. The results of the test system performed an important role in determining the insulator behavior and provided predictability.Keywords: insulator, pollution flashover, high impulse voltage, water jet model
Procedia PDF Downloads 1103390 Analysis of the Operating Load of Gas Bearings in the Gas Generator of the Turbine Engine during a Deceleration to Dash Maneuver
Authors: Zbigniew Czyz, Pawel Magryta, Mateusz Paszko
Abstract:
The paper discusses the status of loads acting on the drive unit of the unmanned helicopter during deceleration to dash maneuver. Special attention was given for the loads of bearings in the gas generator turbine engine, in which will be equipped a helicopter. The analysis was based on the speed changes as a function of time for manned flight of helicopter PZL W3-Falcon. The dependence of speed change during the flight was approximated by the least squares method and then determined for its changes in acceleration. This enabled us to specify the forces acting on the bearing of the gas generator in static and dynamic conditions. Deceleration to dash maneuvers occurs in steady flight at a speed of 222 km/h by horizontal braking and acceleration. When the speed reaches 92 km/h, it dynamically changes an inclination of the helicopter to the maximum acceleration and power to almost maximum and holds it until it reaches its initial speed. This type of maneuvers are used due to ineffective shots at significant cruising speeds. It is, therefore, important to reduce speed to the optimum as soon as possible and after giving a shot to return to the initial speed (cruising). In deceleration to dash maneuvers, we have to deal with the force of gravity of the rotor assembly, gas aerodynamics forces and the forces caused by axial acceleration during this maneuver. While we can assume that the working components of the gas generator are designed so that axial gas forces they create could balance the aerodynamic effects, the remaining ones operate with a value that results from the motion profile of the aircraft. Based on the analysis, we can make a compilation of the results. For this maneuver, the force of gravity (referring to statistical calculations) respectively equals for bearing A = 5.638 N and bearing B = 1.631 N. As overload coefficient k in this direction is 1, this force results solely from the weight of the rotor assembly. For this maneuver, the acceleration in the longitudinal direction achieved value a_max = 4.36 m/s2. Overload coefficient k is, therefore, 0.44. When we multiply overload coefficient k by the weight of all gas generator components that act on the axial bearing, the force caused by axial acceleration during deceleration to dash maneuver equals only 3.15 N. The results of the calculations are compared with other maneuvers such as acceleration and deceleration and jump up and jump down maneuvers. This work has been financed by the Polish Ministry of Science and Higher Education.Keywords: gas bearings, helicopters, helicopter maneuvers, turbine engines
Procedia PDF Downloads 3393389 Electrokinetic Transport of Power Law Fluid through Hydrophobic Micro-Slits
Authors: Ainul Haque, Ameeye Kumar Nayak
Abstract:
Flow enhancement and species transport in a slit hydrophobic microchannel is studied for non-Newtonian fluids with the externally imposed electric field and pressure gradient. The incompressible Poisson-Nernst-Plank equations and the Navier-Stokes equations are approximated by lubrication theory to quantify the flow structure due to hydrophobic and hydrophilic surfaces. The analytical quantification of velocity and pressure of electroosmotic flow (EOF) is made with the numerical results due to the staggered grid based finite volume method for flow governing equations. The resistance force due to fluid friction and shear force along the surface are decreased by the hydrophobicity, enables the faster movement of fluid particles. The resulting flow enhancement factor Ef is increased with the low viscous fluid and provides maximum species transport. Also, the analytical comparison of EOF with pressure driven EOF justifies the flow enhancement due to hydrophobicity and shear impact on flow variation.Keywords: electroosmotic flow, hydrophobic surface, power-law fluid, shear effect
Procedia PDF Downloads 3773388 Potential of High Performance Ring Spinning Based on Superconducting Magnetic Bearing
Authors: M. Hossain, A. Abdkader, C. Cherif, A. Berger, M. Sparing, R. Hühne, L. Schultz, K. Nielsch
Abstract:
Due to the best quality of yarn and the flexibility of the machine, the ring spinning process is the most widely used spinning method for short staple yarn production. However, the productivity of these machines is still much lower in comparison to other spinning systems such as rotor or air-jet spinning process. The main reason for this limitation lies on the twisting mechanism of the ring spinning process. In the ring/traveler twisting system, each rotation of the traveler along with the ring inserts twist in the yarn. The rotation of the traveler at higher speed includes strong frictional forces, which in turn generates heat. Different ring/traveler systems concerning with its geometries, material combinations and coatings have already been implemented to solve the frictional problem. However, such developments can neither completely solve the frictional problem nor increase the productivity. The friction free superconducting magnetic bearing (SMB) system can be a right alternative replacing the existing ring/traveler system. The unique concept of SMB bearings is that they possess a self-stabilizing behavior, i.e. they remain fully passive without any necessity for expensive position sensing and control. Within the framework of a research project funded by German research foundation (DFG), suitable concepts of the SMB-system have been designed, developed, and integrated as a twisting device of ring spinning replacing the existing ring/traveler system. With the help of the developed mathematical model and experimental investigation, the physical limitations of this innovative twisting device in the spinning process have been determined. The interaction among the parameters of the spinning process and the superconducting twisting element has been further evaluated, which derives the concrete information regarding the new spinning process. Moreover, the influence of the implemented SMB twisting system on the yarn quality has been analyzed with respect to different process parameters. The presented work reveals the enormous potential of the innovative twisting mechanism, so that the productivity of the ring spinning process especially in case of thermoplastic materials can be at least doubled for the first time in a hundred years. The SMB ring spinning tester has also been presented in the international fair “International Textile Machinery Association (ITMA) 2015”.Keywords: ring spinning, superconducting magnetic bearing, yarn properties, productivity
Procedia PDF Downloads 2373387 Design Modification of Lap Joint of Fiber Metal Laminates (CARALL)
Authors: Shaher Bano, Samia Fida, Asif Israr
Abstract:
The synergistic effect of properties of metals and fibers reinforced laminates has diverted attention of the world towards use of robust composite materials known as fiber-metal laminates in many high performance applications. In this study, modification of an adhesively bonded joint as a single lap joint of carbon fibers based CARALL FML has done to increase interlaminar shear strength of the joint. The effect of different configurations of joint designs such as spews, stepped and modification in adhesive by addition of nano-fillers was studied. Both experimental and simulation results showed that modified joint design have superior properties as maximum force experienced stepped joint was 1.5 times more than the simple lap joint. Addition of carbon nano-tubes as nano-fillers in the adhesive joint increased the maximum force due to crack deflection mechanism.Keywords: adhesive joint, Carbon Reinforced Aluminium Laminate (CARALL), fiber metal laminates, spews
Procedia PDF Downloads 2373386 Calculation the Left Ventricle Wall Radial Strain and Radial SR Using Tagged Magnetic Resonance Imaging Data (tMRI)
Authors: Mohammed Alenezy
Abstract:
The function of cardiac motion can be used as an indicator of the heart abnormality by evaluating longitudinal, circumferential, and Radial Strain of the left ventricle. In this paper, the Radial Strain and SR is studied using tagged MRI (tMRI) data during the cardiac cycle on the mid-ventricle level of the left ventricle. Materials and methods: The short-axis view of the left ventricle of five healthy human (three males and two females) and four healthy male rats were imaged using tagged magnetic resonance imaging (tMRI) technique covering the whole cardiac cycle on the mid-ventricle level. Images were processed using Image J software to calculate the left ventricle wall Radial Strain and radial SR. The left ventricle Radial Strain and radial SR were calculated at the mid-ventricular level during the cardiac cycle. The peak Radial Strain for the human and rat heart was 40.7±1.44, and 46.8±0.68 respectively, and it occurs at 40% of the cardiac cycle for both human and rat heart. The peak diastolic and systolic radial SR for human heart was -1.78 s-1 ± 0.02 s-1 and 1.10±0.08 s-1 respectively, while for rat heart it was -5.16± 0.23s-1 and 4.25±0.02 s-1 respectively. Conclusion: This results show the ability of the tMRI data to characterize the cardiac motion during the cardiac cycle including diastolic and systolic phases which can be used as an indicator of the cardiac dysfunction by estimating the left ventricle Radial Strain and radial SR at different locations of the cardiac tissue. This study approves the validity of the tagged MRI data to describe accurately the cardiac radial motion.Keywords: left ventricle, radial strain, tagged MRI, cardiac cycle
Procedia PDF Downloads 4823385 Ho-Doped Lithium Niobate Thin Films: Raman Spectroscopy, Structure and Luminescence
Authors: Edvard Kokanyan, Narine Babajanyan, Ninel Kokanyan, Marco Bazzan
Abstract:
Lithium niobate (LN) crystals, renowned for their exceptional nonlinear optical, electro-optical, piezoelectric, and photorefractive properties, stand as foundational materials in diverse fields of study and application. While they have long been utilized in frequency converters of laser radiation, electro-optical modulators, and holographic information recording media, LN crystals doped with rare earth ions represent a compelling frontier for modern compact devices. These materials exhibit immense potential as key components in infrared lasers, optical sensors, self-cooling systems, and radiation balanced laser setups. In this study, we present the successful synthesis of Ho-doped lithium niobate (LN:Ho) thin films on sapphire substrates employing the Sol-Gel technique. The films exhibit a strong crystallographic orientation along the perpendicular direction to the substrate surface, with X-ray diffraction analysis confirming the predominant alignment of the film's "c" axis, notably evidenced by the intense (006) reflection peak. Further characterization through Raman spectroscopy, employing a confocal Raman microscope (LabRAM HR Evolution) with exciting wavelengths of 532 nm and 785 nm, unraveled intriguing insights. Under excitation with a 785 nm laser, Raman scattering obeyed selection rules, while employing a 532 nm laser unveiled additional forbidden lines reminiscent of behaviors observed in bulk LN:Ho crystals. These supplementary lines were attributed to luminescence induced by excitation at 532 nm. Leveraging data from anti-Stokes Raman lines facilitated the disentanglement of luminescence spectra from the investigated samples. Surface scanning affirmed the uniformity of both structure and luminescence across the thin films. Notably, despite the robust orientation of the "c" axis perpendicular to the substrate surface, Raman signals indicated a stochastic distribution of "a" and "b" axes, validating the mosaic structure of the films along the mentioned axis. This study offers valuable insights into the structural properties of Ho-doped lithium niobate thin films, with the observed luminescence behavior holding significant promise for potential applications in optoelectronic devices.Keywords: lithium niobate, Sol-Gel, luminescence, Raman spectroscopy
Procedia PDF Downloads 603384 Steady State Natural Convection in Vertical Heated Rectangular Channel between Two Vertical Parallel MTR-Type Fuel Plates
Authors: Djalal Hamed
Abstract:
The aim of this paper is to perform an analytic solution of steady state natural convection in a narrow rectangular channel between two vertical parallel MTR-type fuel plates, imposed under a cosine shape heat flux to determine the margin of the nuclear core power at which the natural convection cooling mode can ensure a safe core cooling, where the cladding temperature should not be reach the specific safety limits (90 °C). For this purpose, a simple computer program is developed to determine the principal parameter related to the nuclear core safety such as the temperature distribution in the fuel plate and in the coolant (light water) as a function of the reactor power. Our results are validated throughout a comparison against the results of another published work, which is considered like a reference of this study.Keywords: buoyancy force, friction force, natural convection, thermal hydraulic analysis, vertical heated rectangular channel
Procedia PDF Downloads 3163383 Durability of Lime Treated Soil Reinforced by Natural Fibre under Bending Force
Authors: Vivi Anggraini, Afshin Asadi, Bujang B. K. Huat
Abstract:
Earth structures constructed of marine clay soils have tendency to crack. In order to improve the flexural strength and brittleness, a technique of mixing short fibers is introduced to the soil lime mixture. Coir fiber was used in this study as reinforcing elements. An experimental investigation consisting primarily of flexural tensile tests was conducted to examine the influence of coir fibers on the flexural behaviour of the reinforced soils. The test results demonstrated that the coir fibers were effective in improving the flexural strength and young’s modulus of all soils were examined and ductility after peak strength for reinforced marine clay soil was treated by lime. 5% lime treated soil and 1% coir fiber reinforced soil specimen’s demonstrated good strength and durability when submerged in water and retained 45% of their air-cured strengths.Keywords: flexural strength, durabilty, lime, coir fibers, bending force, ductility
Procedia PDF Downloads 4663382 Hardware Implementation for the Contact Force Reconstruction in Tactile Sensor Arrays
Authors: María-Luisa Pinto-Salamanca, Wilson-Javier Pérez-Holguín
Abstract:
Reconstruction of contact forces is a fundamental technique for analyzing the properties of a touched object and is essential for regulating the grip force in slip control loops. This is based on the processing of the distribution, intensity, and direction of the forces during the capture of the sensors. Currently, efficient hardware alternatives have been used more frequently in different fields of application, allowing the implementation of computationally complex algorithms, as is the case with tactile signal processing. The use of hardware for smart tactile sensing systems is a research area that promises to improve the processing time and portability requirements of applications such as artificial skin and robotics, among others. The literature review shows that hardware implementations are present today in almost all stages of smart tactile detection systems except in the force reconstruction process, a stage in which they have been less applied. This work presents a hardware implementation of a model-driven reported in the literature for the contact force reconstruction of flat and rigid tactile sensor arrays from normal stress data. From the analysis of a software implementation of such a model, this implementation proposes the parallelization of tasks that facilitate the execution of matrix operations and a two-dimensional optimization function to obtain a vector force by each taxel in the array. This work seeks to take advantage of the parallel hardware characteristics of Field Programmable Gate Arrays, FPGAs, and the possibility of applying appropriate techniques for algorithms parallelization using as a guide the rules of generalization, efficiency, and scalability in the tactile decoding process and considering the low latency, low power consumption, and real-time execution as the main parameters of design. The results show a maximum estimation error of 32% in the tangential forces and 22% in the normal forces with respect to the simulation by the Finite Element Modeling (FEM) technique of Hertzian and non-Hertzian contact events, over sensor arrays of 10×10 taxels of different sizes. The hardware implementation was carried out on an MPSoC XCZU9EG-2FFVB1156 platform of Xilinx® that allows the reconstruction of force vectors following a scalable approach, from the information captured by means of tactile sensor arrays composed of up to 48 × 48 taxels that use various transduction technologies. The proposed implementation demonstrates a reduction in estimation time of x / 180 compared to software implementations. Despite the relatively high values of the estimation errors, the information provided by this implementation on the tangential and normal tractions and the triaxial reconstruction of forces allows to adequately reconstruct the tactile properties of the touched object, which are similar to those obtained in the software implementation and in the two FEM simulations taken as reference. Although errors could be reduced, the proposed implementation is useful for decoding contact forces for portable tactile sensing systems, thus helping to expand electronic skin applications in robotic and biomedical contexts.Keywords: contact forces reconstruction, forces estimation, tactile sensor array, hardware implementation
Procedia PDF Downloads 1953381 Biodiesel Production from Edible Oil Wastewater Sludge with Bioethanol Using Nano-Magnetic Catalysis
Authors: Wighens Ngoie Ilunga, Pamela J. Welz, Olewaseun O. Oyekola, Daniel Ikhu-Omoregbe
Abstract:
Currently, most sludge from the wastewater treatment plants of edible oil factories is disposed to landfills, but landfill sites are finite and potential sources of environmental pollution. Production of biodiesel from wastewater sludge can contribute to energy production and waste minimization. However, conventional biodiesel production is energy and waste intensive. Generally, biodiesel is produced from the transesterification reaction of oils with alcohol (i.e., Methanol, ethanol) in the presence of a catalyst. Homogeneously catalysed transesterification is the conventional approach for large-scale production of biodiesel as reaction times are relatively short. Nevertheless, homogenous catalysis presents several challenges such as high probability of soap. The current study aimed to reuse wastewater sludge from the edible oil industry as a novel feedstock for both monounsaturated fats and bioethanol for the production of biodiesel. Preliminary results have shown that the fatty acid profile of the oilseed wastewater sludge is favourable for biodiesel production with 48% (w/w) monounsaturated fats and that the residue left after the extraction of fats from the sludge contains sufficient fermentable sugars after steam explosion followed by an enzymatic hydrolysis for the successful production of bioethanol [29% (w/w)] using a commercial strain of Saccharomyces cerevisiae. A novel nano-magnetic catalyst was synthesised from mineral processing alkaline tailings, mainly containing dolomite originating from cupriferous ores using a modified sol-gel. The catalyst elemental chemical compositions and structural properties were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infra-red (FTIR) and the BET for the surface area with 14.3 m²/g and 34.1 nm average pore diameter. The mass magnetization of the nano-magnetic catalyst was 170 emu/g. Both the catalytic properties and reusability of the catalyst were investigated. A maximum biodiesel yield of 78% was obtained, which dropped to 52% after the fourth transesterification reaction cycle. The proposed approach has the potential to reduce material costs, energy consumption and water usage associated with conventional biodiesel production technologies. It may also mitigate the impact of conventional biodiesel production on food and land security, while simultaneously reducing waste.Keywords: biodiesel, bioethanol, edible oil wastewater sludge, nano-magnetism
Procedia PDF Downloads 1453380 Prediction of Heavy-Weight Impact Noise and Vibration of Floating Floor Using Modified Impact Spectrum
Authors: Ju-Hyung Kim, Dae-Ho Mun, Hong-Gun Park
Abstract:
When an impact is applied to a floating floor, noise and vibration response of high-frequency range is reduced effectively, while amplifies the response at low-frequency range. This means floating floor can make worse noise condition when heavy-weight impact is applied. The amplified response is the result of interaction between finishing layer (mortar plate) and concrete slab. Because an impact force is not directly delivered to concrete slab, the impact force waveform or spectrum can be changed. In this paper, the changed impact spectrum was derived from several floating floor vibration tests. Based on the measured data, numerical modeling can describe the floating floor response, especially at low-frequency range. As a result, heavy-weight impact noise can be predicted using modified impact spectrum.Keywords: floating floor, heavy-weight impact, prediction, vibration
Procedia PDF Downloads 3723379 A Hybrid Normalized Gradient Correlation Based Thermal Image Registration for Morphoea
Authors: L. I. Izhar, T. Stathaki, K. Howell
Abstract:
Analyzing and interpreting of thermograms have been increasingly employed in the diagnosis and monitoring of diseases thanks to its non-invasive, non-harmful nature and low cost. In this paper, a novel system is proposed to improve diagnosis and monitoring of morphoea skin disorder based on integration with the published lines of Blaschko. In the proposed system, image registration based on global and local registration methods are found inevitable. This paper presents a modified normalized gradient cross-correlation (NGC) method to reduce large geometrical differences between two multimodal images that are represented by smooth gray edge maps is proposed for the global registration approach. This method is improved further by incorporating an iterative-based normalized cross-correlation coefficient (NCC) method. It is found that by replacing the final registration part of the NGC method where translational differences are solved in the spatial Fourier domain with the NCC method performed in the spatial domain, the performance and robustness of the NGC method can be greatly improved. It is shown in this paper that the hybrid NGC method not only outperforms phase correlation (PC) method but also improved misregistration due to translation, suffered by the modified NGC method alone for thermograms with ill-defined jawline. This also demonstrates that by using the gradients of the gray edge maps and a hybrid technique, the performance of the PC based image registration method can be greatly improved.Keywords: Blaschko’s lines, image registration, morphoea, thermal imaging
Procedia PDF Downloads 3103378 Alkaloid Levels in Experimental Lines of Ryegrass in Southtern Chile
Authors: Leonardo Parra, Manuel Chacón-Fuentes, Andrés Quiroz
Abstract:
One of the most important factors in beef and dairy production in the world as well as also in Chile, is related to the correct choice of cultivars or mixtures of forage grasses and legumes to ensure high yields and quality of grassland. However, a great problem is the persistence of the grasses as a result of the action of different hypogeous as epigean pests. The complex insect pests associated with grassland include white grubs (Hylamorpha elegans, Phytoloema herrmanni), blackworm (Dalaca pallens) and Argentine stem weevil (Listronotus bonariensis). In Chile, the principal strategy utilized for controlling this pest is chemical control, through the use of synthetic insecticides, however, underground feeding habits of larval and flight activity of adults makes this uneconomic method. Furthermore, due to problems including environmental degradation, development of resistance and chemical residues, there is a worldwide interest in the use of alternative environmentally friendly pest control methods. In this sense, in recent years there has been an increasing interest in determining the role of endophyte fungi in controlling epigean and hypogeous pest. Endophytes from ryegrass (Lolium perenne), establish a biotrophic relationship with the host, defined as mutualistic symbiosis. The plant-fungi association produces a “cocktail of alkaloids” where peramine is the main toxic substance present in endophyte of ryegrass and responsible for damage reduction of L. bonariensis. In the last decade, few studies have been developed on the effectiveness of new ryegrass cultivars carriers of endophyte in controlling insect pests. Therefore, the aim of this research is to provide knowledge concerning to evaluate the alkaloid content, such as peramine and Lolitrem B, present in new experimental lines of ryegrass and feasible to be used in grasslands of southern Chile. For this, during 2016, ryegrass plants of six experimental lines and two commercial cultivars sown at the Instituto de Investigaciones Agropecuarias Carrillanca (Vilcún, Chile) were collected and subjected to a process of chemical extraction to identify and quantify the presence of peramine and lolitrem B by the technique of liquid chromatography of high resolution (HPLC). The results indicated that the experimental lines EL-1 and EL-3 had high content of peramine (0.25 and 0.43 ppm, respectively) than with lolitrem B (0.061 and 0.19 ppm, respectively). Furthermore, the higher contents of lolitrem B were detected in the EL-4 and commercial cultivar Alto (positive control) with 0.08 and 0.17 ppm, respectively. Peramine and lolitrem B were not detected in the cultivar Jumbo (negative control). These results suggest that EL-3 would have potential as future cultivate because it has high content of peramine, alkaloid responsible for controlling insect pest. However, their current role on the complex insects attacking ryegrass grasslands should be evaluated. The information obtained in this research could be used to improve control strategies against hypogeous and epigean pests of grassland in southern Chile and also to reduce the use of synthetic pesticides.Keywords: HPLC, Lolitrem B, peramine, pest
Procedia PDF Downloads 2423377 Applying Hybrid Graph Drawing and Clustering Methods on Stock Investment Analysis
Authors: Mouataz Zreika, Maria Estela Varua
Abstract:
Stock investment decisions are often made based on current events of the global economy and the analysis of historical data. Conversely, visual representation could assist investors’ gain deeper understanding and better insight on stock market trends more efficiently. The trend analysis is based on long-term data collection. The study adopts a hybrid method that combines the Clustering algorithm and Force-directed algorithm to overcome the scalability problem when visualizing large data. This method exemplifies the potential relationships between each stock, as well as determining the degree of strength and connectivity, which will provide investors another understanding of the stock relationship for reference. Information derived from visualization will also help them make an informed decision. The results of the experiments show that the proposed method is able to produced visualized data aesthetically by providing clearer views for connectivity and edge weights.Keywords: clustering, force-directed, graph drawing, stock investment analysis
Procedia PDF Downloads 3023376 Optimization of Flip Bucket Dents in Order to Reduce Scour Hole Depth (Plunge Pool) Using a Comprehensive Physical Model
Authors: Majid Galoie, Khodadad Safavi, Abdolreza Karami Nejad, Reza Roshan
Abstract:
Scour downstream of a flip bucket in a plunge pool is caused by impingement of water jet force. In order to reduce this force and consequently reduce scour hole depth, flip buckets may equip by dents. The minimum scour hole depth might be occurred by optimization of dents (number, shape, placement) on flip buckets. In this study, a comprehensive physical model has been developed and various options for dents have been investigated. The experimental data for each dent option such as scour hole depth, angle of impingement jet, piezometric pressure in tail-water and jet trajectory have been measured for various discharges. Finally, the best option can be found by analysis of the experimental results which has been expressed in this paper.Keywords: scouring process, plunge pool, scour hole depth, physical model, flip bucket
Procedia PDF Downloads 3943375 Enhancing of Antibacterial Activity of Essential Oil by Rotating Magnetic Field
Authors: Tomasz Borowski, Dawid Sołoducha, Agata Markowska-Szczupak, Aneta Wesołowska, Marian Kordas, Rafał Rakoczy
Abstract:
Essential oils (EOs) are fragrant volatile oils obtained from plants. These are used for cooking (for flavor and aroma), cleaning, beauty (e.g., rosemary essential oil is used to promote hair growth), health (e.g. thyme essential oil cures arthritis, normalizes blood pressure, reduces stress on the heart, cures chest infection and cough) and in the food industry as preservatives and antioxidants. Rosemary and thyme essential oils are considered the most eminent herbs based on their history and medicinal properties. They possess a wide range of activity against different types of bacteria and fungi compared with the other oils in both in vitro and in vivo studies. However, traditional uses of EOs are limited due to rosemary and thyme oils in high concentrations can be toxic. In light of the accessible data, the following hypothesis was put forward: Low frequency rotating magnetic field (RMF) increases the antimicrobial potential of EOs. The aim of this work was to investigate the antimicrobial activity of commercial Salvia Rosmarinus L. and Thymus vulgaris L. essential oil from Polish company Avicenna-Oil under Rotating Magnetic Field (RMF) at f = 25 Hz. The self-constructed reactor (MAP) was applied for this study. The chemical composition of oils was determined by gas chromatography coupled with mass spectrometry (GC-MS). Model bacteria Escherichia coli K12 (ATCC 25922) was used. Minimum inhibitory concentrations (MIC) against E. coli were determined for the essential oils. Tested oils in very small concentrations were prepared (from 1 to 3 drops of essential oils per 3 mL working suspensions). From the results of disc diffusion assay and MIC tests, it can be concluded that thyme oil had the highest antibacterial activity against E. coli. Moreover, the study indicates the exposition to the RMF, as compared to the unexposed controls causing an increase in the efficacy of antibacterial properties of tested oils. The extended radiation exposure to RMF at the frequency f= 25 Hz beyond 160 minutes resulted in a significant increase in antibacterial potential against E. coli. Bacteria were killed within 40 minutes in thyme oil in lower tested concentration (1 drop of essential oils per 3 mL working suspension). Rapid decrease (>3 log) of bacteria number was observed with rosemary oil within 100 minutes (in concentration 3 drops of essential oils per 3 mL working suspension). Thus, a method for improving the antimicrobial performance of essential oil in low concentrations was developed. However, it still remains to be investigated how bacteria get killed by the EOs treated by an electromagnetic field. The possible mechanisms relies on alteration in the permeability of ionic channels in ionic channels in the bacterial cell walls that transport in the cells was proposed. For further studies, it is proposed to examine other types of essential oils and other antibiotic-resistant bacteria (ARB), which are causing a serious concern throughout the world.Keywords: rotating magnetic field, rosemary, thyme, essential oils, Escherichia coli
Procedia PDF Downloads 1563374 Descriptive Analysis of the Relationship between State and Civil Society in Hegel's Political Thought
Authors: Garineh Keshishyan Siraki
Abstract:
Civil society is one of the most important concepts of the twentieth century and even so far. Modern and postmodern thinkers have provided different definitions of civil society. Of course, the concept of civil society has undergone many changes over time. The relationship between government and civil society is one of the relationships that attracted the attention of many contemporary thinkers. Hegel, the thinker we discussed in this article also explores the relationship between these concepts and emphasizing the dialectical method, he has drawn three lines between family, state, and civil society. In Hegel's view, the creation of civil society will lead to a reduction of social conflict and increased social cohesion. The importance of the issue is due to the study of social cohesion and the ways to increase it. The importance of the issue is due to the study of social cohesion and the ways to increase it. This paper, which uses a descriptive-analytic method to examine Hegel's dialectical theory of civil society, after examining the relationship between the family and the state and finding the concept of civil society as the interface and the interconnected circle of these two, investigates tripartite economic, legal, and pluralistic systems. In this article, after examining the concepts of the market, the right and duty, the individual interests and the development of the exchange economy, Hegel's view is to examine the concept of freedom and its relation with civil society. The results of this survey show that, in Hegel's thought, the separation between the political system and the social system is a natural and necessary thing. In Hegel's view, because of those who are in society, they have selfish features; the community is in tension and contradiction. Therefore, the social realms within which conflicts emerge must be identified and controlled by specific mechanisms. It can also be concluded that the government can act to reduce social conflicts by legislating, using force or forming trade unions. The bottom line is that Hegel wants to reconcile between the individual, the state and civil society and it is not possible to rely on ethics.Keywords: civil society, cohesion system, economic system, family, the legal system, state
Procedia PDF Downloads 1983373 Best Practices and Recommendations for CFD Simulation of Hydraulic Spool Valves
Authors: Jérémy Philippe, Lucien Baldas, Batoul Attar, Jean-Charles Mare
Abstract:
The proposed communication deals with the research and development of a rotary direct-drive servo valve for aerospace applications. A key challenge of the project is to downsize the electromagnetic torque motor by reducing the torque required to drive the rotary spool. It is intended to optimize the spool and the sleeve geometries by combining a Computational Fluid Dynamics (CFD) approach with commercial optimization software. The present communication addresses an important phase of the project, which consists firstly of gaining confidence in the simulation results. It is well known that the force needed to pilot a sliding spool valve comes from several physical effects: hydraulic forces, friction and inertia/mass of the moving assembly. Among them, the flow force is usually a major contributor to the steady-state (or Root Mean Square) driving torque. In recent decades, CFD has gradually become a standard simulation tool for studying fluid-structure interactions. However, in the particular case of high-pressure valve design, the authors have experienced that the calculated overall hydraulic force depends on the parameterization and options used to build and run the CFD model. To solve this issue, the authors have selected the standard case of the linear spool valve, which is addressed in detail in numerous scientific references (analytical models, experiments, CFD simulations). The first CFD simulations run by the authors have shown that the evolution of the equivalent discharge coefficient vs. Reynolds number at the metering orifice corresponds well to the values that can be predicted by the classical analytical models. Oppositely, the simulated flow force was found to be quite different from the value calculated analytically. This drove the authors to investigate minutely the influence of the studied domain and the setting of the CFD simulation. It was firstly shown that the flow recirculates in the inlet and outlet channels if their length is not sufficient regarding their hydraulic diameter. The dead volume on the uncontrolled orifice side also plays a significant role. These examples highlight the influence of the geometry of the fluid domain considered. The second action was to investigate the influence of the type of mesh, the turbulence models and near-wall approaches, and the numerical solver and discretization scheme order. Two approaches were used to determine the overall hydraulic force acting on the moving spool. First, the force was deduced from the momentum balance on a control domain delimited by the valve inlet and outlet and the spool walls. Second, the overall hydraulic force was calculated from the integral of pressure and shear forces acting at the boundaries of the fluid domain. This underlined the significant contribution of the viscous forces acting on the spool between the inlet and outlet orifices, which are generally not considered in the literature. This also emphasized the influence of the choices made for the implementation of CFD calculation and results analysis. With the step-by-step process adopted to increase confidence in the CFD simulations, the authors propose a set of best practices and recommendations for the efficient use of CFD to design high-pressure spool valves.Keywords: computational fluid dynamics, hydraulic forces, servovalve, rotary servovalve
Procedia PDF Downloads 433372 Effects of Matrix Properties on Surfactant Enhanced Oil Recovery in Fractured Reservoirs
Authors: Xiaoqian Cheng, Jon Kleppe, Ole Torsæter
Abstract:
The properties of rocks have effects on efficiency of surfactant. One objective of this study is to analyze the effects of rock properties (permeability, porosity, initial water saturation) on surfactant spontaneous imbibition at laboratory scale. The other objective is to evaluate existing upscaling methods and establish a modified upscaling method. A core is put in a container that is full of surfactant solution. Assume there is no space between the bottom of the core and the container. The core is modelled as a cuboid matrix with a length of 3.5 cm, a width of 3.5 cm, and a height of 5 cm. The initial matrix, brine and oil properties are set as the properties of Ekofisk Field. The simulation results of matrix permeability show that the oil recovery rate has a strong positive linear relationship with matrix permeability. Higher oil recovery is obtained from the matrix with higher permeability. One existing upscaling method is verified by this model. The study on matrix porosity shows that the relationship between oil recovery rate and matrix porosity is a negative power function. However, the relationship between ultimate oil recovery and matrix porosity is a positive power function. The initial water saturation of matrix has negative linear relationships with ultimate oil recovery and enhanced oil recovery. However, the relationship between oil recovery and initial water saturation is more complicated with the imbibition time because of the transition of dominating force from capillary force to gravity force. Modified upscaling methods are established. The work here could be used as a reference for the surfactant application in fractured reservoirs. And the description of the relationships between properties of matrix and the oil recovery rate and ultimate oil recovery helps to improve upscaling methods.Keywords: initial water saturation, permeability, porosity, surfactant EOR
Procedia PDF Downloads 1623371 Electrical Properties of Cement-Based Piezoelectric Nanoparticles
Authors: Moustafa Shawkey, Ahmed G. El-Deen, H. M. Mahmoud, M. M. Rashad
Abstract:
Piezoelectric based cement nanocomposite is a promising technology for generating an electric charge upon mechanical stress of concrete structure. Moreover, piezoelectric nanomaterials play a vital role for providing accurate system of structural health monitoring (SHM) of the concrete structure. In light of increasing awareness of environmental protection and energy crises, generating renewable and green energy form cement based on piezoelectric nanomaterials attracts the attention of the researchers. Herein, we introduce a facial synthesis for bismuth ferrite nanoparticles (BiFeO3 NPs) as piezoelectric nanomaterial via sol gel strategy. The fabricated piezoelectric nanoparticles are uniformly distributed to cement-based nanomaterials with different ratios. The morphological shape was characterized by field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HR-TEM) as well as the crystal structure has been confirmed using X-ray diffraction (XRD). The ferroelectric and magnetic behaviours of BiFeO3 NPs have been investigated. Then, dielectric constant for the prepared cement samples nanocomposites (εr) is calculated. Intercalating BiFeO3 NPs into cement materials achieved remarkable results as piezoelectric cement materials, distinct enhancement in ferroelectric and magnetic properties. Overall, this present study introduces an effective approach to improve the electrical properties based cement applications.Keywords: piezoelectric nanomaterials, cement technology, bismuth ferrite nanoparticles, dielectric
Procedia PDF Downloads 2483370 An Approach to Low Velocity Impact Damage Modelling of Variable Stiffness Curved Composite Plates
Authors: Buddhi Arachchige, Hessam Ghasemnejad
Abstract:
In this study, the post impact behavior of curved composite plates subjected to low velocity impact was studied analytically and numerically. Approaches to damage modelling are proposed through the degradation of stiffness in the damaged region by reduction of thickness in the damage region. Spring-mass models were used to model the impact response of the plate and impactor. The study involved designing two damage models to compare and contrast the model best fitted with the numerical results. The theoretical force-time responses were compared with the numerical results obtained through a detailed study carried out in LS-DYNA. The modified damage model established a good prediction with the analytical force-time response for different layups and geometry. This study provides a gateway in selecting the most effective layups for variable stiffness curved composite panels able to withstand a higher impact damage.Keywords: analytical modelling, composite damage, impact, variable stiffness
Procedia PDF Downloads 2773369 Influence of Kinematic, Physical and Mechanical Structure Parameters on Aeroelastic GTU Shaft Vibrations in Magnetic Bearings
Authors: Evgeniia V. Mekhonoshina, Vladimir Ya. Modorskii, Vasilii Yu. Petrov
Abstract:
At present, vibrations of rotors of gas transmittal unit evade sustainable forecasting. This paper describes elastic oscillation modes in resilient supports and rotor impellers modeled during computational experiments with regard to interference in the system of gas-dynamic flow and compressor rotor. Verification of aeroelastic approach was done on model problem of interaction between supersonic jet in shock tube with deformed plate. ANSYS 15.0 engineering analysis system was used as a modeling tool of numerical simulation in this paper. Finite volume method for gas dynamics and finite elements method for assessment of the strain stress state (SSS) components were used as research methods. Rotation speed and material’s elasticity modulus varied during calculations, and SSS components and gas-dynamic parameters in the dynamic system of gas-dynamic flow and compressor rotor were evaluated. The analysis of time dependence demonstrated that gas-dynamic parameters near the rotor blades oscillate at 200 Hz, and SSS parameters at the upper blade edge oscillate four times higher, i.e. with blade frequency. It has been detected that vibration amplitudes correction in the test points at magnetic bearings by aeroelasticity may correspond up to 50%, and about -π/4 for phases.Keywords: Centrifugal compressor, aeroelasticity, interdisciplinary calculation, oscillation phase displacement, vibration, nonstationarity
Procedia PDF Downloads 2583368 Investigating the Sloshing Characteristics of a Liquid by Using an Image Processing Method
Authors: Ufuk Tosun, Reza Aghazadeh, Mehmet Bülent Özer
Abstract:
This study puts forward a method to analyze the sloshing characteristics of liquid in a tuned sloshing absorber system by using image processing tools. Tuned sloshing vibration absorbers have recently attracted researchers’ attention as a seismic load damper in constructions due to its practical and logistical convenience. The absorber is liquid which sloshes and applies a force in opposite phase to the motion of structure. Experimentally characterization of the sloshing behavior can be utilized as means of verifying the results of numerical analysis. It can also be used to identify the accuracy of assumptions related to the motion of the liquid. There are extensive theoretical and experimental studies in the literature related to the dynamical and structural behavior of tuned sloshing dampers. In most of these works there are efforts to estimate the sloshing behavior of the liquid such as free surface motion and total force applied by liquid to the wall of container. For these purposes the use of sensors such as load cells and ultrasonic sensors are prevalent in experimental works. Load cells are only capable of measuring the force and requires conducting tests both with and without liquid to obtain pure sloshing force. Ultrasonic level sensors give point-wise measurements and hence they are not applicable to measure the whole free surface motion. Furthermore, in the case of liquid splashing it may give incorrect data. In this work a method for evaluating the sloshing wave height by using camera records and image processing techniques is presented. In this method the motion of the liquid and its container, made of a transparent material, is recorded by a high speed camera which is aligned to the free surface of the liquid. The video captured by the camera is processed frame by frame by using MATLAB Image Processing toolbox. The process starts with cropping the desired region. By recognizing the regions containing liquid and eliminating noise and liquid splashing, the final picture depicting the free surface of liquid is achieved. This picture then is used to obtain the height of the liquid through the length of container. This process is verified by ultrasonic sensors that measured fluid height on the surface of liquid.Keywords: fluid structure interaction, image processing, sloshing, tuned liquid damper
Procedia PDF Downloads 3443367 Viability of Slab Sliding System for Single Story Structure
Authors: C. Iihoshi, G. A. MacRae, G. W. Rodgers, J. G. Chase
Abstract:
Slab Sliding System (SSS) with Coulomb friction interface between slab and supporting frame is a passive structural vibration control technology. The system can significantly reduce the slab acceleration and accompanied lateral force of the frame. At the same time it is expected to cause the slab displacement magnification by sliding movement. To obtain the general comprehensive seismic response of a single story structure, inelastic response spectra were computed for a large ensemble of ground motions and a practical range of structural periods and friction coefficient values. It was shown that long period structures have no trade-off relation between force reduction and displacement magnification with respect to elastic response, unlike short period structures. For structures with the majority of mass in the slab, the displacement magnification value can be predicted according to simple inelastic displacement relation for in elastically responding SDOF structures because the system behaves elastically to a SDOF structure.Keywords: earthquake, isolation, slab, sliding
Procedia PDF Downloads 2493366 Caped Intervention: A Single Country Comparative Study of the Role of Russia in Its Involvement in the Crimean Crisis 2014
Authors: Katrina Angeline Santos, Francis Mark Fernandez, Francheska Esmao
Abstract:
Intervention is defined as a forcible interference by a state or states with power in the affairs of another state using force or the threat of force. On the other hand, a military intervention is an intervention, specifically used to define an intervention which uses force. With these, the authors realized a lack in the concept of intervention wherein it is an invited one.The authors wrote this paper to introduce a concept of intervention wherein the intervening state is offering assistance to the state in crisis which asked for one. The authors decided to make a contextual description of this phenomenon because of the lack of concepts regarding intervention between the idea of a single state performing a ‘heroic’ role of intervening in the crisis of another state. The problem that the authors would like to address is regarding the lack of availability in the concept of intervention wherein the state in crisis is seeking the assistance of another state. The authors utilized a contextual description approach to the study through the descriptive presentation of the series of events, by utilizing the news articles and news reports published, which happened in Ukraine and Crimea. This concept is further demonstrated through the utilization of a conceptual framework which shows the mutual relationship between the states. From the analysis of the behavior of Russia and its role in the Crimean Crisis 2014, the authors are able to coin the term, 'Caped Intervention' to describe an intervention of a state as a response to the invitation of assistance of a state in crisis in order for them to achieve their goals. This concept entails a mutual relationship between an intervening state and a sate in crisis. The concept of Caped Intervention describes the role of Russia as a Caped State or an intervening state observed through its action towards Crimea. This concept will help in the observation of the behavior of actors or states in events such as this. It will further help in analyzing the actors’ role in intervention by making it possible to classify the intervening acts into another concept.Keywords: assistance, caped intervention, crisis, heroic
Procedia PDF Downloads 3123365 Mathematical Properties of the Resonance of the Inner Waves in Rotating Stratified Three-Dimensional Fluids
Authors: A. Giniatoulline
Abstract:
We consider the internal oscillations of the ocean which are caused by the gravity force and the Coriolis force, for different models with changeable density, heat transfer, and salinity. Traditionally, the mathematical description of the resonance effect is related to the growing amplitude as a result of input vibrations. We offer a different approach: the study of the relation between the spectrum of the internal oscillations and the properties of the limiting amplitude of the solution for the harmonic input vibrations of the external forces. Using the results of the spectral theory of self-adjoint operators in Hilbert functional spaces, we prove that there exists an explicit relation between the localization of the frequency of the external input vibrations with respect to the essential spectrum of proper inner oscillations and the non-uniqueness of the limiting amplitude. The results may find their application in various problems concerning mathematical modeling of turbulent flows in the ocean.Keywords: computational fluid dynamics, essential spectrum, limiting amplitude, rotating fluid, spectral theory, stratified fluid, the uniqueness of solutions of PDE equations
Procedia PDF Downloads 2583364 Effect of Laminating Sequence of MWCNTs and Fe₂O₃ Filled Nanocomposites on Emi Shielding Effectiveness
Authors: Javeria Ahmad, Ayesha Maryam, Zahid Rizwan, Nadeem Nasir, Yasir Nawab, Hafiz Shehbaz Ahmad
Abstract:
Mitigation of electromagnetic interference (EMI) through thin, lightweight, and cost-effective materials is critical for electronic appliances as well as human health. The present research work discusses the design of composites that are suitable to minimize EMI through various stacking sequences. The carbon fibers reinforced composite structures impregnated with dielectric (MWCNTs) and magnetic nanofillers (Fe₂O₃) were developed to investigate their microwave absorption properties. The composite structure comprising a single type of nanofillers, each of MWCNTs & Fe₂O₃, was developed, and then their layers were stacked over each other with various stacking sequences to investigate the best stacking sequence, which presents good microwave absorption characteristics. A vector network analyzer (VNA) was used to analyze the microwave absorption properties of these developed composite structures. The composite structures impregnated with the layers of a dielectric nanofiller and sandwiched between the layers of a magnetic nanofiller show the highest EMI shielding value of 59 dB and a dielectric conductivity of 35 S/cm in the frequency range of 0.1 to 13.6 GHz. The results also demonstrate that the microwave absorption properties of the developed composite structures were dominant over reflection properties. The absence of an external peak in X-ray diffraction (XRD), marked the purity of the added nanofillers.Keywords: nanocomposites, microwave absorption, EMI shielding, skin depth, reflection loss
Procedia PDF Downloads 52