Search results for: concrete waste
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4323

Search results for: concrete waste

3063 Mechanical, Physical and Durability Properties of Cement Mortars Added with Recycled PP/PE-Based Food Packaging Waste Material

Authors: Livia Guerini, Christian Paglia

Abstract:

In Switzerland, only a fraction of plastic waste from food packaging is collected and recycled for further use in the food industry. Therefore, reusing these waste plastics for building applications can be an attractive alternative to disposal in order to reduce the problem of waste management and to make up for the depletion of raw materials needed for construction. In this study, experiments were conducted on the mechanical properties (compressive and flexural strength, elastic modulus), physical properties (density, workability, porosity, and water permeability) and durability (freeze/thaw resistance) of cementitious mortars with additions of recycled low-/high-density polyethylene (LDPE/HDPE)/ polypropylene (PP) regrind (addition of 5% and 10% by weight) and LDPE sheets (addition of 0.5% and 1.5% by weight) coming from food packaging. The results show that as the addition of plastic material increases, the density and mechanical properties of the mortars decrease compared to conventional ones. Porosity is similar in all the mixtures made, while the workability and the permeability are affected not only by the amount added but also by the shape of the plastic aggregate. Freeze/thaw resistance, on the other hand, is significantly higher in mortars with plastic aggregates than in traditional mortar. This feature may be interesting for the realization of outdoor mortars in cold environments.

Keywords: food packaging waste, durability properties, mechanical properties, mortar, recycled PE, recycled PP

Procedia PDF Downloads 138
3062 Performance of Staggered Wall Buildings Subjected to Low to Medium Earthquake Loads

Authors: Younghoo Choi, Yong Jun, Jinkoo Kim

Abstract:

In this study seismic performance of typical reinforced concrete staggered wall system structures was evaluated through nonlinear static and incremental dynamic analyses. To this end, and 15-story SWS structures were designed and were analyzed to obtain their nonlinear force-displacement relationships. The analysis results showed that the 5-story SWS structures failed due to yielding of columns and walls located in the lower stories, whereas in the 15-story structures plastic hinges were more widely distributed throughout the stories.

Keywords: staggered wall systems, reinforced concrete, seismic performance

Procedia PDF Downloads 388
3061 Assessing the Potential of a Waste Material for Cement Replacement and the Effect of Its Fineness in Soft Soil Stabilisation

Authors: Hassnen M. Jafer, W. Atherton, F. Ruddock

Abstract:

This paper represents the results of experimental work to investigate the suitability of a waste material (WM) for soft soil stabilisation. In addition, the effect of particle size distribution (PSD) of the waste material on its performance as a soil stabiliser was investigated. The WM used in this study is produced from the incineration processes in domestic energy power plant and it is available in two different grades of fineness (coarse waste material (CWM) and fine waste material (FWM)). An intermediate plasticity silty clayey soil with medium organic matter content has been used in this study. The suitability of the CWM and FWM to improve the physical and engineering properties of the selected soil was evaluated dependant on the results obtained from the consistency limits, compaction characteristics (optimum moisture content (OMC) and maximum dry density (MDD)); along with the unconfined compressive strength test (UCS). Different percentages of CWM were added to the soft soil (3, 6, 9, 12 and 15%) to produce various admixtures. Then the UCS test was carried out on specimens under different curing periods (zero, 7, 14, and 28 days) to find the optimum percentage of CWM. The optimum and other two percentages (either side of the optimum content) were used for FWM to evaluate the effect of the fineness of the WM on UCS of the stabilised soil. Results indicated that both types of the WM used in this study improved the physical properties of the soft soil where the index of plasticity (IP) was decreased significantly. IP was decreased from 21 to 13.64 and 13.10 with 12% of CWM and 15% of FWM respectively. The results of the unconfined compressive strength test indicated that 12% of CWM was the optimum and this percentage developed the UCS value from 202kPa to 500kPa for 28 days cured samples, which is equal, approximately 2.5 times the UCS value for untreated soil. Moreover, this percentage provided 1.4 times the value of UCS for stabilized soil-CWA by using FWM which recorded just under 700kPa after 28 days curing.

Keywords: soft soil stabilisation, waste materials, fineness, unconfined compressive strength

Procedia PDF Downloads 265
3060 Recycling Motivations and Barriers in Kota Kinabalu, Malaysia

Authors: Jasmine Adela Mutang, Rosnah Ismail, Chua Bee Seok, Ferlis Bahari, Lailawati Madlan, Walton Wider, Rickless Das

Abstract:

Waste projection is increasing and most landfills in Malaysia are running out of space. Due to that, waste management is now becoming a major challenge. The most sustainable solution is by practicing sustainable practices such as recycling. Since 1993 the government has launched several recycling campaigns and implemented the National Recycling Policy. However, public participation is still very low. Only 10.5% of solid waste was recycled up to now which is far below than of in developed countries. Nevertheless the government is optimistic that the target of 22% recycling by 2020 will be achieved if there is a positive flow pattern in sustainable practices in particular recycling behavior among Malaysian. Understanding public motivations towards recycling domestic waste are important to improve current recycling rate. Thus this study attempts to identify what are the possible motivations and hindrances for the public to recycle. Open-ended questions format were administered to 484 people in Kota Kinabalu, Sabah, Malaysia. Two specific questions we asked to explore their general determinants and barriers in practicing recycling: “What motivates you to recycle?” and “What are the barriers you encountered in doing recycling activities?” Thematic analysis was conducted on the open-ended questions in which themes were created with the raw comments. It was found that the underlying recycling motivations are awareness’ towards the environment, benefits to the society and individual, and social influence. Non participations are influence by attitudes, commitment, facilities, knowledge, inconvenience, and enforcement.

Keywords: recycling motivation, recycling barrier, sustainable, household waste

Procedia PDF Downloads 544
3059 Kinetics of Cu(II) Transport through Bulk Liquid Membrane with Different Membrane Materials

Authors: Siu Hua Chang, Ayub Md Som, Jagannathan Krishnan

Abstract:

The kinetics of Cu(II) transport through a bulk liquid membrane with different membrane materials was investigated in this work. Three types of membrane materials were used: Fresh cooking oil, waste cooking oil, and kerosene each of which was mixed with di-2-ethylhexylphosphoric acid (carrier) and tributylphosphate (modifier). Kinetic models derived from the kinetic laws of two consecutive irreversible first-order reactions were used to study the facilitated transport of Cu(II) across the source, membrane, and receiving phases of bulk liquid membrane. It was found that the transport kinetics of Cu(II) across the source phase was not affected by different types of membrane materials but decreased considerably when the membrane materials changed from kerosene, waste cooking oil to fresh cooking oil. The rate constants of Cu(II) removal and recovery processes through the bulk liquid membrane were also determined.

Keywords: transport kinetics, Cu(II), bulk liquid membrane, waste cooking oil

Procedia PDF Downloads 416
3058 Time-Dependent Behaviour of Reinforced Concrete Beams under Sustained and Repeated Loading

Authors: Sultan Daud, John P. Forth, Nikolaos Nikitas

Abstract:

The current study aims to highlight the loading characteristics impact on the time evolution (focusing particularly on long term effects) of the deformation of realized reinforced concrete beams. Namely the tension stiffening code provisions (i.e. within Eurocode 2) are reviewed with a clear intention to reassess their operational value and predicting capacity. In what follows the experimental programme adopted along with some preliminary findings and numerical modelling attempts are presented. For a range of long slender reinforced concrete simply supported beams (4200 mm) constant static sustained and repeated cyclic loadings were applied mapping the time evolution of deformation. All experiments were carried out at the Heavy Structures Lab of the University of Leeds. During tests the mid-span deflection, creep coefficient and shrinkage strains were monitored for duration of 90 days. The obtained results are set against the values predicted by Eurocode 2 and the tools within an FE commercial package (i.e. Midas FEA) to yield that existing knowledge and practise is at times over-conservative.

Keywords: Eurocode2, midas fea, repeated, sustained loading.

Procedia PDF Downloads 344
3057 Combustion and Emissions Performance of Syngas Fuels Derived from Palm Kernel Shell and Polyethylene (PE) Waste via Catalytic Steam Gasification

Authors: Chaouki Ghenai

Abstract:

Computational fluid dynamics analysis of the burning of syngas fuels derived from biomass and plastic solid waste mixture through gasification process is presented in this paper. The syngas fuel is burned in gas turbine can combustor. Gas turbine can combustor with swirl is designed to burn the fuel efficiently and reduce the emissions. The main objective is to test the impact of the alternative syngas fuel compositions and lower heating value on the combustion performance and emissions. The syngas fuel is produced by blending Palm Kernel Shell (PKS) with Polyethylene (PE) waste via catalytic steam gasification (fluidized bed reactor). High hydrogen content syngas fuel was obtained by mixing 30% PE waste with PKS. The syngas composition obtained through the gasification process is 76.2% H2, 8.53% CO, 4.39% CO2 and 10.90% CH4. The lower heating value of the syngas fuel is LHV = 15.98 MJ/m3. Three fuels were tested in this study natural gas (100%CH4), syngas fuel and pure hydrogen (100% H2). The power from the combustor was kept constant for all the fuels tested in this study. The effect of syngas fuel composition and lower heating value on the flame shape, gas temperature, mass of carbon dioxide (CO2) and nitrogen oxides (NOX) per unit of energy generation is presented in this paper. The results show an increase of the peak flame temperature and NO mass fractions for the syngas and hydrogen fuels compared to natural gas fuel combustion. Lower average CO2 emissions at the exit of the combustor are obtained for the syngas compared to the natural gas fuel.

Keywords: CFD, combustion, emissions, gas turbine combustor, gasification, solid waste, syngas, waste to energy

Procedia PDF Downloads 586
3056 Numerical Simulation of Precast Concrete Panels for Airfield Pavement

Authors: Josef Novák, Alena Kohoutková, Vladimír Křístek, Jan Vodička

Abstract:

Numerical analysis software belong to the main tools for simulating the real behavior of various concrete structures and elements. In comparison with experimental tests, they offer an affordable way to study the mechanical behavior of structures under various conditions. The contribution deals with a precast element of an innovative airfield pavement system which is being developed within an ongoing scientific project. The proposed system consists a two-layer surface course of precast concrete panels positioned on a two-layer base of fiber-reinforced concrete with recycled aggregate. As the panels are supposed to be installed directly on the hardened base course, imperfections at the interface between the base course and surface course are expected. Considering such circumstances, three various behavior patterns could be established and considered when designing the precast element. Enormous costs of full-scale experiments force to simulate the behavior of the element in a numerical analysis software using finite element method. The simulation was conducted on a nonlinear model in order to obtain such results which could fully compensate results from the experiments. First, several loading schemes were considered with the aim to observe the critical one which was used for the simulation later on. The main objective of the simulation was to optimize reinforcement of the element subject to quasi-static loading from airplanes. When running the simulation several parameters were considered. Namely, it concerns geometrical imperfections, manufacturing imperfections, stress state in reinforcement, stress state in concrete and crack width. The numerical simulation revealed that the precast element should be heavily reinforced to fulfill all the demands assumed. The main cause of using high amount of reinforcement is the size of the imperfections which could occur at real structure. Improving manufacturing quality, the installation of the precast panels on a fresh base course or using a bedding layer underneath the surface course belong to the main steps how to reduce the size of imperfections and consequently lower the consumption of reinforcement.

Keywords: nonlinear analysis, numerical simulation, precast concrete, pavement

Procedia PDF Downloads 249
3055 Artificial Neural Network Modeling and Genetic Algorithm Based Optimization of Hydraulic Design Related to Seepage under Concrete Gravity Dams on Permeable Soils

Authors: Muqdad Al-Juboori, Bithin Datta

Abstract:

Hydraulic structures such as gravity dams are classified as essential structures, and have the vital role in providing strong and safe water resource management. Three major aspects must be considered to achieve an effective design of such a structure: 1) The building cost, 2) safety, and 3) accurate analysis of seepage characteristics. Due to the complexity and non-linearity relationships of the seepage process, many approximation theories have been developed; however, the application of these theories results in noticeable errors. The analytical solution, which includes the difficult conformal mapping procedure, could be applied for a simple and symmetrical problem only. Therefore, the objectives of this paper are to: 1) develop a surrogate model based on numerical simulated data using SEEPW software to approximately simulate seepage process related to a hydraulic structure, 2) develop and solve a linked simulation-optimization model based on the developed surrogate model to describe the seepage occurring under a concrete gravity dam, in order to obtain optimum and safe design at minimum cost. The result shows that the linked simulation-optimization model provides an efficient and optimum design of concrete gravity dams.

Keywords: artificial neural network, concrete gravity dam, genetic algorithm, seepage analysis

Procedia PDF Downloads 218
3054 Development of the Maturity Sensor Prototype and Method of Its Placement in the Structure

Authors: Yelbek B. Utepov, Assel S. Tulebekova, Alizhan B. Kazkeyev

Abstract:

Maturity sensors are used to determine concrete strength by the non-destructive method. The method of placement of the maturity sensors determines their number required for a certain frame of a monolithic building. Previous studies weakly describe this aspect, giving only logical assumptions. This paper proposes a cheap prototype of an embedded wireless sensor for monitoring concrete structures, as well as an alternative strategy for placing sensors based on the transitional boundaries of the temperature distribution of concrete curing, which were determined by building a heat map of the temperature distribution, where unknown values are calculated by the method of inverse distance weighing. The developed prototype can simultaneously measure temperature and relative humidity over a smartphone-controlled time interval. It implements a maturity method to assess the in-situ strength of concrete, which is considered an alternative to the traditional shock impulse and compression testing method used in Kazakhstan. The prototype was tested in laboratory and field conditions. The tests were aimed at studying the effect of internal and external temperature and relative humidity on concrete's strength gain. Based on an experimentally poured concrete slab with randomly integrated maturity sensors, it was determined that the transition boundaries form elliptical forms. Temperature distribution over the largest diameter of the ellipses was plotted, resulting in correct and inverted parabolas. As a result, the distance between the closest opposite crossing points of the parabolas is accepted as the maximum permissible step for setting the maturity sensors. The proposed placement strategy can be applied to sensors that measure various continuous phenomena such as relative humidity. Prototype testing has also revealed Bluetooth inconvenience due to weak signal and inability to access multiple prototypes simultaneously. For this reason, further prototype upgrades are planned in future work.

Keywords: heat map, placement strategy, temperature and relative humidity, wireless embedded sensor

Procedia PDF Downloads 168
3053 Biogas Production Improve From Waste Activated Sludge Using Fenton Oxidation

Authors: A. Hassiba Zemmouri, B. Nabil Mameri, C. Hakim Lounici

Abstract:

In this study, the effect of Fenton technology pretreatment on the anaerobic digestion of excess waste activated sludge (WAS) was investigated. The variation of physicochemical characteristics (TOC, DS, VSS, VS) and biogas volume (as form of value added products) were also evaluated. The preselected operator conditions of Fenton pretreatment were 0.01ml H2O2/g SS, 150 [H2O2]/[Fe2+], 25g/l TS, at 25 °C and 30, 60 and120 min as treatment duration. The main results show a Maximum solubilization and biodegradability (70%) obtained at 120 min of Fenton pretreatment duration. An increasing of TOC in soluble phase related obviously by releasing organic substances of sludge flocs was contested. Improving in biogas volume was also, increased. Fenton oxidation pretreatment may be a promising chemical pre-treatment for a benefic digestion, stabilization and volume reduction.

Keywords: waste activated sludge, fenton pre-treatment, biodegradability, biogas

Procedia PDF Downloads 635
3052 Performance Evaluations of Lap Spliced Joint of Decked Bulb-Tee Type Modular Bridge

Authors: Sang-Yoon Lee, Jae-Joon Song

Abstract:

Precast decked bulb-tee girder or precast deck generally adopts in-situ connections of loop joints. Loop joint could be an effective method to connect precast concrete members where the width of joint is not wide sufficiently to allow the lap splice length of reinforcing bars. However, the regulation for the minimum bend diameter of looped rebar gives limitation not to reduce the thickness of precast concrete member; thus, in-situ connection adopting loop joint place a constraint on improving the structural efficiency of precast concrete member. Ultra high strength concrete (UHSC) is effective on reduce the development and lap splice length of reinforcing bar. In-situ connection with UHSC gives a merit to reduce connection width. This study intends to investigate the details of the longitudinal joint to be applied in the precast modular bridge using decked bulb-tee girder that has been recently developed in Korea. This paper presents the details applying UHSC and lap splices of straight reinforcement and results of tests. Several tests were performed on flexural specimens with longitudinal joints to verify the length of the lap splices and amount of transverse reinforcement, and to examine the flexural strength of the longitudinal joint.

Keywords: precast structure, decked bulb-tee girder, in-situ connection, UHSC, modular bridge

Procedia PDF Downloads 454
3051 Interaction Diagrams for Symmetrically Reinforced Concrete Square Sections Under 3 Dimensional Multiaxial Loading Conditions

Authors: Androniki-Anna Doulgeroglou, Panagiotis Kotronis, Giulio Sciarra, Catherine Bouillon

Abstract:

The interaction diagrams are functions that define ultimate states expressed in terms of generalized forces (axial force, bending moment and shear force). Two characteristic states for reinforced concrete (RC) sections are proposed: the first characteristic state corresponds to the yield of the reinforcement bars and the second to the peak values of the generalized forces generalized displacements curves. 3D numerical simulations are then conducted for RC columns and the global responses are compared to experimental results. Interaction diagrams for combined flexion, shear and axial force loading conditions are numerically produced for symmetrically RC square sections for different reinforcement ratios. Analytical expressions of the interaction diagrams are also proposed, satisfying the condition of convexity. Comparison with interaction diagrams from the Eurocode is finally presented for the study cases.

Keywords: analytical convex expressions, finite element method, interaction diagrams, reinforced concrete

Procedia PDF Downloads 142
3050 Effects of Palm Waste Ash Residues on Acidic Soil in Relation to Physiological Responses of Habanero Chili Pepper (Capsicum chinense jacq.)

Authors: Kalu Samuel Ukanwa, Kumar Patchigolla, Ruben Sakrabani

Abstract:

The use of biosolids from thermal conversion of palm waste for soil fertility enhancement was tested in acidic soil of Southern Nigeria for the growing of Habanero chili pepper (Capsicum chinense jacq.). Soil samples from the two sites, showed pH 4.8 and 4.8 for site A and B respectively, below 5.6-6.8 optimum range and other fertility parameters indicating a low threshold for pepper growth. Nursery planting was done at different weeks to determine the optimum planting period. Ash analysis showed that it contains 26% of total K, 20% of total Ca, 0.27% of total P, and pH 11. The two sites were laid for an experiment in randomized complete block design and setup with three replications side by side. Each plot measured 3 x 2 m and a total of 15 plots for each site, four treatments, and one control. Outlined as control, 2, 4, 6 and 8 tonnes/hectare of palm waste ash, the combined average for both sites with correspondent yield after six harvests in one season are; 0, 5.8, 6, 6, 14.5 tonnes/hectare respectively to treatments. Optimum nursery survival rate was high in July; the crop yield was linear to the ash application. Site A had 6% yield higher than site B. Fruit development, weight, and total yield in relation to the control plot showed that palm waste ash is effective for soil amendment, nutrient delivery, and exchange.

Keywords: ash, palm waste, pepper, soil amendment

Procedia PDF Downloads 126
3049 Influence of the Flow Rate Ratio in a Jet Pump on the Size of Air Bubbles

Authors: L. Grinis, N. Lubashevsky, Y. Ostrovski

Abstract:

In waste water treatment processes, aeration introduces air into a liquid. In these systems, air is introduced by different devices submerged in the waste water. Smaller bubbles result in more bubble surface area per unit of volume and higher oxygen transfer efficiency. Jet pumps are devices that use air bubbles and are widely used in waste water treatment processes. The principle of jet pumps is their ability to transfer energy of one fluid, called primary or motive, into a secondary fluid or gas. These pumps have no moving parts and are able to work in remote areas under extreme conditions. The objective of this work is to study experimentally the characteristics of the jet pump and the size of air bubbles in the laboratory water tank. The effect of flow rate ratio on pump performance is investigated in order to have a better understanding about pump behavior under various conditions, in order to determine the efficiency of receiving air bubbles different sizes. The experiments show that we should take care when increasing the flow rate ratio while seeking to decrease bubble size in the outlet flow. This study will help improve and extend the use of the jet pump in many practical applications.

Keywords: jet pump, air bubbles size, retention time, waste water

Procedia PDF Downloads 299
3048 Toughness of a Silt-Based Construction Material Reinforced with Fibers

Authors: Y. Shamas, S. Imanzadeh, A. Jarno, S. Taibi

Abstract:

Silt-based construction material is acknowledged since forever and lately received the researchers’ attention more than before as being an ecological and economical alternative for typical cement-based concrete. Silt-based material is known for its worldwide availability, cheapness, and various applications. Some rules should be defined to obtain a standardized method for the use of raw earth as a modern construction material; but first, its mechanical properties should be precisely studied to better understand its behavior in order to find new aspects in making it a better competitor for the cement concrete that is high energy-demanding in terms of gray energy. Some researches were performed on the raw earth material to enhance its characteristics as strength and ductility for their importance and their wide use for various materials. Yet, many other mechanical properties can be used to study the mechanical behavior of raw earth materials such as Young’smodulus and toughness. Studies concerning the toughness of material were rarely conducted previously except for metals despite its significant role associated to the energy absorbed by the material under loading before fracturing. The purpose of this paper is to restate different toughness definitions used in the literature and propose a new definition.

Keywords: silt-based material, raw earth concrete, stress-strain curve, energy, toughness

Procedia PDF Downloads 212
3047 Investigation of the Ductility Improvement of Replaceable Hinge Member on Different Types of Precast Concrete Frames

Authors: Ali Berk Bozan, Reşat Atalay Oyguç

Abstract:

The demand for precast reinforced concrete (RC) structures is growing, considering their certain benefits, including faster assembly, homogeneous materials, and high-quality labor. The structural integrity of precast reinforced concrete (RC) constructions is influenced by the effectiveness of the joints and connections. This paper contains an analytical study about four types of precast reinforced concrete frames, which vary according to the number of storeys and the number of bays with two different types of moment-resisting beam-to-column connection is investigated under cyclic displacement loading up to 5.6% drift rate by using ABAQUS software. The first connection type is the widely used moment-resisting connection that is defined as a wet connection in the Turkish Seismic Code (TBDY). The second connection type is known as Artificial Controllable Plastic Hinge. The goal of this connection is to defend reinforced concrete components from earthquake-related plastic deformations by keeping them in a specialized connecting section. It will be possible to repair the broken connections after the earthquake. The cyclic behavior of the four types of frames with the mechanical plastic hinge and wet connection was analytically investigated, and then comparisons and suggestions were made on period, ductility, and structural system behavior coefficient. The analytical study shows that the replaceable plastic hinge element provides a significant period increase. Especially in the case of two storeys and two bays, the change in the period was felt the most compared to other frames. The results for ductility show a significant change in the ductility of the frames with replaceable plastic hinges. For the structural system behavior coefficient, a recommendation between 3.90 and 4.52 values was made.

Keywords: precast structures, replaceable plastic hinge, beam to column connections, ductility

Procedia PDF Downloads 32
3046 Hygrothermal Assessment of Internally Insulated Prefabricated Concrete Wall in Polish Climatic Condition

Authors: D. Kaczorek

Abstract:

Internal insulation of external walls is often problematic due to increased moisture content in the wall and interstitial or surface condensation risk. In this paper, the hygrothermal performance of prefabricated, concrete, large panel, external wall typical for WK70 system, commonly used in Poland in the 70’s, with inside, additional insulation was investigated. Thermal insulation board made out of hygroscopic, natural materials with moisture buffer capacity and extruded polystyrene (EPS) board was used as interior insulation. Experience with this natural insulation is rare in Poland. The analysis was performed using WUFI software. First of all, the impact of various standard boundary conditions on the behavior of the different wall assemblies was tested. The comparison of results showed that the moisture class according to the EN ISO 13788 leads to too high values of total moisture content in the wall since the boundary condition according to the EN 15026 should be usually applied. Then, hygrothermal 1D-simulations were conducted by WUFI Pro for analysis of internally added insulation, and the weak point like the joint of the wall with the concrete ceiling was verified using 2D simulations. Results showed that, in the Warsaw climate and the indoor conditions adopted in accordance with EN 15026, in the tested wall assemblies, regardless of the type of interior insulation, there would not be any problems with moisture - inside the structure and on the interior surface.

Keywords: concrete large panel wall, hygrothermal simulation, internal insulation, moisture related issues

Procedia PDF Downloads 159
3045 State-of-the Art Practices in Bridge Inspection

Authors: Salam Yaghi, Saleh Abu Dabous

Abstract:

Government reports and published research have flagged and brought to public attention the deteriorating condition of a large percentage of bridges in Canada and the United States. With the increasing number of deteriorated bridges in the US, Canada, and around the globe, condition assessment techniques of concrete bridges are evolving. Investigation for bridges’ defects such as cracks, spalls, and delamination and their level of severity are the main objectives of condition assessment. Inspection and rehabilitation programs are being implemented to monitor and maintain deteriorated bridge infrastructure. This paper highlights the state-of-the art of current practices being performed for concrete bridge inspection. The information is gathered from the literature and through a distributed questionnaire. The current practices in concrete bridge inspection rely on the use of hummer sounding and chain dragging tests. Non-Destructive Testing (NDT) techniques are not being utilized fully in the process. Nonetheless, they are being partially utilized by the recommendation of the bridge inspector after conducting the visual inspection. Lanes are usually closed during the performance of visual inspection and bridge inspection in general.

Keywords: bridge inspection, condition assessment, questionnaire, non-destructive testing

Procedia PDF Downloads 272
3044 Anaerobic Co-Digestion of Pressmud with Bagasse and Animal Waste for Biogas Production Potential

Authors: Samita Sondhi, Sachin Kumar, Chirag Chopra

Abstract:

The increase in population has resulted in an excessive feedstock production, which has in return lead to the accumulation of a large amount of waste from different resources as crop residues, industrial waste and solid municipal waste. This situation has raised the problem of waste disposal in present days. A parallel problem of depletion of natural fossil fuel resources has led to the formation of alternative sources of energy from the waste of different industries to concurrently resolve the two issues. The biogas is a carbon neutral fuel which has applications in transportation, heating and power generation. India is a nation that has an agriculture-based economy and agro-residues are a significant source of organic waste. Taking into account, the second largest agro-based industry that is sugarcane industry producing a high quantity of sugar and sugarcane waste byproducts such as Bagasse, Press Mud, Vinasse and Wastewater. Currently, there are not such efficient disposal methods adopted at large scales. According to manageability objectives, anaerobic digestion can be considered as a method to treat organic wastes. Press mud is lignocellulosic biomass and cannot be accumulated for Mono digestion because of its complexity. Prior investigations indicated that it has a potential for production of biogas. But because of its biological and elemental complexity, Mono-digestion was not successful. Due to the imbalance in the C/N ratio and presence of wax in it can be utilized with any other fibrous material hence will be digested properly under suitable conditions. In the first batch of Mono-digestion of Pressmud biogas production was low. Now, co-digestion of Pressmud with Bagasse which has desired C/N ratio will be performed to optimize the ratio for maximum biogas from Press mud. In addition, with respect to supportability, the main considerations are the monetary estimation of item result and ecological concerns. The work is designed in such a way that the waste from the sugar industry will be digested for maximum biogas generation and digestive after digestion will be characterized for its use as a bio-fertilizer for soil conditioning. Due to effectiveness demonstrated by studied setups of Mono-digestion and Co-digestion, this approach can be considered as a viable alternative for lignocellulosic waste disposal and in agricultural applications. Biogas produced from the Pressmud either can be used for Powerhouses or transportation. In addition, the work initiated towards the development of waste disposal for energy production will demonstrate balanced economy sustainability of the process development.

Keywords: anaerobic digestion, carbon neutral fuel, press mud, lignocellulosic biomass

Procedia PDF Downloads 163
3043 Investigation on an Innovative Way to Connect RC Beam and Steel Column

Authors: Ahmed H. El-Masry, Mohamed A. Dabaon, Tarek F. El-Shafiey, Abd El-Hakim A. Khalil

Abstract:

An experimental study was performed to investigate the behavior and strength of proposed technique to connect reinforced concrete (RC) beam to steel or composite columns. This approach can practically be used in several types of building construction. In this technique, the main beam of the frame consists of a transfer part (part of beam; Tr.P) and a common reinforcement concrete beam. The transfer part of the beam is connected to the column, whereas the rest of the beam is connected to the transfer part from each side. Four full-scale beam-column connections were tested under static loading. The test parameters were the length of the transfer part and the column properties. The test results show that using of the transfer part technique leads to modify the deformation capabilities for the RC beam and hence it increases its resistance against failure. Increase in length of the transfer part did not necessarily indicate an enhanced behavior. The test results contribute to the characterization of the connection behavior between RC beam - steel column and can be used to calibrate numerical models for the simulation of this type of connection.

Keywords: composite column, reinforced concrete beam, steel column, transfer part

Procedia PDF Downloads 426
3042 Use of Cassava Waste and Its Energy Potential

Authors: I. Inuaeyen, L. Phil, O. Eni

Abstract:

Fossil fuels have been the main source of global energy for many decades, accounting for about 80% of global energy need. This is beginning to change however with increasing concern about greenhouse gas emissions which comes mostly from fossil fuel combustion. Greenhouse gases such as carbon dioxide are responsible for stimulating climate change. As a result, there has been shift towards more clean and renewable energy sources of energy as a strategy for stemming greenhouse gas emission into the atmosphere. The production of bio-products such as bio-fuel, bio-electricity, bio-chemicals, and bio-heat etc. using biomass materials in accordance with the bio-refinery concept holds a great potential for reducing high dependence on fossil fuel and their resources. The bio-refinery concept promotes efficient utilisation of biomass material for the simultaneous production of a variety of products in order to minimize or eliminate waste materials. This will ultimately reduce greenhouse gas emissions into the environment. In Nigeria, cassava solid waste from cassava processing facilities has been identified as a vital feedstock for bio-refinery process. Cassava is generally a staple food in Nigeria and one of the most widely cultivated foodstuff by farmers across Nigeria. As a result, there is an abundant supply of cassava waste in Nigeria. In this study, the aim is to explore opportunities for converting cassava waste to a range of bio-products such as butanol, ethanol, electricity, heat, methanol, furfural etc. using a combination of biochemical, thermochemical and chemical conversion routes. . The best process scenario will be identified through the evaluation of economic analysis, energy efficiency, life cycle analysis and social impact. The study will be carried out by developing a model representing different process options for cassava waste conversion to useful products. The model will be developed using Aspen Plus process simulation software. Process economic analysis will be done using Aspen Icarus software. So far, comprehensive survey of literature has been conducted. This includes studies on conversion of cassava solid waste to a variety of bio-products using different conversion techniques, cassava waste production in Nigeria, modelling and simulation of waste conversion to useful products among others. Also, statistical distribution of cassava solid waste production in Nigeria has been established and key literatures with useful parameters for developing different cassava waste conversion process has been identified. In the future work, detailed modelling of the different process scenarios will be carried out and the models validated using data from literature and demonstration plants. A techno-economic comparison of the various process scenarios will be carried out to identify the best scenario using process economics, life cycle analysis, energy efficiency and social impact as the performance indexes.

Keywords: bio-refinery, cassava waste, energy, process modelling

Procedia PDF Downloads 362
3041 Role of NaOH in the Synthesis of Waste-derived Solid Hydroxy Sodalite Catalyst for the Transesterification of Waste Animal Fat to Biodiesel

Authors: Thomas Chinedu Aniokete, Gordian Onyebuchukwu Mbah, Michael Daramola

Abstract:

A sustainable NaOH integrated hydrothermal protocol was developed for the synthesis of waste-derived hydroxy sodalite catalysts for transesterification of waste animal fat (WAF) with a high per cent free fatty acid (FFA) to biodiesel. In this work, hydroxy sodalite catalyst was synthesized from two complex waste materials namely coal fly ash (CFA) and waste industrial brine (WIB). Measured amounts of South African CFA and WIB obtained from a coal mine field were mixed with NaOH solution at different concentrations contained in secured glass vessels equipped with magnetic stirrers and formed consistent slurries after aging condition at 47 oC for 48 h. The slurries were then subjected to hydrothermal treatments at 140 oC for 48 h, washed thoroughly and separated by the action of a centrifuge on the mixture. The resulting catalysts were calcined in a muffle furnace for 2 h at 200 oC and subsequently characterized for different effects using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), and Bennett Emmet Teller (BET) adsorption-desorption techniques. The produced animal fat methyl ester (AFME) was analyzed using the gas chromatography-mass spectrometry (GC-MS) method. Results of the investigation indicate profoundly an enhanced catalyst purity, textural property and desired morphology due to the action of NaOH. Similarly, the performance evaluation with respect to catalyst activity reveals a high catalytic conversion efficiency of 98 % of the high FFA WAF to biodiesel under the following reaction conditions; a methanol-to-WAF ratio of 15:1, amount of SOD catalyst of 3 wt % with a stirring speed of 300-500 rpm, a reaction temperature of 60 oC and a reaction time of 8 h. There was a recovered 96 % stable catalyst after reactions and potentially recyclable, thus contributing to the economic savings to the process that had been a major bottleneck to the production of biodiesel. This NaOH route for synthesizing waste-derived hydroxy sodalite (SOD) catalyst is a sustainable and eco-friendly technology that speaks directly to the global quest for renewable-fossil fuel controversy enforcing sustainable development goal 7.

Keywords: coal fly ash, waste industrial brine, waste-derived hydroxy sodalite catalyst, sodium hydroxide, biodiesel, transesterification, biomass conversion

Procedia PDF Downloads 27
3040 Processing and Characterization of Glass-Epoxy Composites Filled with Linz-Donawitz (LD) Slag

Authors: Pravat Ranjan Pati, Alok Satapathy

Abstract:

Linz-Donawitz (LD) slag a major solid waste generated in huge quantities during steel making. It comes from slag formers such as burned lime/dolomite and from oxidizing of silica, iron etc. while refining the iron into steel in the LD furnace. Although a number of ways for its utilization have been suggested, its potential as a filler material in polymeric matrices has not yet been explored. The present work reports the possible use of this waste in glass fiber reinforced epoxy composites as a filler material. Hybrid composites consisting of bi-directional e-glass-fiber reinforced epoxy filled with different LD slag content (0, 7.5, 15, 22.5 wt%) are prepared by simple hand lay-up technique. The composites are characterized in regard to their density, porosity, micro-hardness and strength properties. X-ray diffractography is carried out in order to ascertain the various phases present in LDS. This work shows that LD slag, in spite of being a waste, possesses fairly good filler characteristics as it modifies the strength properties and improves the composite micro-hardness of the polymeric resin.

Keywords: characterization, glass-epoxy composites, LD slag, waste utilization

Procedia PDF Downloads 386
3039 Analysis of Rectangular Concrete-Filled Double Skin Tubular Short Columns with External Stainless Steel Tubes

Authors: Omnia F. Kharoob, Nashwa M. Yossef

Abstract:

Concrete-filled double skin steel tubular (CFDST) columns could be utilized in structures such as bridges, high-rise buildings, viaducts, and electricity transmission towers due to its great structural performance. Alternatively, lean duplex stainless steel has recently gained significant interest for its high structural performance, similar corrosion resistance and lower cost compared to the austenitic steel grade. Hence, this paper presents the nonlinear finite element (FE) analysis, behaviour and design of rectangular outer lean duplex stainless steel (EN 1.4162) CFDST short columns under compression. All classes of the outer rectangular hollow section according to the depth-to-thickness (D/t) ratios were considered. The results showed that the axial ultimate strength of rectangular CFDST short columns increased linearly by increasing the concrete compressive strength, while it does not influence when changing the hollow ratios. Finally, the axial capacities were compared with the available design methods, and recommendations were conducted for the design strength of this type of column.

Keywords: concrete-filled double skin columns, compressive strength, finite element analysis, lean duplex stainless steel, ultimate axial strength, short columns

Procedia PDF Downloads 290
3038 An Investigation of Foam Glass Production from Sheet Glass Waste and SiC Foaming Agent

Authors: Aylin Sahin, Recep Artir, Mustafa Kara

Abstract:

Foam glass is a remarkable material with having incomparable properties like low weight, rigidity, high thermal insulation capacity and porous structure. In this study, foam glass production was investigated with using glass powder from sheet glass waste and SiC powder as foaming agent. Effects of SiC powders and sintering temperatures on foaming process were examined. It was seen that volume expansions (%), cellular structures and pore diameters of obtained foam glass samples were highly depending on composition ratios and sintering temperature. The study showed that various foam glass samples having with homogenous closed porosity, low weight and low thermal conductivity were achieved by optimizing composition ratios and sintering temperatures.

Keywords: foam glass, foaming, waste glass, silicon carbide

Procedia PDF Downloads 376
3037 The Study of Sensory Breadth Experiences in an Online Try-On Environment

Authors: Tseng-Lung Huang

Abstract:

Sensory breadth experiences, such as visualization, a sense of self-location, and haptic experiences, are critical in an online try-on environment. This research adopts an emotional appeal perspective, including concrete and abstract effects, to clarify the relationship between sensory experience and consumer's behavior intention in an online try-on context. This study employed an augmented reality interactive technology (ARIT) in an online clothes-fitting context and applied snowball sampling using e-mail to invite online consumers, first to use ARIT for trying on online apparel and then to complete a questionnaire. One hundred sixty-eight valid questionnaires were collected, and partial least squares (PLS) path modeling was used to test our hypotheses. The results showed that sensory breadth, by arousing concrete effect, induces impulse buying intention and willingness to pay a price premium of online shopping. Parasocial presence, as an abstract effect, diminishes the effect of concrete effects on willingness to pay a price premium.

Keywords: sensory breadth, impulsive behavior, price premium, emotional appeal, online try-on context

Procedia PDF Downloads 542
3036 The Effect of Fly Ash and Natural Pozzolans on the Quality of Passive Oxide Film Developed on Steel Reinforcement Bars

Authors: M.S. Ashraf, Raja Rizwan Hussain, A. M. Alhozaimy

Abstract:

The effect of supplementary cementitious materials (SCMs) with concrete pore solution on the protective properties of the oxide films that form on reinforcing steel bars has been experimentally investigated using electrochemical impedance spectroscopy (EIS) and Tafel Scan. The tests were conducted on oxide films grown in saturated calcium hydroxide solutions that included different representative amounts of NaOH and KOH. In addition to that, commonly used supplementary cementitious materials (natural pozzolan and fly ash) were also added. The results of electrochemical tests show that supplementary cementitious materials do have an effect on the protective properties of the passive oxide film. In particular, natural pozzolans has been shown to have a highly positive influence on the film quality. Fly ash also increases the protective qualities of the passive film.

Keywords: supplementary cementitious materials (SCMs), passive film, EIS, Tafel scan, rebar, concrete, simulated concrete pore solution (SPS)

Procedia PDF Downloads 437
3035 Quantification of the Non-Registered Electrical and Electronic Equipment for Domestic Consumption and Enhancing E-Waste Estimation: A Case Study on TVs in Vietnam

Authors: Ha Phuong Tran, Feng Wang, Jo Dewulf, Hai Trung Huynh, Thomas Schaubroeck

Abstract:

The fast increase and complex components have made waste of electrical and electronic equipment (or e-waste) one of the most problematic waste streams worldwide. Precise information on its size on national, regional and global level has therefore been highlighted as prerequisite to obtain a proper management system. However, this is a very challenging task, especially in developing countries where both formal e-waste management system and necessary statistical data for e-waste estimation, i.e. data on the production, sale and trade of electrical and electronic equipment (EEE), are often lacking. Moreover, there is an inflow of non-registered electronic and electric equipment, which ‘invisibly’ enters the EEE domestic market and then is used for domestic consumption. The non-registration/invisibility and (in most of the case) illicit nature of this flow make it difficult or even impossible to be captured in any statistical system. The e-waste generated from it is thus often uncounted in current e-waste estimation based on statistical market data. Therefore, this study focuses on enhancing e-waste estimation in developing countries and proposing a calculation pathway to quantify the magnitude of the non-registered EEE inflow. An advanced Input-Out Analysis model (i.e. the Sale–Stock–Lifespan model) has been integrated in the calculation procedure. In general, Sale-Stock-Lifespan model assists to improve the quality of input data for modeling (i.e. perform data consolidation to create more accurate lifespan profile, model dynamic lifespan to take into account its changes over time), via which the quality of e-waste estimation can be improved. To demonstrate the above objectives, a case study on televisions (TVs) in Vietnam has been employed. The results show that the amount of waste TVs in Vietnam has increased four times since 2000 till now. This upward trend is expected to continue in the future. In 2035, a total of 9.51 million TVs are predicted to be discarded. Moreover, estimation of non-registered TV inflow shows that it might on average contribute about 15% to the total TVs sold on the Vietnamese market during the whole period of 2002 to 2013. To tackle potential uncertainties associated with estimation models and input data, sensitivity analysis has been applied. The results show that both estimations of waste and non-registered inflow depend on two parameters i.e. number of TVs used in household and the lifespan. Particularly, with a 1% increase in the TV in-use rate, the average market share of non-register inflow in the period 2002-2013 increases 0.95%. However, it decreases from 27% to 15% when the constant unadjusted lifespan is replaced by the dynamic adjusted lifespan. The effect of these two parameters on the amount of waste TV generation for each year is more complex and non-linear over time. To conclude, despite of remaining uncertainty, this study is the first attempt to apply the Sale-Stock-Lifespan model to improve the e-waste estimation in developing countries and to quantify the non-registered EEE inflow to domestic consumption. It therefore can be further improved in future with more knowledge and data.

Keywords: e-waste, non-registered electrical and electronic equipment, TVs, Vietnam

Procedia PDF Downloads 241
3034 Development of a Double Coating Technique for Recycled Concrete Aggregates Used in Hot-mix Asphalt

Authors: Abbaas I. Kareem, H. Nikraz

Abstract:

The use of recycled concrete aggregates (RCAs) in hot-mix asphalt (HMA) production could ease natural aggregate shortage and maintain sustainability in modern societies. However, it was the attached cement mortar and other impurities that make the RCAs behave differently than high-quality aggregates. Therefore, different upgrading treatments were suggested to enhance its properties before being used in HMA production. Disappointedly, some of these treatments had caused degradation to some RCA properties. In order to avoid degradation, a coating technique is developed. This technique is based on combining of two main treatments, so it is named as double coating technique (DCT). Dosages of 0%, 20%, 40% and 60% uncoated RCA, RCA coated with Cement Slag Paste (CSP), and Double Coated Recycled Concrete Aggregates (DCRCAs) in place of granite aggregates were evaluated. The results indicated that the DCT improves strength and reduces water absorption of the DCRCAs compared with uncoated RCAs and RCA coated with CSP. In addition, the DCRCA asphalt mixtures exhibit stability values higher than those obtained for mixes made with granite aggregates, uncoated RCAs and RCAs coated with CSP. Also, the DCRCA asphalt mixtures require less bitumen to achieve the optimum bitumen content (OBC) than those manufactured with uncoated RCA and RCA-coated with CSP. Although the results obtained were encouraging, more testing is required in order to examine the effect of the DCT on performance properties of DCRCA- asphalt mixtures such as rutting and fatigue.

Keywords: aggregate crashed value, double coating technique, hot mix asphalt, Marshall parameters, recycled concrete aggregates

Procedia PDF Downloads 275