Search results for: error metrices
640 On the Fourth-Order Hybrid Beta Polynomial Kernels in Kernel Density Estimation
Authors: Benson Ade Eniola Afere
Abstract:
This paper introduces a family of fourth-order hybrid beta polynomial kernels developed for statistical analysis. The assessment of these kernels' performance centers on two critical metrics: asymptotic mean integrated squared error (AMISE) and kernel efficiency. Through the utilization of both simulated and real-world datasets, a comprehensive evaluation was conducted, facilitating a thorough comparison with conventional fourth-order polynomial kernels. The evaluation procedure encompassed the computation of AMISE and efficiency values for both the proposed hybrid kernels and the established classical kernels. The consistently observed trend was the superior performance of the hybrid kernels when compared to their classical counterparts. This trend persisted across diverse datasets, underscoring the resilience and efficacy of the hybrid approach. By leveraging these performance metrics and conducting evaluations on both simulated and real-world data, this study furnishes compelling evidence in favour of the superiority of the proposed hybrid beta polynomial kernels. The discernible enhancement in performance, as indicated by lower AMISE values and higher efficiency scores, strongly suggests that the proposed kernels offer heightened suitability for statistical analysis tasks when compared to traditional kernels.Keywords: AMISE, efficiency, fourth-order Kernels, hybrid Kernels, Kernel density estimation
Procedia PDF Downloads 70639 Radial Distortion Correction Based on the Concept of Verifying the Planarity of a Specimen
Authors: Shih-Heng Tung, Ming-Hsiang Shih, Wen-Pei Sung
Abstract:
Because of the rapid development of digital camera and computer, digital image correlation method has drawn lots of attention recently and has been applied to a variety of fields. However, the image distortion is inevitable when the image is captured through a lens. This image distortion problem can result in an innegligible error while using digital image correlation method. There are already many different ways to correct the image distortion, and most of them require specific image patterns or precise control points. A new distortion correction method is proposed in this study. The proposed method is based on the fact that a flat surface should keep flat when it is measured using three-dimensional (3D) digital image measurement technique. Lens distortion can be divided into radial distortion, decentering distortion and thin prism distortion. Because radial distortion has a more noticeable influence than the other types of distortions, this method deals only with radial distortion. The simplified 3D digital image measurement technique is adopted to measure the surface coordinates of a flat specimen. Then the gradient method is applied to find the best correction parameters. A few experiments are carried out in this study to verify the correctness of this method. The results show that this method can achieve a good accuracy and it is suitable for both large and small distortion conditions. The most important advantage is that it requires neither mark with specific pattern nor precise control points.Keywords: 3D DIC, radial distortion, distortion correction, planarity
Procedia PDF Downloads 551638 Evaluation of Spatial Distribution Prediction for Site-Scale Soil Contaminants Based on Partition Interpolation
Authors: Pengwei Qiao, Sucai Yang, Wenxia Wei
Abstract:
Soil pollution has become an important issue in China. Accurate spatial distribution prediction of pollutants with interpolation methods is the basis for soil remediation in the site. However, a relatively strong variability of pollutants would decrease the prediction accuracy. Theoretically, partition interpolation can result in accurate prediction results. In order to verify the applicability of partition interpolation for a site, benzo (b) fluoranthene (BbF) in four soil layers was adopted as the research object in this paper. IDW (inverse distance weighting)-, RBF (radial basis function)-and OK (ordinary kriging)-based partition interpolation accuracies were evaluated, and their influential factors were analyzed; then, the uncertainty and applicability of partition interpolation were determined. Three conclusions were drawn. (1) The prediction error of partitioned interpolation decreased by 70% compared to unpartitioned interpolation. (2) Partition interpolation reduced the impact of high CV (coefficient of variation) and high concentration value on the prediction accuracy. (3) The prediction accuracy of IDW-based partition interpolation was higher than that of RBF- and OK-based partition interpolation, and it was suitable for the identification of highly polluted areas at a contaminated site. These results provide a useful method to obtain relatively accurate spatial distribution information of pollutants and to identify highly polluted areas, which is important for soil pollution remediation in the site.Keywords: accuracy, applicability, partition interpolation, site, soil pollution, uncertainty
Procedia PDF Downloads 146637 An Approach for Detection Efficiency Determination of High Purity Germanium Detector Using Cesium-137
Authors: Abdulsalam M. Alhawsawi
Abstract:
Estimation of a radiation detector's efficiency plays a significant role in calculating the activity of radioactive samples. Detector efficiency is measured using sources that emit a variety of energies from low to high-energy photons along the energy spectrum. Some photon energies are hard to find in lab settings either because check sources are hard to obtain or the sources have short half-lives. This work aims to develop a method to determine the efficiency of a High Purity Germanium Detector (HPGe) based on the 662 keV gamma ray photon emitted from Cs-137. Cesium-137 is readily available in most labs with radiation detection and health physics applications and has a long half-life of ~30 years. Several photon efficiencies were calculated using the MCNP5 simulation code. The simulated efficiency of the 662 keV photon was used as a base to calculate other photon efficiencies in a point source and a Marinelli Beaker form. In the Marinelli Beaker filled with water case, the efficiency of the 59 keV low energy photons from Am-241 was estimated with a 9% error compared to the MCNP5 simulated efficiency. The 1.17 and 1.33 MeV high energy photons emitted by Co-60 had errors of 4% and 5%, respectively. The estimated errors are considered acceptable in calculating the activity of unknown samples as they fall within the 95% confidence level.Keywords: MCNP5, MonteCarlo simulations, efficiency calculation, absolute efficiency, activity estimation, Cs-137
Procedia PDF Downloads 117636 Improving the Run Times of Existing and Historical Demand Models Using Simple Python Scripting
Authors: Abhijeet Ostawal, Parmjit Lall
Abstract:
The run times for a large strategic model that we were managing had become too long leading to delays in project delivery, increased costs and loss in productivity. Software developers are continuously working towards developing more efficient tools by changing their algorithms and processes. The issue faced by our team was how do you apply the latest technologies on validated existing models which are based on much older versions of software that do not have the latest software capabilities. The multi-model transport model that we had could only be run in sequential assignment order. Recent upgrades to the software now allowed the assignment to be run in parallel, a concept called parallelization. Parallelization is a Python script working only within the latest version of the software. A full model transfer to the latest version was not possible due to time, budget and the potential changes in trip assignment. This article is to show the method to adapt and update the Python script in such a way that it can be used in older software versions by calling the latest version and then recalling the old version for assignment model without affecting the results. Through a process of trial-and-error run time savings of up to 30-40% have been achieved. Assignment results were maintained within the older version and through this learning process we’ve applied this methodology to other even older versions of the software resulting in huge time savings, more productivity and efficiency for both client and consultant.Keywords: model run time, demand model, parallelisation, python scripting
Procedia PDF Downloads 119635 Performance Evaluation of Wideband Code Division Multiplication Network
Authors: Osama Abdallah Mohammed Enan, Amin Babiker A/Nabi Mustafa
Abstract:
The aim of this study is to evaluate and analyze different parameters of WCDMA (wideband code division multiplication). Moreover, this study also incorporates brief yet throughout analysis of WCDMA’s components as well as its internal architecture. This study also examines different power controls. These power controls may include open loop power control, closed or inner group loop power control and outer loop power control. Different handover techniques or methods of WCDMA are also illustrated in this study. These handovers may include hard handover, inter system handover and soft and softer handover. Different duplexing techniques are also described in the paper. This study has also presented an idea about different parameters of WCDMA that leads the system towards QoS issues. This may help the operator in designing and developing adequate network configuration. In addition to this, the study has also investigated various parameters including Bit Energy per Noise Spectral Density (Eb/No), Noise rise, and Bit Error Rate (BER). After simulating these parameters, using MATLAB environment, it was investigated that, for a given Eb/No value the system capacity increase by increasing the reuse factor. Besides that, it was also analyzed that, noise rise is decreasing for lower data rates and for lower interference levels. Finally, it was examined that, BER increase by using one type of modulation technique than using other type of modulation technique.Keywords: duplexing, handover, loop power control, WCDMA
Procedia PDF Downloads 216634 Establishing Econometric Modeling Equations for Lumpy Skin Disease Outbreaks in the Nile Delta of Egypt under Current Climate Conditions
Authors: Abdelgawad, Salah El-Tahawy
Abstract:
This paper aimed to establish econometrical equation models for the Nile delta region in Egypt, which will represent a basement for future predictions of Lumpy skin disease outbreaks and its pathway in relation to climate change. Data of lumpy skin disease (LSD) outbreaks were collected from the cattle farms located in the provinces representing the Nile delta region during 1 January, 2015 to December, 2015. The obtained results indicated that there was a significant association between the degree of the LSD outbreaks and the investigated climate factors (temperature, wind speed, and humidity) and the outbreaks peaked during the months of June, July, and August and gradually decreased to the lowest rate in January, February, and December. The model obtained depicted that the increment of these climate factors were associated with evidently increment on LSD outbreaks on the Nile Delta of Egypt. The model validation process was done by the root mean square error (RMSE) and means bias (MB) which compared the number of LSD outbreaks expected with the number of observed outbreaks and estimated the confidence level of the model. The value of RMSE was 1.38% and MB was 99.50% confirming that this established model described the current association between the LSD outbreaks and the change on climate factors and also can be used as a base for predicting the of LSD outbreaks depending on the climatic change on the future.Keywords: LSD, climate factors, Nile delta, modeling
Procedia PDF Downloads 290633 Evolution of Design through Documentation of Architecture Design Processes
Authors: Maniyarasan Rajendran
Abstract:
Every design has a process, and every architect deals in the ways best known to them. The design translation from the concept to completion change in accordance with their design philosophies, their tools, availability of resources, and at times the clients and the context of the design as well. The approach to understanding the design process requires formalisation of the design intents. The design process is characterised by change, with the time and the technology. The design flow is just indicative and never exhaustive. The knowledge and experience of stakeholders remain limited to the part they played in the project, and their ability to remember, and is through the Photographs. These artefacts, when circulated can hardly tell what the project is. They can never tell the narrative behind. In due course, the design processes are lost. The Design junctions are lost in the journey. Photographs acted as major source materials, along with its importance in architectural revivalism in the 19th century. From the history, we understand that it has been photographs, that act as the dominant source of evidence. The idea of recording is also followed with the idea of getting inspired from the records and documents. The design concept, the architectural firms’ philosophies, the materials used, the special needs, the numerous ‘Trial-and-error’ methods, design methodology, experience of failures and success levels, and the knowledge acquired, etc., and the various other aspects and methods go through in every project, and they deserve/ought to be recorded. The knowledge can be preserved and passed through generations, by documenting the design processes involved. This paper explores the idea of a process documentation as a tool of self-reflection, creation of architectural firm’ repository, and these implications proceed with the design evolution of the team.Keywords: architecture, design, documentation, records
Procedia PDF Downloads 369632 Computational Prediction of the Effect of S477N Mutation on the RBD Binding Affinity and Structural Characteristic, A Molecular Dynamics Study
Authors: Mohammad Hossein Modarressi, Mozhgan Mondeali, Khabat Barkhordari, Ali Etemadi
Abstract:
The COVID-19 pandemic, caused by SARS-CoV-2, has led to significant concerns worldwide due to its catastrophic effects on public health. The SARS-CoV-2 infection is initiated with the binding of the receptor-binding domain (RBD) in its spike protein to the ACE2 receptor in the host cell membrane. Due to the error-prone entity of the viral RNA-dependent polymerase complex, the virus genome, including the coding region for the RBD, acquires new mutations, leading to the appearance of multiple variants. These variants can potentially impact transmission, virulence, antigenicity and evasive immune properties. S477N mutation located in the RBD has been observed in the SARS-CoV-2 omicron (B.1.1. 529) variant. In this study, we investigated the consequences of S477N mutation at the molecular level using computational approaches such as molecular dynamics simulation, protein-protein interaction analysis, immunoinformatics and free energy computation. We showed that displacement of Ser with Asn increases the stability of the spike protein and its affinity to ACE2 and thus increases the transmission potential of the virus. This mutation changes the folding and secondary structure of the spike protein. Also, it reduces antibody neutralization, raising concern about re-infection, vaccine breakthrough and therapeutic values.Keywords: S477N, COVID-19, molecular dynamic, SARS-COV2 mutations
Procedia PDF Downloads 177631 Modelling Mode Choice Behaviour Using Cloud Theory
Authors: Leah Wright, Trevor Townsend
Abstract:
Mode choice models are crucial instruments in the analysis of travel behaviour. These models show the relationship between an individual’s choice of transportation mode for a given O-D pair and the individual’s socioeconomic characteristics such as household size and income level, age and/or gender, and the features of the transportation system. The most popular functional forms of these models are based on Utility-Based Choice Theory, which addresses the uncertainty in the decision-making process with the use of an error term. However, with the development of artificial intelligence, many researchers have started to take a different approach to travel demand modelling. In recent times, researchers have looked at using neural networks, fuzzy logic and rough set theory to develop improved mode choice formulas. The concept of cloud theory has recently been introduced to model decision-making under uncertainty. Unlike the previously mentioned theories, cloud theory recognises a relationship between randomness and fuzziness, two of the most common types of uncertainty. This research aims to investigate the use of cloud theory in mode choice models. This paper highlights the conceptual framework of the mode choice model using cloud theory. Merging decision-making under uncertainty and mode choice models is state of the art. The cloud theory model is expected to address the issues and concerns with the nested logit and improve the design of mode choice models and their use in travel demand.Keywords: Cloud theory, decision-making, mode choice models, travel behaviour, uncertainty
Procedia PDF Downloads 389630 4-DOFs Parallel Mechanism for Minimally Invasive Robotic Surgery
Authors: Khalil Ibrahim, Ahmed Ramadan, Mohamed Fanni, Yo Kobayashi, Ahmed Abo-Ismail, Masakatus G. Fujie
Abstract:
This paper deals with the design process and the dynamic control simulation of a new type of 4-DOFs parallel mechanism that can be used as an endoscopic surgical manipulator. The proposed mechanism, 2-PUU_2-PUS, is designed based on the screw theory and the parallel virtual chain type synthesis method. Based on the structure analysis of the 4-DOF parallel mechanism, the inverse position equation is studied using the inverse analysis theory of kinematics. The design and the stress analysis of the mechanism are investigated using SolidWorks software. The virtual prototype of the parallel mechanism is constructed, and the dynamic simulation is performed using ADAMS TM software. The system model utilizing PID and PI controllers has been built using MATLAB software. A more realistic simulation in accordance with a given bending angle and point to point control is implemented by the use of both ADAMS/MATLAB software. The simulation results showed that this control method has solved the coordinate control for the 4-DOF parallel manipulator so that each output is feedback to the four driving rods. From the results, the tracking performance is achieved. Other control techniques, such as intelligent ones, are recommended to improve the tracking performance and reduce the numerical truncation error.Keywords: parallel mechanisms, medical robotics, tracjectory control, virtual chain type synthesis method
Procedia PDF Downloads 469629 Surface Flattening Assisted with 3D Mannequin Based on Minimum Energy
Authors: Shih-Wen Hsiao, Rong-Qi Chen, Chien-Yu Lin
Abstract:
The topic of surface flattening plays a vital role in the field of computer aided design and manufacture. Surface flattening enables the production of 2D patterns and it can be used in design and manufacturing for developing a 3D surface to a 2D platform, especially in fashion design. This study describes surface flattening based on minimum energy methods according to the property of different fabrics. Firstly, through the geometric feature of a 3D surface, the less transformed area can be flattened on a 2D platform by geodesic. Then, strain energy that has accumulated in mesh can be stably released by an approximate implicit method and revised error function. In some cases, cutting mesh to further release the energy is a common way to fix the situation and enhance the accuracy of the surface flattening, and this makes the obtained 2D pattern naturally generate significant cracks. When this methodology is applied to a 3D mannequin constructed with feature lines, it enhances the level of computer-aided fashion design. Besides, when different fabrics are applied to fashion design, it is necessary to revise the shape of a 2D pattern according to the properties of the fabric. With this model, the outline of 2D patterns can be revised by distributing the strain energy with different results according to different fabric properties. Finally, this research uses some common design cases to illustrate and verify the feasibility of this methodology.Keywords: surface flattening, strain energy, minimum energy, approximate implicit method, fashion design
Procedia PDF Downloads 338628 Simulation IDM for Schedule Generation of Slip-Form Operations
Authors: Hesham A. Khalek, Shafik S. Khoury, Remon F. Aziz, Mohamed A. Hakam
Abstract:
Slipforming operation’s linearity is a source of planning complications, and operation is usually subjected to bottlenecks at any point, so careful planning is required in order to achieve success. On the other hand, Discrete-event simulation concepts can be applied to simulate and analyze construction operations and to efficiently support construction scheduling. Nevertheless, preparation of input data for construction simulation is very challenging, time-consuming and human prone-error source. Therefore, to enhance the benefits of using DES in construction scheduling, this study proposes an integrated module to establish a framework for automating the generation of time schedules and decision support for Slipform construction projects, particularly through the project feasibility study phase by using data exchange between project data stored in an Intermediate database, DES and Scheduling software. Using the stored information, proposed system creates construction tasks attribute [e.g. activities durations, material quantities and resources amount], then DES uses all the given information to create a proposal for the construction schedule automatically. This research is considered a demonstration of a flexible Slipform project modeling, rapid scenario-based planning and schedule generation approach that may be of interest to both practitioners and researchers.Keywords: discrete-event simulation, modeling, construction planning, data exchange, scheduling generation, EZstrobe
Procedia PDF Downloads 378627 Open-Loop Vector Control of Induction Motor with Space Vector Pulse Width Modulation Technique
Authors: Karchung, S. Ruangsinchaiwanich
Abstract:
This paper presents open-loop vector control method of induction motor with space vector pulse width modulation (SVPWM) technique. Normally, the closed loop speed control is preferred and is believed to be more accurate. However, it requires a position sensor to track the rotor position which is not desirable to use it for certain workspace applications. This paper exhibits the performance of three-phase induction motor with the simplest control algorithm without the use of a position sensor nor an estimation block to estimate rotor position for sensorless control. The motor stator currents are measured and are transformed to synchronously rotating (d-q-axis) frame by use of Clarke and Park transformation. The actual control happens in this frame where the measured currents are compared with the reference currents. The error signal is fed to a conventional PI controller, and the corrected d-q voltage is generated. The controller outputs are transformed back to three phase voltages and are fed to SVPWM block which generates PWM signal for the voltage source inverter. The open loop vector control model along with SVPWM algorithm is modeled in MATLAB/Simulink software and is experimented and validated in TMS320F28335 DSP board.Keywords: electric drive, induction motor, open-loop vector control, space vector pulse width modulation technique
Procedia PDF Downloads 148626 A Review on Medical Image Registration Techniques
Authors: Shadrack Mambo, Karim Djouani, Yskandar Hamam, Barend van Wyk, Patrick Siarry
Abstract:
This paper discusses the current trends in medical image registration techniques and addresses the need to provide a solid theoretical foundation for research endeavours. Methodological analysis and synthesis of quality literature was done, providing a platform for developing a good foundation for research study in this field which is crucial in understanding the existing levels of knowledge. Research on medical image registration techniques assists clinical and medical practitioners in diagnosis of tumours and lesion in anatomical organs, thereby enhancing fast and accurate curative treatment of patients. Literature review aims to provide a solid theoretical foundation for research endeavours in image registration techniques. Developing a solid foundation for a research study is possible through a methodological analysis and synthesis of existing contributions. Out of these considerations, the aim of this paper is to enhance the scientific community’s understanding of the current status of research in medical image registration techniques and also communicate to them, the contribution of this research in the field of image processing. The gaps identified in current techniques can be closed by use of artificial neural networks that form learning systems designed to minimise error function. The paper also suggests several areas of future research in the image registration.Keywords: image registration techniques, medical images, neural networks, optimisaztion, transformation
Procedia PDF Downloads 179625 Introduction of Integrated Image Deep Learning Solution and How It Brought Laboratorial Level Heart Rate and Blood Oxygen Results to Everyone
Authors: Zhuang Hou, Xiaolei Cao
Abstract:
The general public and medical professionals recognized the importance of accurately measuring and storing blood oxygen levels and heart rate during the COVID-19 pandemic. The demand for accurate contactless devices was motivated by the need for cross-infection reduction and the shortage of conventional oximeters, partially due to the global supply chain issue. This paper evaluated a contactless mini program HealthyPai’s heart rate (HR) and oxygen saturation (SpO2) measurements compared with other wearable devices. In the HR study of 185 samples (81 in the laboratory environment, 104 in the real-life environment), the mean absolute error (MAE) ± standard deviation was 1.4827 ± 1.7452 in the lab, 6.9231 ± 5.6426 in the real-life setting. In the SpO2 study of 24 samples, the MAE ± standard deviation of the measurement was 1.0375 ± 0.7745. Our results validated that HealthyPai utilizing the Integrated Image Deep Learning Solution (IIDLS) framework, can accurately measure HR and SpO2, providing the test quality at least comparable to other FDA-approved wearable devices in the market and surpassing the consumer-grade and research-grade wearable standards.Keywords: remote photoplethysmography, heart rate, oxygen saturation, contactless measurement, mini program
Procedia PDF Downloads 135624 Changing Trends in the Use of Induction Agents for General Anesthesia for Cesarean Section
Authors: Mahmoud Hassanin, Amita Gupta
Abstract:
Background: During current practice, Thiopentone is not cost-effectively added to resources wastage, risk of drug error with antibiotics, short shelf life, infection risk, and risk of delay while preparing during category one cesarean section. There is no significant difference or preference to the other alternative as per current use. Aims and Objectives: Patient safety, Cost-effective use of trust resources, problem awareness, Consider improvising on the current practice. Methods: In conjunction with the local department survey results, many studies support the change. Results: More than 50%(15 from 29) are already using Propofol, more than 75% of the participant are willing to shift to Propofol if it becomes standard, and the cost analysis also revealed that Thiopentone 10 X500=£60 Propofol 10X200= £5.20, Cost of Thiopentone/year =£2190. Approximately GA in a year =35-40 could cost approximately £20 Propofol, given it is a well-established practice. We could save not only money, but it will be environmentally friendly also to avoid adding any carbon footprints. Recommendation: Thiopentone is rarely used as an induction agent for the category one Caesarean section in our obstetric emergency theatres. Most obstetric anesthetists are using Propofol. Keep both Propofol and thiopentone(powder not withdrawn) in the cat one cesarean section emergency drugs tray ready until the department completely changes the practice protocol. A further retrospective study is required to compare the outcomes for these induction agents through the local database.Keywords: thiopentone, propofol, category 1 caesarean, induction agents
Procedia PDF Downloads 143623 Design of an Air and Land Multi-Element Expression Pattern of Navigation Electronic Map for Ground Vehicles under United Navigation Mechanism
Authors: Rui Liu, Pengyu Cui, Nan Jiang
Abstract:
At present, there is much research on the application of centralized management and cross-integration application of basic geographic information. However, the idea of information integration and sharing between land, sea, and air navigation targets is not deeply applied into the research of navigation information service, especially in the information expression. Targeting at this problem, the paper carries out works about the expression pattern of navigation electronic map for ground vehicles under air and land united navigation mechanism. At first, with the support from multi-source information fusion of GIS vector data, RS data, GPS data, etc., an air and land united information expression pattern is designed aiming at specific navigation task of emergency rescue in the earthquake. And then, the characteristics and specifications of the united expression of air and land navigation information under the constraints of map load are summarized and transferred into expression rules in the rule bank. At last, the related navigation experiment is implemented to evaluate the effect of the expression pattern. The experiment selects evaluation factors of the navigation task accomplishment time and the navigation error rate as the main index, and make comparisons with the traditional single information expression pattern. To sum up, the research improved the theory of navigation electronic map and laid a certain foundation for the design and realization of united navigation system in the aspect of real-time navigation information delivery.Keywords: navigation electronic map, united navigation, multi-element expression pattern, multi-source information fusion
Procedia PDF Downloads 202622 Variable vs. Fixed Window Width Code Correlation Reference Waveform Receivers for Multipath Mitigation in Global Navigation Satellite Systems with Binary Offset Carrier and Multiplexed Binary Offset Carrier Signals
Authors: Fahad Alhussein, Huaping Liu
Abstract:
This paper compares the multipath mitigation performance of code correlation reference waveform receivers with variable and fixed window width, for binary offset carrier and multiplexed binary offset carrier signals typically used in global navigation satellite systems. In the variable window width method, such width is iteratively reduced until the distortion on the discriminator with multipath is eliminated. This distortion is measured as the Euclidean distance between the actual discriminator (obtained with the incoming signal), and the local discriminator (generated with a local copy of the signal). The variable window width have shown better performance compared to the fixed window width. In particular, the former yields zero error for all delays for the BOC and MBOC signals considered, while the latter gives rather large nonzero errors for small delays in all cases. Due to its computational simplicity, the variable window width method is perfectly suitable for implementation in low-cost receivers.Keywords: correlation reference waveform receivers, binary offset carrier, multiplexed binary offset carrier, global navigation satellite systems
Procedia PDF Downloads 132621 Using Deep Learning Real-Time Object Detection Convolution Neural Networks for Fast Fruit Recognition in the Tree
Authors: K. Bresilla, L. Manfrini, B. Morandi, A. Boini, G. Perulli, L. C. Grappadelli
Abstract:
Image/video processing for fruit in the tree using hard-coded feature extraction algorithms have shown high accuracy during recent years. While accurate, these approaches even with high-end hardware are computationally intensive and too slow for real-time systems. This paper details the use of deep convolution neural networks (CNNs), specifically an algorithm (YOLO - You Only Look Once) with 24+2 convolution layers. Using deep-learning techniques eliminated the need for hard-code specific features for specific fruit shapes, color and/or other attributes. This CNN is trained on more than 5000 images of apple and pear fruits on 960 cores GPU (Graphical Processing Unit). Testing set showed an accuracy of 90%. After this, trained data were transferred to an embedded device (Raspberry Pi gen.3) with camera for more portability. Based on correlation between number of visible fruits or detected fruits on one frame and the real number of fruits on one tree, a model was created to accommodate this error rate. Speed of processing and detection of the whole platform was higher than 40 frames per second. This speed is fast enough for any grasping/harvesting robotic arm or other real-time applications.Keywords: artificial intelligence, computer vision, deep learning, fruit recognition, harvesting robot, precision agriculture
Procedia PDF Downloads 423620 Prediction of Boundary Shear Stress with Flood Plains Enlargements
Authors: Spandan Sahu, Amiya Kumar Pati, Kishanjit Kumar Khatua
Abstract:
The river is our main source of water which is a form of open channel flow and the flow in the open channel provides with many complex phenomena of sciences that need to be tackled such as the critical flow conditions, boundary shear stress, and depth-averaged velocity. The development of society, more or less solely depends upon the flow of rivers. The rivers are major sources of many sediments and specific ingredients which are much essential for human beings. During floods, part of a river is carried by the simple main channel and rest is carried by flood plains. For such compound asymmetric channels, the flow structure becomes complicated due to momentum exchange between the main channel and adjoining flood plains. Distribution of boundary shear in subsections provides us with the concept of momentum transfer between the interface of the main channel and the flood plains. Experimentally, to get better data with accurate results are very complex because of the complexity of the problem. Hence, CES software has been used to tackle the complex processes to determine the shear stresses at different sections of an open channel having asymmetric flood plains on both sides of the main channel, and the results are compared with the symmetric flood plains for various geometrical shapes and flow conditions. Error analysis is also performed to know the degree of accuracy of the model implemented.Keywords: depth average velocity, non prismatic compound channel, relative flow depth, velocity distribution
Procedia PDF Downloads 177619 Computational Fluid Dynamics Analysis of a Biomass Burner Gas Chamber in OpenFOAM
Authors: Óscar Alfonso Gómez Sepúlveda, Julián Ernesto Jaramillo, Diego Camilo Durán
Abstract:
The global climate crisis has affected different aspects of human life, and in an effort to reverse the effects generated, we seek to optimize and improve the equipment and plants that produce high emissions of CO₂, being possible to achieve this through numerical simulations. These equipments include biomass combustion chambers. The objective of this research is to visualize the thermal behavior of a gas chamber that is used in the process of obtaining vegetable extracts. The simulation is carried out with OpenFOAM taking into account the conservation of energy, turbulence, and radiation; for the purposes of the simulation, combustion is omitted and replaced by heat generation. Within the results, the streamlines generated by the primary and secondary flows are analyzed in order to visualize whether they generate the expected effect, and the energy is used to the maximum. The inclusion of radiation seeks to compare its influence and also simplify the computational times to perform mesh analysis. An analysis is carried out with simplified geometries and with experimental data to corroborate the selection of the models to be used, and it is obtained that for turbulence, the appropriate one is the standard k - w. As a means of verification, a general energy balance is made and compared with the results of the numerical analysis, where the error is 1.67%, which is considered acceptable. From the approach to improvement options, it was found that with the implementation of fins, heat can be increased by up to 7.3%.Keywords: CFD analysis, biomass, heat transfer, radiation, OpenFOAM
Procedia PDF Downloads 118618 Feasibility of Simulating External Vehicle Aerodynamics Using Spalart-Allmaras Turbulence Model with Adjoint Method in OpenFOAM and Fluent
Authors: Arpit Panwar, Arvind Deshpande
Abstract:
The study of external vehicle aerodynamics using Spalart-Allmaras turbulence model with adjoint method was conducted. The accessibility and ease of working with the Fluent module of ANSYS and OpenFOAM were considered. The objective of the study was to understand and analyze the possibility of bringing high-level aerodynamic simulation to the average consumer vehicle. A form-factor of BMW M6 vehicle was designed in Solidworks, which was analyzed in OpenFOAM and Fluent. The turbulence model being a single equation provides much faster convergence rate when clubbed with the adjoint method. Fluent being commercial software still does not allow us to solve Spalart-Allmaras turbulence model using the adjoint method. Hence, the turbulence model was solved using the SIMPLE method in Fluent. OpenFOAM being an open source provide flexibility in simulation but is not user-friendly. It supports solving the defined turbulence model with the adjoint method. The result generated from the simulation gives us acceptable values of drag, when validated with the result of percentage error in drag values for a notch-back vehicle model on an extensive simulation produced at 6th ANSA and μETA conference, Greece. The success of this approach will allow us to bring more aerodynamic vehicle body design to all segments of the automobile and not limiting it to just the high-end sports cars.Keywords: Spalart-Allmaras turbulence model, OpenFOAM, adjoint method, SIMPLE method, vehicle aerodynamic design
Procedia PDF Downloads 201617 Application of ANN for Estimation of Power Demand of Villages in Sulaymaniyah Governorate
Abstract:
Before designing an electrical system, the estimation of load is necessary for unit sizing and demand-generation balancing. The system could be a stand-alone system for a village or grid connected or integrated renewable energy to grid connection, especially as there are non–electrified villages in developing countries. In the classical model, the energy demand was found by estimating the household appliances multiplied with the amount of their rating and the duration of their operation, but in this paper, information exists for electrified villages could be used to predict the demand, as villages almost have the same life style. This paper describes a method used to predict the average energy consumed in each two months for every consumer living in a village by Artificial Neural Network (ANN). The input data are collected using a regional survey for samples of consumers representing typical types of different living, household appliances and energy consumption by a list of information, and the output data are collected from administration office of Piramagrun for each corresponding consumer. The result of this study shows that the average demand for different consumers from four villages in different months throughout the year is approximately 12 kWh/day, this model estimates the average demand/day for every consumer with a mean absolute percent error of 11.8%, and MathWorks software package MATLAB version 7.6.0 that contains and facilitate Neural Network Toolbox was used.Keywords: artificial neural network, load estimation, regional survey, rural electrification
Procedia PDF Downloads 125616 Augmented ADRC for Trajectory Tracking of a Novel Hydraulic Spherical Motion Mechanism
Authors: Bin Bian, Liang Wang
Abstract:
A hydraulic spherical motion mechanism (HSMM) is proposed. Unlike traditional systems using serial or parallel mechanisms for multi-DOF rotations, the HSMM is capable of implementing continuous 2-DOF rotational motions in a single joint without the intermediate transmission mechanisms. It has some advantages of compact structure, low inertia and high stiffness. However, as HSMM is a nonlinear and multivariable system, it is very complicate to realize accuracy control. Therefore, an augmented active disturbance rejection controller (ADRC) is proposed in this paper. Compared with the traditional PD control method, three compensation items, i.e., dynamics compensation term, disturbance compensation term and nonlinear error elimination term, are added into the proposed algorithm to improve the control performance. The ADRC algorithm aims at offsetting the effects of external disturbance and realizing accurate control. Euler angles are applied to describe the orientation of rotor. Lagrange equations are utilized to establish the dynamic model of the HSMM. The stability of this algorithm is validated with detailed derivation. Simulation model is formulated in Matlab/Simulink. The results show that the proposed control algorithm has better competence of trajectory tracking in the presence of uncertainties.Keywords: hydraulic spherical motion mechanism, dynamic model, active disturbance rejection control, trajectory tracking
Procedia PDF Downloads 106615 Downside Risk Analysis of the Nigerian Stock Market: A Value at Risk Approach
Authors: Godwin Chigozie Okpara
Abstract:
This paper using standard GARCH, EGARCH, and TARCH models on day of the week return series (of 246 days) from the Nigerian Stock market estimated the model variants’ VaR. An asymmetric return distribution and fat-tail phenomenon in financial time series were considered by estimating the models with normal, student t and generalized error distributions. The analysis based on Akaike Information Criterion suggests that the EGARCH model with student t innovation distribution can furnish more accurate estimate of VaR. In the light of this, we apply the likelihood ratio tests of proportional failure rates to VaR derived from EGARCH model in order to determine the short and long positions VaR performances. The result shows that as alpha ranges from 0.05 to 0.005 for short positions, the failure rate significantly exceeds the prescribed quintiles while it however shows no significant difference between the failure rate and the prescribed quantiles for long positions. This suggests that investors and portfolio managers in the Nigeria stock market have long trading position or can buy assets with concern on when the asset prices will fall. Precisely, the VaR estimates for the long position range from -4.7% for 95 percent confidence level to -10.3% for 99.5 percent confidence level.Keywords: downside risk, value-at-risk, failure rate, kupiec LR tests, GARCH models
Procedia PDF Downloads 444614 Blind Hybrid ARQ Retransmissions with Different Multiplexing between Time and Frequency for Ultra-Reliable Low-Latency Communications in 5G
Authors: Mohammad Tawhid Kawser, Ishrak Kabir, Sadia Sultana, Tanjim Ahmad
Abstract:
A promising service category of 5G, popularly known as Ultra-Reliable Low-Latency Communications (URLLC), is devoted to providing users with the staunchest fail-safe connections in the splits of a second. The reliability of data transfer, as offered by Hybrid ARQ (HARQ), should be employed as URLLC applications are highly error-sensitive. However, the delay added by HARQ ACK/NACK and retransmissions can degrade performance as URLLC applications are highly delay-sensitive too. To improve latency while maintaining reliability, this paper proposes the use of blind transmissions of redundancy versions exploiting the frequency diversity of wide bandwidth of 5G. The blind HARQ retransmissions proposed so far consider narrow bandwidth cases, for example, dedicated short range communication (DSRC), shared channels for device-to-device (D2D) communication, etc., and thus, do not gain much from the frequency diversity. The proposal also combines blind and ACK/NACK based retransmissions for different multiplexing options between time and frequency depending on the current radio channel quality and stringency of latency requirements. The wide bandwidth of 5G justifies that the proposed blind retransmission, without waiting for ACK/NACK, is not palpably extravagant. A simulation is performed to demonstrate the improvement in latency of the proposed scheme.Keywords: 5G, URLLC, HARQ, latency, frequency diversity
Procedia PDF Downloads 40613 Real-Time Multi-Vehicle Tracking Application at Intersections Based on Feature Selection in Combination with Color Attribution
Authors: Qiang Zhang, Xiaojian Hu
Abstract:
In multi-vehicle tracking, based on feature selection, the tracking system efficiently tracks vehicles in a video with minimal error in combination with color attribution, which focuses on presenting a simple and fast, yet accurate and robust solution to the problem such as inaccurately and untimely responses of statistics-based adaptive traffic control system in the intersection scenario. In this study, a real-time tracking system is proposed for multi-vehicle tracking in the intersection scene. Considering the complexity and application feasibility of the algorithm, in the object detection step, the detection result provided by virtual loops were post-processed and then used as the input for the tracker. For the tracker, lightweight methods were designed to extract and select features and incorporate them into the adaptive color tracking (ACT) framework. And the approbatory online feature selection algorithms are integrated on the mature ACT system with good compatibility. The proposed feature selection methods and multi-vehicle tracking method are evaluated on KITTI datasets and show efficient vehicle tracking performance when compared to the other state-of-the-art approaches in the same category. And the system performs excellently on the video sequences recorded at the intersection. Furthermore, the presented vehicle tracking system is suitable for surveillance applications.Keywords: real-time, multi-vehicle tracking, feature selection, color attribution
Procedia PDF Downloads 163612 Neuron Efficiency in Fluid Dynamics and Prediction of Groundwater Reservoirs'' Properties Using Pattern Recognition
Authors: J. K. Adedeji, S. T. Ijatuyi
Abstract:
The application of neural network using pattern recognition to study the fluid dynamics and predict the groundwater reservoirs properties has been used in this research. The essential of geophysical survey using the manual methods has failed in basement environment, hence the need for an intelligent computing such as predicted from neural network is inevitable. A non-linear neural network with an XOR (exclusive OR) output of 8-bits configuration has been used in this research to predict the nature of groundwater reservoirs and fluid dynamics of a typical basement crystalline rock. The control variables are the apparent resistivity of weathered layer (p1), fractured layer (p2), and the depth (h), while the dependent variable is the flow parameter (F=λ). The algorithm that was used in training the neural network is the back-propagation coded in C++ language with 300 epoch runs. The neural network was very intelligent to map out the flow channels and detect how they behave to form viable storage within the strata. The neural network model showed that an important variable gr (gravitational resistance) can be deduced from the elevation and apparent resistivity pa. The model results from SPSS showed that the coefficients, a, b and c are statistically significant with reduced standard error at 5%.Keywords: gravitational resistance, neural network, non-linear, pattern recognition
Procedia PDF Downloads 213611 Blood Volume Pulse Extraction for Non-Contact Photoplethysmography Measurement from Facial Images
Authors: Ki Moo Lim, Iman R. Tayibnapis
Abstract:
According to WHO estimation, 38 out of 56 million (68%) global deaths in 2012, were due to noncommunicable diseases (NCDs). To avert NCD, one of the solutions is early detection of diseases. In order to do that, we developed 'U-Healthcare Mirror', which is able to measure vital sign such as heart rate (HR) and respiration rate without any physical contact and consciousness. To measure HR in the mirror, we utilized digital camera. The camera records red, green, and blue (RGB) discoloration from user's facial image sequences. We extracted blood volume pulse (BVP) from the RGB discoloration because the discoloration of the facial skin is accordance with BVP. We used blind source separation (BSS) to extract BVP from the RGB discoloration and adaptive filters for removing noises. We utilized singular value decomposition (SVD) method to implement the BSS and the adaptive filters. HR was estimated from the obtained BVP. We did experiment for HR measurement by using our method and previous method that used independent component analysis (ICA) method. We compared both of them with HR measurement from commercial oximeter. The experiment was conducted under various distance between 30~110 cm and light intensity between 5~2000 lux. For each condition, we did measurement 7 times. The estimated HR showed 2.25 bpm of mean error and 0.73 of pearson correlation coefficient. The accuracy has improved compared to previous work. The optimal distance between the mirror and user for HR measurement was 50 cm with medium light intensity, around 550 lux.Keywords: blood volume pulse, heart rate, photoplethysmography, independent component analysis
Procedia PDF Downloads 329