Search results for: automated feeding
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1498

Search results for: automated feeding

238 Automated Feature Extraction and Object-Based Detection from High-Resolution Aerial Photos Based on Machine Learning and Artificial Intelligence

Authors: Mohammed Al Sulaimani, Hamad Al Manhi

Abstract:

With the development of Remote Sensing technology, the resolution of optical Remote Sensing images has greatly improved, and images have become largely available. Numerous detectors have been developed for detecting different types of objects. In the past few years, Remote Sensing has benefited a lot from deep learning, particularly Deep Convolution Neural Networks (CNNs). Deep learning holds great promise to fulfill the challenging needs of Remote Sensing and solving various problems within different fields and applications. The use of Unmanned Aerial Systems in acquiring Aerial Photos has become highly used and preferred by most organizations to support their activities because of their high resolution and accuracy, which make the identification and detection of very small features much easier than Satellite Images. And this has opened an extreme era of Deep Learning in different applications not only in feature extraction and prediction but also in analysis. This work addresses the capacity of Machine Learning and Deep Learning in detecting and extracting Oil Leaks from Flowlines (Onshore) using High-Resolution Aerial Photos which have been acquired by UAS fixed with RGB Sensor to support early detection of these leaks and prevent the company from the leak’s losses and the most important thing environmental damage. Here, there are two different approaches and different methods of DL have been demonstrated. The first approach focuses on detecting the Oil Leaks from the RAW Aerial Photos (not processed) using a Deep Learning called Single Shoot Detector (SSD). The model draws bounding boxes around the leaks, and the results were extremely good. The second approach focuses on detecting the Oil Leaks from the Ortho-mosaiced Images (Georeferenced Images) by developing three Deep Learning Models using (MaskRCNN, U-Net and PSP-Net Classifier). Then, post-processing is performed to combine the results of these three Deep Learning Models to achieve a better detection result and improved accuracy. Although there is a relatively small amount of datasets available for training purposes, the Trained DL Models have shown good results in extracting the extent of the Oil Leaks and obtaining excellent and accurate detection.

Keywords: GIS, remote sensing, oil leak detection, machine learning, aerial photos, unmanned aerial systems

Procedia PDF Downloads 32
237 Biology and Life Fertility of the Cabbage Aphid, Brevicoryne brassicae (L) on Cauliflower Cultivars

Authors: Mandeep Kaur, K. C. Sharma, P. L. Sharma, R. S. Chandel

Abstract:

Cauliflower is an important vegetable crop grown throughout the world and is attacked by a large number of insect pests at various stages of the crop growth. Amongst them, the cabbage aphid, Brevicoryne brassicae (Linnaeus) (Hemiptera: Aphididae) is an important insect pest. Continued feeding by both nymphs and adults of this aphid causes yellowing, wilting and stunting of plants. Amongst various management practices, the use of resistant cultivars is important and can be an effective method of reducing the population of this aphid. So it is imperative to know the complete record on various biological parameters and life table on specific cultivars. The biology and life fertility of the cabbage aphid were studied on five cauliflower cultivars viz. Megha, Shweta, K-1, PSB-1 and PSBK-25 under controlled temperature conditions of 20 ± 2°C, 70 ± 5% relative humidity and 16:8 h (Light: Dark) photoperiods. For studying biology; apterous viviparous adults were picked up from the laboratory culture of all five cauliflower cultivars after rearing them at least for two generations and placed individually on the desired plants of cauliflower cultivars grown in pots with ten replicates of each. Daily record on the duration of nymphal period, adult longevity, mortality in each stage and the total number of progeny produced per female was made. This biological data were further used to construct life fertility table on each cultivar. Statistical analysis showed that there was a significant difference ( P  < 0.05) between the different growth stages and the mean number of laid nymphs. The maximum and minimum growth periods were observed on Shweta and Megha (at par with K-1) cultivars, respectively. The maximum number of nymphs were laid on Shweta cultivar (26.40 nymphs per female) and minimum on Megha (at par with K-1) cultivar (15.20 nymphs per female). The true intrinsic rate of increase (rm) was found to be maximum on Shweta (0.233 nymphs/female/day) followed by PSB K-25 (0.207 nymphs/female/day), PSB-1 (0.203 nymphs/female/day), Megha (0.166 nymphs/female/day) and K-1 (0.153 nymphs/female/day). The finite rate of natural increase (λ) was also found to be in the order: K-1 < Megha < PSB-1 < PSBK-25 < Shweta whereas the doubling time (DT) was in the order of K-1 >Megha> PSB-1 >PSBk-25> Shweta. The aphids reared on the K-1 cultivar had the lowest values of rm & λ and the highest value of DT whereas on Shweta cultivar the values of rm & λ were the highest and the lowest value of DT. So on the basis of these studies, K-1 cultivar was found to be the least suitable and the Shweta cultivar was the most suitable for the cabbage aphid population growth. Although the cauliflower cultivars used in different parts of the world may be different yet the results of the present studies indicated that the application of cultivars affecting multiplication rate and reproductive parameters could be a good solution for the management of the cabbage aphid.

Keywords: biology, cauliflower, cultivars, fertility

Procedia PDF Downloads 184
236 A Novel Nano-Chip Card Assay as Rapid Test for Diagnosis of Lymphatic Filariasis Compared to Nano-Based Enzyme Linked Immunosorbent Assay

Authors: Ibrahim Aly, Manal Ahmed, Mahmoud M. El-Shall

Abstract:

Filariasis is a parasitic disease caused by small roundworms. The filarial worms are transmitted and spread by blood-feeding black flies and mosquitoes. Lymphatic filariasis (Elephantiasis) is caused by Wuchereriabancrofti, Brugiamalayi, and Brugiatimori. Elimination of Lymphatic filariasis necessitates an increasing demand for valid, reliable, and rapid diagnostic kits. Nanodiagnostics involve the use of nanotechnology in clinical diagnosis to meet the demands for increased sensitivity, specificity, and early detection in less time. The aim of this study was to evaluate the nano-based enzymelinked immunosorbent assay (ELISA) and novel nano-chip card as a rapid test for detection of filarial antigen in serum samples of human filariasis in comparison with traditional -ELISA. Serum samples were collected from an infected human with filarial gathered across Egypt's governorates. After receiving informed consenta total of 45 blood samples of infected individuals residing in different villages in Gharbea governorate, which isa nonendemic region for bancroftianfilariasis, healthy persons living in nonendemic locations (20 persons), as well as sera from 20 other parasites, affected patients were collected. The microfilaria was checked in thick smears of 20 µl night blood samples collected during 20-22 hrs. All of these individuals underwent the following procedures: history taking, clinical examination, and laboratory investigations, which included examination of blood samples for microfilaria using thick blood film and serological tests for detection of the circulating filarial antigen using polyclonal antibody- ELISA, nano-based ELISA, and nano-chip card. In the present study, a recently reported polyoclonal antibody specific to tegumental filarial antigen was used in developing nano-chip card and nano-ELISA compared to traditional ELISA for the detection of circulating filarial antigen in sera of patients with bancroftianfilariasis. The performance of the ELISA was evaluated using 45 serum samples. The ELISA was positive with sera from microfilaremicbancroftianfilariasis patients (n = 36) with a sensitivity of 80 %. Circulating filarial antigen was detected in 39/45 patients who were positive for circulating filarial antigen using nano-ELISA with a sensitivity of 86.6 %. On the other hand, 42 out of 45 patients were positive for circulating filarial antigen using nano-chip card with a sensitivity of 93.3%.In conclusion, using a novel nano-chip assay could potentially be a promising alternative antigen detection test for bancroftianfilariasis.

Keywords: lymphatic filariasis, nanotechnology, rapid diagnosis, elisa technique

Procedia PDF Downloads 113
235 Building Information Modeling-Based Information Exchange to Support Facilities Management Systems

Authors: Sandra T. Matarneh, Mark Danso-Amoako, Salam Al-Bizri, Mark Gaterell

Abstract:

Today’s facilities are ever more sophisticated and the need for available and reliable information for operation and maintenance activities is vital. The key challenge for facilities managers is to have real-time accurate and complete information to perform their day-to-day activities and to provide their senior management with accurate information for decision-making process. Currently, there are various technology platforms, data repositories, or database systems such as Computer-Aided Facility Management (CAFM) that are used for these purposes in different facilities. In most current practices, the data is extracted from paper construction documents and is re-entered manually in one of these computerized information systems. Construction Operations Building information exchange (COBie), is a non-proprietary data format that contains the asset non-geometric data which was captured and collected during the design and construction phases for owners and facility managers use. Recently software vendors developed add-in applications to generate COBie spreadsheet automatically. However, most of these add-in applications are capable of generating a limited amount of COBie data, in which considerable time is still required to enter the remaining data manually to complete the COBie spreadsheet. Some of the data which cannot be generated by these COBie add-ins is essential for facilities manager’s day-to-day activities such as job sheet which includes preventive maintenance schedules. To facilitate a seamless data transfer between BIM models and facilities management systems, we developed a framework that enables automated data generation using the data extracted directly from BIM models to external web database, and then enabling different stakeholders to access to the external web database to enter the required asset data directly to generate a rich COBie spreadsheet that contains most of the required asset data for efficient facilities management operations. The proposed framework is a part of ongoing research and will be demonstrated and validated on a typical university building. Moreover, the proposed framework supplements the existing body of knowledge in facilities management domain by providing a novel framework that facilitates seamless data transfer between BIM models and facilities management systems.

Keywords: building information modeling, BIM, facilities management systems, interoperability, information management

Procedia PDF Downloads 115
234 Feeding Effects of Increasing Levels of Yerba Mate on Lamb Meat Quality

Authors: Yuli Andrea P. Bermudez, Richard R. Lobo, Tamyres R. D. Amorim, Danny Alexander R. Moreno, Angelica Simone C. Pereira, Ives Claudio D. Bueno

Abstract:

The use of natural antioxidants in animal feed can positively modify the profile of fatty acids (FAs) in meat, due to the presence of secondary metabolites, mainly phenolic and flavonoid compounds, which promote an increase in the associated polyunsaturated fatty acids (PUFA) with beneficial factors in human health. The goal of this study was to evaluate the effect of the dietary inclusion percentage of yerba mate extract (Ilex paraguariensis St. Hilaire) as a natural antioxidant on lamb meat quality. The animals were confined for 53 days and fed with corn silage and concentrated in the proportion of 60:40, respectively, were divided into four homogeneous groups (n = 9 lambs/group), to each of the treatments, one control group without yerba mate extract - YME (0%) and three treatments with 1, 2 and 4% the inclusion of YME on a DM basis. Samples of the Longissimus thoracis (LT) muscle were collected from the deboning of 36 lambs, analyzing pH values, color parameters (brightness: L*, red value: a*, and yellow: b*), fatty acid profile, total lipids, and sensory analysis. The inclusion of YME modified the value of b* (P = 0.0041), indicating a higher value of yellow color in the meat, for the group supplemented with 4% YME. All data were statistically evaluated using the MIXED procedure of the statistical package SAS 9.4. However, it did not show differences in the final live weight in the groups evaluated, as well as in the pH values (P = 0.1923) and the total lipid concentration (P = 0.0752). The FAs (P ≥ 0.1360) and health indexes were not altered by the inclusion of YME (P ≥ 0.1360); only branched-chain fatty acids (BCFA) exhibited a diet effect (P = 0.0092) in the group that had 4% of the extract. In the sensory analysis test with a hedonic scale it did not show differences between the treatments (P ≥ 0.1251). Nevertheless, in the just about-right test, using (note 1) to 'very strong, softness or moist' (note 5); the softness was different between the evaluated treatments (P = 0.0088) where groups with 2% YME had a better acceptance of tasters (4.15 ± 0.08) compared to the control (3.89 ± 0.08). In conclusion, although the addition of YME has shown positive results in sensory acceptance and in increasing the concentration of BCFA, fatty acids beneficial to human health, without changing the physical-chemical parameters in lamb meat, the absolute changes are considered to have been quite small, which was probably related to the high efficiency of PUFA biohydrogenation in the n the rumen.

Keywords: composition, health, antioxidant, meat analysis

Procedia PDF Downloads 111
233 Comfort Sensor Using Fuzzy Logic and Arduino

Authors: Samuel John, S. Sharanya

Abstract:

Automation has become an important part of our life. It has been used to control home entertainment systems, changing the ambience of rooms for different events etc. One of the main parameters to control in a smart home is the atmospheric comfort. Atmospheric comfort mainly includes temperature and relative humidity. In homes, the desired temperature of different rooms varies from 20 °C to 25 °C and relative humidity is around 50%. However, it varies widely. Hence, automated measurement of these parameters to ensure comfort assumes significance. To achieve this, a fuzzy logic controller using Arduino was developed using MATLAB. Arduino is an open source hardware consisting of a 24 pin ATMEGA chip (atmega328), 14 digital input /output pins and an inbuilt ADC. It runs on 5v and 3.3v power supported by a board voltage regulator. Some of the digital pins in Aruduino provide PWM (pulse width modulation) signals, which can be used in different applications. The Arduino platform provides an integrated development environment, which includes support for c, c++ and java programming languages. In the present work, soft sensor was introduced in this system that can indirectly measure temperature and humidity and can be used for processing several measurements these to ensure comfort. The Sugeno method (output variables are functions or singleton/constant, more suitable for implementing on microcontrollers) was used in the soft sensor in MATLAB and then interfaced to the Arduino, which is again interfaced to the temperature and humidity sensor DHT11. The temperature-humidity sensor DHT11 acts as the sensing element in this system. Further, a capacitive humidity sensor and a thermistor were also used to support the measurement of temperature and relative humidity of the surrounding to provide a digital signal on the data pin. The comfort sensor developed was able to measure temperature and relative humidity correctly. The comfort percentage was calculated and accordingly the temperature in the room was controlled. This system was placed in different rooms of the house to ensure that it modifies the comfort values depending on temperature and relative humidity of the environment. Compared to the existing comfort control sensors, this system was found to provide an accurate comfort percentage. Depending on the comfort percentage, the air conditioners and the coolers in the room were controlled. The main highlight of the project is its cost efficiency.

Keywords: arduino, DHT11, soft sensor, sugeno

Procedia PDF Downloads 310
232 Mitigation of Risk Management Activities towards Accountability into Microfinance Environment: Malaysian Case Study

Authors: Nor Azlina A. Rahman, Jamaliah Said, Salwana Hassan

Abstract:

Prompt changes in global business environment, such as passionate competition, managerial/operational, changing governmental regulation and innovation in technology have significant impacts on the organizations. At present, global business environment demands for more proactive institutions on microfinance to provide an opportunity for the business success. Microfinance providers in Malaysia still accelerate its activities of funding by cash and cheque. These institutions are at high risk as the paper-based system is deemed to be slow and prone to human error, as well as requiring a major annual reconciliation process. The global transformation of financial services, growing involvement of technology, innovation and new business activities had progressively made risk management profile to be more subjective and diversified. The persistent, complex and dynamic nature of risk management activities in the institutions arise due to highly automated advancements of technology. This may thus manifest in a variety of ways throughout the financial services sector. This study seeks out to examine current operational risks management being experienced by microfinance providers in Malaysia; investigate the process of current practices on facilitator control factor mechanisms, and explore how the adoption of technology, innovation and use of management accounting practices would affect the risk management process of operation system in microfinance providers in Malaysia. A case study method was employed in this study. The case study also need to find that the vital past role of management accounting will be used for mitigation of risk management activities towards accountability as an information or guideline to microfinance provider. An empirical element obtainable with qualitative method is needed in this study, where multipart and in-depth information are essential to understand the issues of these institution phenomena. This study is expected to propose a theoretical model for implementation of technology, innovation and management accounting practices into the system of operation to improve internal control and subsequently lead to mitigation of risk management activities among microfinance providers to be more successful.

Keywords: microfinance, accountability, operational risks, management accounting practices

Procedia PDF Downloads 438
231 Proximate Composition and Sensory Properties of Complementary Food from Fermented Acha (Digitaria exilis), Soybean and Orange-Flesh Sweet Potato Blends

Authors: N. C. Okoronkwo, I. E. Mbaeyi-Nwaoha, C. P. Agbata

Abstract:

Childhood malnutrition is one of the most persistent public health problems throughout developing countries, including Nigeria. Demographic and Health survey data from twenty-one developing countries indicated that poor complementary feeding of children aged 6- 23 months contributes to negative growth trends. To reduce malnutrition among children in the society, formulation of complimentary food rich in essential nutrient for optimum growth and development of infants is essential. This study focused on the evaluation of complementary food produced by solid-state fermentation of Acha and Soybean using Rhizopus oligosporus (2710) and Orange-fleshed sweet potatoes (OFSP) using Lactobacillus planterum (B-41621). The raw materials were soaked separately, each in four volumes of 0.9M acetic acid for 16 hours, rinsed with clean water, steam cooked and cooled. Solid-state fermentation (SSF) was carried out by inoculating Acha and Soybean with spore suspension (1x 10⁶spores/ml) of Rhizopus oligosporus (2710) and OFSP with spore suspension (1x 106spores/ml) of Lactobacillus planterum (B-41621). Fermentation which lasted for 72hours was carried out with 24hours sampling. The samples were blended in the following ratios: Acha and soybean 100: 100 (AS), Acha/soybean and OFSP 50: 50(ASO), made into gruel and compared with a commercial infant formula (Cerelac) which served as the control (CTRL). The samples were analyzed for proximate composition using AOAC methods and sensory attributes using a hedonic scale. Results showed that moisture, crude protein, fibre and ash content increased significantly (p<0.05) as fermentation progressed, while carbohydrate and fat content decreased. The protein, moisture, fibre and ash content ranged from 17.10-19.02%, 54.97-56.27%, 7.08-7.60% and2.09-2.38%, respectively, while carbohydrate and fat content ranged from 12.95-10.21% and 5.81-4.52%, respectively. In sensory scores, there were no significant (p>0.05) difference between the average mean scores of colours, texture and consistency of the samples. The sensory score for the overall acceptability ranged from 6.20-7.80. Sample CTRL had the highest score, while sample ASO had the least score. There was no significant (p>0.05) difference between samples CTRL and AS. Solid-state fermentation improved the nutritional content and flavour of the developed complementary food, which is needed for infant growth and development.

Keywords: Complementary food, malnutrition, proximate composition, solid-state fermentation

Procedia PDF Downloads 157
230 Smart Sensor Data to Predict Machine Performance with IoT-Based Machine Learning and Artificial Intelligence

Authors: C. J. Rossouw, T. I. van Niekerk

Abstract:

The global manufacturing industry is utilizing the internet and cloud-based services to further explore the anatomy and optimize manufacturing processes in support of the movement into the Fourth Industrial Revolution (4IR). The 4IR from a third world and African perspective is hindered by the fact that many manufacturing systems that were developed in the third industrial revolution are not inherently equipped to utilize the internet and services of the 4IR, hindering the progression of third world manufacturing industries into the 4IR. This research focuses on the development of a non-invasive and cost-effective cyber-physical IoT system that will exploit a machine’s vibration to expose semantic characteristics in the manufacturing process and utilize these results through a real-time cloud-based machine condition monitoring system with the intention to optimize the system. A microcontroller-based IoT sensor was designed to acquire a machine’s mechanical vibration data, process it in real-time, and transmit it to a cloud-based platform via Wi-Fi and the internet. Time-frequency Fourier analysis was applied to the vibration data to form an image representation of the machine’s behaviour. This data was used to train a Convolutional Neural Network (CNN) to learn semantic characteristics in the machine’s behaviour and relate them to a state of operation. The same data was also used to train a Convolutional Autoencoder (CAE) to detect anomalies in the data. Real-time edge-based artificial intelligence was achieved by deploying the CNN and CAE on the sensor to analyse the vibration. A cloud platform was deployed to visualize the vibration data and the results of the CNN and CAE in real-time. The cyber-physical IoT system was deployed on a semi-automated metal granulation machine with a set of trained machine learning models. Using a single sensor, the system was able to accurately visualize three states of the machine’s operation in real-time. The system was also able to detect a variance in the material being granulated. The research demonstrates how non-IoT manufacturing systems can be equipped with edge-based artificial intelligence to establish a remote machine condition monitoring system.

Keywords: IoT, cyber-physical systems, artificial intelligence, manufacturing, vibration analytics, continuous machine condition monitoring

Procedia PDF Downloads 88
229 Drone Swarm Routing and Scheduling for Off-shore Wind Turbine Blades Inspection

Authors: Mohanad Al-Behadili, Xiang Song, Djamila Ouelhadj, Alex Fraess-Ehrfeld

Abstract:

In off-shore wind farms, turbine blade inspection accessibility under various sea states is very challenging and greatly affects the downtime of wind turbines. Maintenance of any offshore system is not an easy task due to the restricted logistics and accessibility. The multirotor unmanned helicopter is of increasing interest in inspection applications due to its manoeuvrability and payload capacity. These advantages increase when many of them are deployed simultaneously in a swarm. Hence this paper proposes a drone swarm framework for inspecting offshore wind turbine blades and nacelles so as to reduce downtime. One of the big challenges of this task is that when operating a drone swarm, an individual drone may not have enough power to fly and communicate during missions and it has no capability of refueling due to its small size. Once the drone power is drained, there are no signals transmitted and the links become intermittent. Vessels equipped with 5G masts and small power units are utilised as platforms for drones to recharge/swap batteries. The research work aims at designing a smart energy management system, which provides automated vessel and drone routing and recharging plans. To achieve this goal, a novel mathematical optimisation model is developed with the main objective of minimising the number of drones and vessels, which carry the charging stations, and the downtime of the wind turbines. There are a number of constraints to be considered, such as each wind turbine must be inspected once and only once by one drone; each drone can inspect at most one wind turbine after recharging, then fly back to the charging station; collision should be avoided during the drone flying; all wind turbines in the wind farm should be inspected within the given time window. We have developed a real-time Ant Colony Optimisation (ACO) algorithm to generate real-time and near-optimal solutions to the drone swarm routing problem. The schedule will generate efficient and real-time solutions to indicate the inspection tasks, time windows, and the optimal routes of the drones to access the turbines. Experiments are conducted to evaluate the quality of the solutions generated by ACO.

Keywords: drone swarm, routing, scheduling, optimisation model, ant colony optimisation

Procedia PDF Downloads 264
228 Safety of Implementation the Gluten - Free Diet in Children with Autism Spectrum Disorder

Authors: J. Jessa

Abstract:

Background: Autism is a pervasive developmental disorder, the incidence of which has significantly increased in recent years. Children with autism have impairments in social skills, communication, and imagination. Children with autism has more common than healthy children feeding problems: food selectivity, problems with gastrointestinal tract: diarrhea, constipations, abdominal pain, reflux and others. Many parents of autistic children report that after implementation of gluten-, casein- and sugar free diet those symptoms disappear and even cognitive functions become better. Some children begin to understand speech and to communicate with parents, regain eye contact, become more calm, sleep better and has better concentration. Probably at the root of this phenomenon lies elimination from the diet peptides construction of which is similar to opiates. Enhanced permeability of gut causes absorption of not fully digested opioid-like peptides from food, like gluten and casein and probably others (proteins from soy and corn) which impact on brain of autistic children. Aim of the study: The aim of the study is to assess the safety of gluten-free diet in children with autism, aged 2,5-7. Methods: Participants of the study (n=70) – children aged 2,5-7 with autism are divided into 3 groups. The first group (research group) are patients whose parents want to implement a gluten-free diet. The second group are patients who have been recommended to eliminate from the diet artificial substances, such as preservatives, artificial colors and flavors, and others (control group 1). The third group (control group 2) are children whose parents did not agree for implementation of the diet. Caregivers of children on the diet are educated about the specifics of the diet and how to avoid malnutrition. At the start of the study we exclude celiac disease. Before the implementation of the diet we performe a blood test for patients (morphology, ferritin, total cholesterol, dry peripheral blood drops to detect some genetic metabolic diseases), plasma aminogram) and urine tests (excretion of ions: Mg, Na, Ca, the profile of organic acids in urine), which assess nutritional status as well as the psychological test assessing the degree of the child's psychological functioning (PEP-R). All of these tests will be repeated after one year from the implementation of the diet. Results: To the present moment we examined 42 children with autism. 12 of children are on gluten- free diet. Our preliminary results are promising. Parents of 9 of them report that, there is a big improvement in child behavior, concentration, less aggression incidents, better eye contact and better verbal skills. Conclusion: Our preliminary results suggest that dietary intervention may positively affect developmental outcome for some children diagnosed with ASD.

Keywords: gluten free diet, autism spectrum disorder, autism, blood test

Procedia PDF Downloads 323
227 Insect Cell-Based Models: Asutralian Sheep bBlowfly Lucilia Cuprina Embryo Primary Cell line Establishment and Transfection

Authors: Yunjia Yang, Peng Li, Gordon Xu, Timothy Mahony, Bing Zhang, Neena Mitter, Karishma Mody

Abstract:

Sheep flystrike is one of the most economically important diseases affecting the Australian sheep and wool industry (>356M/annually). Currently, control of Lucillia cuprina relies almost exclusively on chemicals controls, and the parasite has developed resistance to nearly all control chemicals used in the past. It is, therefore, critical to develop an alternative solution for the sustainable control and management of flystrike. RNA interference (RNAi) technologies have been successfully explored in multiple animal industries for developing parasites controls. This research project aims to develop a RNAi based biological control for sheep blowfly. Double-stranded RNA (dsRNA) has already proven successful against viruses, fungi, and insects. However, the environmental instability of dsRNA is a major bottleneck for successful RNAi. Bentonite polymer (BenPol) technology can overcome this problem, as it can be tuned for the controlled release of dsRNA in the gut challenging pH environment of the blowfly larvae, prolonging its exposure time to and uptake by target cells. To investigate the potential of BenPol technology for dsRNA delivery, four different BenPol carriers were tested for their dsRNA loading capabilities, and three of them were found to be capable of affording dsRNA stability under multiple temperatures (4°C, 22°C, 40°C, 55°C) in sheep serum. Based on stability results, dsRNA from potential targeted genes was loaded onto BenPol carriers and tested in larvae feeding assays, three genes resulting in knockdowns. Meanwhile, a primary blowfly embryo cell line (BFEC) derived from L. cuprina embryos was successfully established, aim for an effective insect cell model for testing RNAi efficacy for preliminary assessments and screening. The results of this study establish that the dsRNA is stable when loaded on BenPol particles, unlike naked dsRNA rapidly degraded in sheep serum. The stable nanoparticle delivery system offered by BenPol technology can protect and increase the inherent stability of dsRNA molecules at higher temperatures in a complex biological fluid like serum, providing promise for its future use in enhancing animal protection.

Keywords: lucilia cuprina, primary cell line establishment, RNA interference, insect cell transfection

Procedia PDF Downloads 73
226 Optical Coherence Tomography in Parkinson’s Disease: A Potential in-vivo Retinal α-Synuclein Biomarker in Parkinson’s Disease

Authors: Jessica Chorostecki, Aashka Shah, Fen Bao, Ginny Bao, Edwin George, Navid Seraji-Bozorgzad, Veronica Gorden, Christina Caon, Elliot Frohman

Abstract:

Background: Parkinson’s Disease (PD) is a neuro degenerative disorder associated with the loss of dopaminergic cells and the presence α-synuclein (AS) aggregation in of Lewy bodies. Both dopaminergic cells and AS are found in the retina. Optical coherence tomography (OCT) allows high-resolution in-vivo examination of retinal structure injury in neuro degenerative disorders including PD. Methods: We performed a cross-section OCT study in patients with definite PD and healthy controls (HC) using Spectral Domain SD-OCT platform to measure the peripapillary retinal nerve fiber layer (pRNFL) thickness and total macular volume (TMV). We performed intra-retinal segmentation with fully automated segmentation software to measure the volume of the RNFL, ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), and the outer nuclear layer (ONL). Segmentation was performed blinded to the clinical status of the study participants. Results: 101 eyes from 52 PD patients (mean age 65.8 years) and 46 eyes from 24 HC subjects (mean age 64.1 years) were included in the study. The mean pRNFL thickness was not significantly different (96.95 μm vs 94.42 μm, p=0.07) but the TMV was significantly lower in PD compared to HC (8.33 mm3 vs 8.58 mm3 p=0.0002). Intra-retinal segmentation showed no significant difference in the RNFL volume between the PD and HC groups (0.95 mm3 vs 0.92 mm3 p=0.454). However, GCL, IPL, INL, and ONL volumes were significantly reduced in PD compared to HC. In contrast, the volume of OPL was significantly increased in PD compared to HC. Conclusions: Our finding of the enlarged OPL corresponds with mRNA expression studies showing localization of AS in the OPL across vertebrate species and autopsy studies demonstrating AS aggregation in the deeper layers of retina in PD. We propose that the enlargement of the OPL may represent a potential biomarker of AS aggregation in PD. Longitudinal studies in larger cohorts are warranted to confirm our observations that may have significant implications in disease monitoring and therapeutic development.

Keywords: Optical Coherence Tomography, biomarker, Parkinson's disease, alpha-synuclein, retina

Procedia PDF Downloads 437
225 Particle Separation Using Individually-Controlled Magnetic Soft Artificial Cilia

Authors: Yau-Luen Ng, Nathan Banka, Santosh Devasia

Abstract:

In this paper, a method based on soft artificial cilia is introduced to separate particles based on size and mass. In nature, cilia are used for fluid propulsion in the mammalian circulatory system, as well as for swimming and size-selective particle entrainment for feeding in microorganisms. Inspired by biological cilia, an array of artificial cilia was fabricated using Polydimethylsiloxane (PDMS) to simulate the actual motion. A row of four individually-controlled magnetic artificial cilia in a semi-circular channel are actuated by the magnetic fields from four permanent magnets. Each cilium is a slender rectangular cantilever approximately 13mm long made from a composite of PDMS and carbonyl iron particles. A time-varying magnetic force is achieved by periodically varying the out-of-plane distance from the permanent magnets to the cilia, resulting in large-amplitude deflections of the cilia that can be used to drive fluid motion. Previous results have shown that this system of individually-controlled magnetic cilia can generate effective mixing flows; the purpose of the present work is to apply the individual cilia control to a particle separation task. Based on the observed beating patterns of cilia arrays in nature, the experimental beating patterns were selected as a metachronal wave, in which a fixed phase lead or lag is imposed between adjacent cilia. Additionally, the beating frequency was varied. For each set of experimental parameters, the channel was filled with water and polyethylene microspheres introduced at the center of the cilia array. Two types of particles were used: large red microspheres with density 0.9971 g/cm³ and 850-1000 μm avg. diameter, and small blue microspheres with density 1.06 g/cm³ and diameter 30 μm. At low beating frequencies, all particles were propelled in the mean flow direction. However, the large particles were observed to reverse directions above about 4.8 Hz, whereas reversal of the small particle transport direction did not occur until 6 Hz. Between these two transition frequencies, the large and small particles can be separated as they move in opposite directions. The experimental results show that selecting an appropriate cilia beating pattern can lead to selective transport of neutrally-buoyant particles based on their size. Importantly, the separation threshold can be chosen dynamically by adjusting the actuation frequency. However, further study is required to determine the range of particle sizes that can be effectively separated for a given system geometry.

Keywords: magnetic cilia, particle separation, tunable separation, soft actutors

Procedia PDF Downloads 199
224 Analyzing the Untenable Corruption Intricate Patterns in Africa and Combating Strategies for the Efficiency of Public Sector Supply Chains

Authors: Charles Mazhazhate

Abstract:

This study interrogates and analyses the intricate kin- and- kith network patterns of corruption and mismanagement of resources prevalent in public sector supply chains bedeviling the developing economies of Sub-Saharan Africa with particular reference to Zimbabwe. This is forcing governments to resort to harsh fiscal policies that see their citizens paying high taxes against a backdrop of incomes below the poverty datum line, and this negatively affects their quality of life. The corporate world is also affected by the various tax-regime instituted. Mismanagement of resources and corrupt practices are rampant in state-owned enterprises to the extent that institutional policies, procedures, and practices are often flouted for the benefit of a clique of individuals. This interwoven in kith and kin blood human relations in organizations where appointments to critical positions are based on ascribed status. People no longer place value in their systems to make them work thereby violating corporate governance principles. Greediness and ‘unholy friendship connections’ are instrumental in fueling the employment of people who know each other from their discrete backgrounds. Such employments or socio-metric unions are meant to protect those at the top by giving them intelligent information through spying on what other subordinates are doing inside and outside the organization. This practice has led to the underperforming of organizations as those employees with connections and their upper echelons favorites connive to abuse resources for their own benefit. Even if culprits are known, no draconian measures are employed as a deterrence measure. Public value along public sector supply chains is lost. The study used a descriptive case study research design on fifty organizations in Zimbabwe mainly state-owned enterprises. Both qualitative and quantitative instrumentations were used. Both Snowball and random sampling techniques were used. The study found out that in all the fifty SOEs, there were employees in key positions related to top management, with tentacles feeding into the law enforcement agents, judiciary, security systems, and the executive. Such employees in public seem not to know each other with but would be involved in dirty scams and then share the proceeds with top people behind the scenes. The study also established that the same employees do not have the necessary competencies, qualifications, abilities, and capabilities to be in those positions. This culture is now strong that it is difficult to bust. The study recommends recruitment of all employees through an independent employment bureau to ensure strategic fit.

Keywords: corruption, state owned enterprises, strategic fit, public sector supply chains, efficiency

Procedia PDF Downloads 160
223 The Association of Anthropometric Measurements, Blood Pressure Measurements, and Lipid Profiles with Mental Health Symptoms in University Students

Authors: Ammaarah Gamieldien

Abstract:

Depression is a very common and serious mental illness that has a significant impact on both the social and economic aspects of sufferers worldwide. This study aimed to investigate the association between body mass index (BMI), blood pressure, and lipid profiles with mental health symptoms in university students. Secondary objectives included the associations between the variables (BMI, blood pressure, and lipids) with themselves, as they are key factors in cardiometabolic disease. Sixty-three (63) students participated in the study. Thirty-two (32) were assigned to the control group (minimal-mild depressive symptoms), while 31 were assigned to the depressive group (moderate to severe depressive symptoms). Montgomery-Asberg Depression Rating Scale (MADRS) and Beck Depression Inventory (BDI) were used to assess depressive scores. Anthropometric measurements such as weight (kg), height (m), waist circumference (WC), and hip circumference were measured. Body mass index (BMI) and ratios such as waist-to-hip ratio (WHR) and waist-to-height ratio (WtHR) were also calculated. Blood pressure was measured using an automated AfriMedics blood pressure machine, while lipids were measured using a CardioChek plus analyzer machine. Statistics were analyzed via the SPSS statistics program. There were no significant associations between anthropometric measurements and depressive scores (p > 0.05). There were no significant correlations between lipid profiles and depression when running a Spearman’s rho correlation (P > 0.05). However, total cholesterol and LDL-C were negatively associated with depression, and triglycerides were positively associated with depression after running a point-biserial correlation (P < 0.05). Overall, there were no significant associations between blood pressure measurements and depression (P > 0.05). However, there was a significant moderate positive correlation between systolic blood pressure and MADRS scores in males (P < 0.05). Depressive scores positively and strongly correlated to how long it takes participants to fall asleep. There were also significant associations with regard to the secondary objectives. This study indicates the importance of determining the prevalence of depression among university students in South Africa. If the prevalence and factors associated with depression are addressed, depressive symptoms in university students may be improved.

Keywords: depression, blood pressure, body mass index, lipid profiles, mental health symptoms

Procedia PDF Downloads 62
222 De novo Transcriptome Assembly of Lumpfish (Cyclopterus lumpus L.) Brain Towards Understanding their Social and Cognitive Behavioural Traits

Authors: Likith Reddy Pinninti, Fredrik Ribsskog Staven, Leslie Robert Noble, Jorge Manuel de Oliveira Fernandes, Deepti Manjari Patel, Torstein Kristensen

Abstract:

Understanding fish behavior is essential to improve animal welfare in aquaculture research. Behavioral traits can have a strong influence on fish health and habituation. To identify the genes and biological pathways responsible for lumpfish behavior, we performed an experiment to understand the interspecies relationship (mutualism) between the lumpfish and salmon. Also, we tested the correlation between the gene expression data vs. observational/physiological data to know the essential genes that trigger stress and swimming behavior in lumpfish. After the de novo assembly of the brain transcriptome, all the samples were individually mapped to the available lumpfish (Cyclopterus lumpus L.) primary genome assembly (fCycLum1.pri, GCF_009769545.1). Out of ~16749 genes expressed in brain samples, we found 267 genes to be statistically significant (P > 0.05) found only in odor and control (1), model and control (41) and salmon and control (225) groups. However, genes with |LogFC| ≥0.5 were found to be only eight; these are considered as differentially expressed genes (DEG’s). Though, we are unable to find the differential genes related to the behavioral traits from RNA-Seq data analysis. From the correlation analysis, between the gene expression data vs. observational/physiological data (serotonin (5HT), dopamine (DA), 3,4-Dihydroxyphenylacetic acid (DOPAC), 5-hydroxy indole acetic acid (5-HIAA), Noradrenaline (NORAD)). We found 2495 genes found to be significant (P > 0.05) and among these, 1587 genes are positively correlated with the Noradrenaline (NORAD) hormone group. This suggests that Noradrenaline is triggering the change in pigmentation and skin color in lumpfish. Genes related to behavioral traits like rhythmic, locomotory, feeding, visual, pigmentation, stress, response to other organisms, taxis, dopamine synthesis and other neurotransmitter synthesis-related genes were obtained from the correlation analysis. In KEGG pathway enrichment analysis, we find important pathways, like the calcium signaling pathway and adrenergic signaling in cardiomyocytes, both involved in cell signaling, behavior, emotion, and stress. Calcium is an essential signaling molecule in the brain cells; it could affect the behavior of fish. Our results suggest that changes in calcium homeostasis and adrenergic receptor binding activity lead to changes in fish behavior during stress.

Keywords: behavior, De novo, lumpfish, salmon

Procedia PDF Downloads 173
221 Critical Evaluation of the Transformative Potential of Artificial Intelligence in Law: A Focus on the Judicial System

Authors: Abisha Isaac Mohanlal

Abstract:

Amidst all suspicions and cynicism raised by the legal fraternity, Artificial Intelligence has found its way into the legal system and has revolutionized the conventional forms of legal services delivery. Be it legal argumentation and research or resolution of complex legal disputes; artificial intelligence has crept into all legs of modern day legal services. Its impact has been largely felt by way of big data, legal expert systems, prediction tools, e-lawyering, automated mediation, etc., and lawyers around the world are forced to upgrade themselves and their firms to stay in line with the growth of technology in law. Researchers predict that the future of legal services would belong to artificial intelligence and that the age of human lawyers will soon rust. But as far as the Judiciary is concerned, even in the developed countries, the system has not fully drifted away from the orthodoxy of preferring Natural Intelligence over Artificial Intelligence. Since Judicial decision-making involves a lot of unstructured and rather unprecedented situations which have no single correct answer, and looming questions of legal interpretation arise in most of the cases, discretion and Emotional Intelligence play an unavoidable role. Added to that, there are several ethical, moral and policy issues to be confronted before permitting the intrusion of Artificial Intelligence into the judicial system. As of today, the human judge is the unrivalled master of most of the judicial systems around the globe. Yet, scientists of Artificial Intelligence claim that robot judges can replace human judges irrespective of how daunting the complexity of issues is and how sophisticated the cognitive competence required is. They go on to contend that even if the system is too rigid to allow robot judges to substitute human judges in the recent future, Artificial Intelligence may still aid in other judicial tasks such as drafting judicial documents, intelligent document assembly, case retrieval, etc., and also promote overall flexibility, efficiency, and accuracy in the disposal of cases. By deconstructing the major challenges that Artificial Intelligence has to overcome in order to successfully invade the human- dominated judicial sphere, and critically evaluating the potential differences it would make in the system of justice delivery, the author tries to argue that penetration of Artificial Intelligence into the Judiciary could surely be enhancive and reparative, if not fully transformative.

Keywords: artificial intelligence, judicial decision making, judicial systems, legal services delivery

Procedia PDF Downloads 224
220 Criticality Assessment Model for Water Pipelines Using Fuzzy Analytical Network Process

Authors: A. Assad, T. Zayed

Abstract:

Water networks (WNs) are responsible of providing adequate amounts of safe, high quality, water to the public. As other critical infrastructure systems, WNs are subjected to deterioration which increases the number of breaks and leaks and lower water quality. In Canada, 35% of water assets require critical attention and there is a significant gap between the needed and the implemented investments. Thus, the need for efficient rehabilitation programs is becoming more urgent given the paradigm of aging infrastructure and tight budget. The first step towards developing such programs is to formulate a Performance Index that reflects the current condition of water assets along with its criticality. While numerous studies in the literature have focused on various aspects of condition assessment and reliability, limited efforts have investigated the criticality of such components. Critical water mains are those whose failure cause significant economic, environmental or social impacts on a community. Inclusion of criticality in computing the performance index will serve as a prioritizing tool for the optimum allocating of the available resources and budget. In this study, several social, economic, and environmental factors that dictate the criticality of a water pipelines have been elicited from analyzing the literature. Expert opinions were sought to provide pairwise comparisons of the importance of such factors. Subsequently, Fuzzy Logic along with Analytical Network Process (ANP) was utilized to calculate the weights of several criteria factors. Multi Attribute Utility Theories (MAUT) was then employed to integrate the aforementioned weights with the attribute values of several pipelines in Montreal WN. The result is a criticality index, 0-1, that quantifies the severity of the consequence of failure of each pipeline. A novel contribution of this approach is that it accounts for both the interdependency between criteria factors as well as the inherited uncertainties in calculating the criticality. The practical value of the current study is represented by the automated tool, Excel-MATLAB, which can be used by the utility managers and decision makers in planning for future maintenance and rehabilitation activities where high-level efficiency in use of materials and time resources is required.

Keywords: water networks, criticality assessment, asset management, fuzzy analytical network process

Procedia PDF Downloads 147
219 Variation in pH Values and Tenderness of Meat of Cattle Fed Different Levels of Lipids

Authors: Erico Da Silva Lima, Tiago Neves Pereira Valente, Roberto De Oliveira Roça

Abstract:

Introduction: Over the last few years the market has increased its demand for high quality meat. Based on this premise some producers have continuously improved their efficiency in breeding beef cattle with the purpose to support this demand. It is well recognized that final quality of beef is intimately linked to animal’s diet. The key objective of this study is to evaluate the influence of feeding animals with cottonseed and its lipids and the final results in terms of pH and shear forces of the meat. Materials and Methods: The study was carried out in the Chapéu de Couro Farm in Aguaí/SP, Brazil. A group of 39 uncastrated Nellore cattle. Mean age of the animals was 36 months and initial mean live weight was 494.1 ± 10.1. Animals were randomly assigned to one of three treatments, based on dry matter: feed with control diet 2.50% cottonseed, feed with 11.50% cottonseed, and feed with 3.13% cottonseed added of 1.77% protected lipid. Forage:concentrate ratio was 50:50 on a dry matter basis. Sugar cane chopped was used as forage. After slaughter, carcasses were identified and divided into two halves that were kept in a cold chamber for 24 h at 2°C. Using pH meter was determined post-mortem pH in Longissimus thoracis muscle between the 12th and 13th rib of the left half carcass. After, part of each animal was removed, and divided in three samples (steaks). Steaks were 2.5 cm thick and were identified and stored individually in plastic bags under vacuum. Samples were frozen in a freezer at -18°C. The same samples cooked were refrigerated by 12 h the 4°C, and then cut into cylinders 1.10 Øcm with the support of a drill press avoiding fats and nerves. Shear force was calculated in these samples cut into cylinders through the Brookfield texture CT3 Texture Analyzer 25 k equipped with a set of blade Warner-Bratzler. Results and Discussion: No differences (P > 0.05) in pH 24 h after slaughter were observed in the meat of Nellore cattle fed different sources of fat, and mean value for this variable was 5.59. However, for the shear force differences (P < 0.05) were founded. For diet with 2,50% cottonseed the lowest value found 5.10 (kg) while for the treatment with 11.50% cottonseed the great value found was 6.30 (kg). High shear force values mean greater texture of meat that indicates less tenderness. The texture of the meat can be influenced by age, weight to the slaughter of animals. For cattle breed Nellore Bos taurus indicus more high value of shear force. Conclusions: The add the cottonseed or protected lipid in diet is not affected pH values in meat. The whole cottonseed does not contribute to the improvement of tenderness of the meat. Acknowledgments: IFGoiano, FAPEG and CNPq (Brazil).

Keywords: beef quality, cottonseed, protected fat, shear force

Procedia PDF Downloads 228
218 Digital Immunity System for Healthcare Data Security

Authors: Nihar Bheda

Abstract:

Protecting digital assets such as networks, systems, and data from advanced cyber threats is the aim of Digital Immunity Systems (DIS), which are a subset of cybersecurity. With features like continuous monitoring, coordinated reactions, and long-term adaptation, DIS seeks to mimic biological immunity. This minimizes downtime by automatically identifying and eliminating threats. Traditional security measures, such as firewalls and antivirus software, are insufficient for enterprises, such as healthcare providers, given the rapid evolution of cyber threats. The number of medical record breaches that have occurred in recent years is proof that attackers are finding healthcare data to be an increasingly valuable target. However, obstacles to enhancing security include outdated systems, financial limitations, and a lack of knowledge. DIS is an advancement in cyber defenses designed specifically for healthcare settings. Protection akin to an "immune system" is produced by core capabilities such as anomaly detection, access controls, and policy enforcement. Coordination of responses across IT infrastructure to contain attacks is made possible by automation and orchestration. Massive amounts of data are analyzed by AI and machine learning to find new threats. After an incident, self-healing enables services to resume quickly. The implementation of DIS is consistent with the healthcare industry's urgent requirement for resilient data security in light of evolving risks and strict guidelines. With resilient systems, it can help organizations lower business risk, minimize the effects of breaches, and preserve patient care continuity. DIS will be essential for protecting a variety of environments, including cloud computing and the Internet of medical devices, as healthcare providers quickly adopt new technologies. DIS lowers traditional security overhead for IT departments and offers automated protection, even though it requires an initial investment. In the near future, DIS may prove to be essential for small clinics, blood banks, imaging centers, large hospitals, and other healthcare organizations. Cyber resilience can become attainable for the whole healthcare ecosystem with customized DIS implementations.

Keywords: digital immunity system, cybersecurity, healthcare data, emerging technology

Procedia PDF Downloads 67
217 The Effect of Extruded Full-Fat Rapeseed on Productivity and Eggs Quality of Isa Brown Laying Hens

Authors: Vilma Sasyte, Vilma Viliene, Agila Dauksiene, Asta Raceviciute-Stupeliene, Romas Gruzauskas, Saulius Alijosius

Abstract:

The eight-week feeding trial was conducted involving 27-wk-old Isa brown laying hens to study the effect of dry extrusion processing on partial reduction in total glucosinolates content of locally produced rapeseed and on productivity and eggs quality parameters of laying hens. Thirty-six hens were randomly assigned one of three treatments (CONTR, AERS and HERS), each comprising 12, individual caged layers. The main composition of the diets was the same, but extruded soya bean seed were replaced with 2.5% of the extruded rapeseed in the AERS group and 4.5 % in the HERS group. Rapeseed was extruded together with faba beans. Due to extrusion process the glucosinolates content was reduced by 7.83 µmol/g of rapeseed. The results of conducted trial shows, that during all experimental period egg production parameters, such as the average feed intake (6529.17 vs. 6257 g/hen/14 day; P < 0.05) and laying intensity (94.35% vs. 89.29; P < 0.05) were statistically different for HERS and CONTR laying hens respectively. Only the feed conversion ratio to produce 1 kg of eggs, kg in AERS group was by 11 % lower compared to CONTR group (P < 0.05). By analysing the effect of extruded rapeseed on egg mass, the statistical differences between treatments were no determined. The dietary treatments did not affect egg weight, albumen height, haugh units, albumen and yolk pH. However, in the HERS group were get eggs with the more intensive yolk color, higher redness (a) and yellowness (b) values. The inclusion of full-fat extruded rapeseed had no effect on egg shell quality parameters, i.e. shell breaking strength, shell weight with and without coat and shell index, but in the experimental groups were get eggs with the thinner shell (P < 0.05). The internal egg quality analysis showed that with higher content of extruded rapeseed (4.5 %) level in the diet, the total cholesterol in the eggs yolk decreased by 1.92 mg/g in comparison with CONTR group (P < 0.05). Eggs laid by hens fed the diet containing 2.5% and 4.5% had increasing ∑PNRR/∑SRR ratio and decreasing ∑(n-6)/∑(n-3) ratio values of eggs yolk fatty acids than in CONTR group. Eggs of hens fed different amount of extruded rapeseed presented an n-6 : n-3 ratio changed from 5.17 to 4.71. The analysis of the relationship between hypocholesteremia/ hypercholesterolemia fatty acids (H/H), which is based on the functional properties of fatty acids, found that the value of it ratio is significant higher in laying hens fed diets supplemented with 4.5% extruded rapeseed than the CONTR group, demonstrating the positive effects of extruded rapeseed on egg quality. The results of trial confirmed that extruded full fat rapeseed to the 4.5% are suitable to replace soyabean in the compound feed of laying hens.

Keywords: egg quality, extruded full-fat rapeseed, laying hens, productivity

Procedia PDF Downloads 215
216 The Regulation of Reputational Information in the Sharing Economy

Authors: Emre Bayamlıoğlu

Abstract:

This paper aims to provide an account of the legal and the regulative aspects of the algorithmic reputation systems with a special emphasis on the sharing economy (i.e., Uber, Airbnb, Lyft) business model. The first section starts with an analysis of the legal and commercial nature of the tripartite relationship among the parties, namely, the host platform, individual sharers/service providers and the consumers/users. The section further examines to what extent an algorithmic system of reputational information could serve as an alternative to legal regulation. Shortcomings are explained and analyzed with specific examples from Airbnb Platform which is a pioneering success in the sharing economy. The following section focuses on the issue of governance and control of the reputational information. The section first analyzes the legal consequences of algorithmic filtering systems to detect undesired comments and how a delicate balance could be struck between the competing interests such as freedom of speech, privacy and the integrity of the commercial reputation. The third section deals with the problem of manipulation by users. Indeed many sharing economy businesses employ certain techniques of data mining and natural language processing to verify consistency of the feedback. Software agents referred as "bots" are employed by the users to "produce" fake reputation values. Such automated techniques are deceptive with significant negative effects for undermining the trust upon which the reputational system is built. The third section is devoted to explore the concerns with regard to data mobility, data ownership, and the privacy. Reputational information provided by the consumers in the form of textual comment may be regarded as a writing which is eligible to copyright protection. Algorithmic reputational systems also contain personal data pertaining both the individual entrepreneurs and the consumers. The final section starts with an overview of the notion of reputation as a communitarian and collective form of referential trust and further provides an evaluation of the above legal arguments from the perspective of public interest in the integrity of reputational information. The paper concludes with certain guidelines and design principles for algorithmic reputation systems, to address the above raised legal implications.

Keywords: sharing economy, design principles of algorithmic regulation, reputational systems, personal data protection, privacy

Procedia PDF Downloads 465
215 Applications of Artificial Intelligence (AI) in Cardiac imaging

Authors: Angelis P. Barlampas

Abstract:

The purpose of this study is to inform the reader, about the various applications of artificial intelligence (AI), in cardiac imaging. AI grows fast and its role is crucial in medical specialties, which use large amounts of digital data, that are very difficult or even impossible to be managed by human beings and especially doctors.Artificial intelligence (AI) refers to the ability of computers to mimic human cognitive function, performing tasks such as learning, problem-solving, and autonomous decision making based on digital data. Whereas AI describes the concept of using computers to mimic human cognitive tasks, machine learning (ML) describes the category of algorithms that enable most current applications described as AI. Some of the current applications of AI in cardiac imaging are the follows: Ultrasound: Automated segmentation of cardiac chambers across five common views and consequently quantify chamber volumes/mass, ascertain ejection fraction and determine longitudinal strain through speckle tracking. Determine the severity of mitral regurgitation (accuracy > 99% for every degree of severity). Identify myocardial infarction. Distinguish between Athlete’s heart and hypertrophic cardiomyopathy, as well as restrictive cardiomyopathy and constrictive pericarditis. Predict all-cause mortality. CT Reduce radiation doses. Calculate the calcium score. Diagnose coronary artery disease (CAD). Predict all-cause 5-year mortality. Predict major cardiovascular events in patients with suspected CAD. MRI Segment of cardiac structures and infarct tissue. Calculate cardiac mass and function parameters. Distinguish between patients with myocardial infarction and control subjects. It could potentially reduce costs since it would preclude the need for gadolinium-enhanced CMR. Predict 4-year survival in patients with pulmonary hypertension. Nuclear Imaging Classify normal and abnormal myocardium in CAD. Detect locations with abnormal myocardium. Predict cardiac death. ML was comparable to or better than two experienced readers in predicting the need for revascularization. AI emerge as a helpful tool in cardiac imaging and for the doctors who can not manage the overall increasing demand, in examinations such as ultrasound, computed tomography, MRI, or nuclear imaging studies.

Keywords: artificial intelligence, cardiac imaging, ultrasound, MRI, CT, nuclear medicine

Procedia PDF Downloads 78
214 Sea of Light: A Game 'Based Approach for Evidence-Centered Assessment of Collaborative Problem Solving

Authors: Svenja Pieritz, Jakab Pilaszanovich

Abstract:

Collaborative Problem Solving (CPS) is recognized as being one of the most important skills of the 21st century with having a potential impact on education, job selection, and collaborative systems design. Therefore, CPS has been adopted in several standardized tests, including the Programme for International Student Assessment (PISA) in 2015. A significant challenge of evaluating CPS is the underlying interplay of cognitive and social skills, which requires a more holistic assessment. However, the majority of the existing tests are using a questionnaire-based assessment, which oversimplifies this interplay and undermines ecological validity. Two major difficulties were identified: Firstly, the creation of a controllable, real-time environment allowing natural behaviors and communication between at least two people. Secondly, the development of an appropriate method to collect and synthesize both cognitive and social metrics of collaboration. This paper proposes a more holistic and automated approach to the assessment of CPS. To address these two difficulties, a multiplayer problem-solving game called Sea of Light was developed: An environment allowing students to deploy a variety of measurable collaborative strategies. This controlled environment enables researchers to monitor behavior through the analysis of game actions and chat. The according solution for the statistical model is a combined approach of Natural Language Processing (NLP) and Bayesian network analysis. Social exchanges via the in-game chat are analyzed through NLP and fed into the Bayesian network along with other game actions. This Bayesian network synthesizes evidence to track and update different subdimensions of CPS. Major findings focus on the correlations between the evidences collected through in- game actions, the participants’ chat features and the CPS self- evaluation metrics. These results give an indication of which game mechanics can best describe CPS evaluation. Overall, Sea of Light gives test administrators control over different problem-solving scenarios and difficulties while keeping the student engaged. It enables a more complete assessment based on complex, socio-cognitive information on actions and communication. This tool permits further investigations of the effects of group constellations and personality in collaborative problem-solving.

Keywords: bayesian network, collaborative problem solving, game-based assessment, natural language processing

Procedia PDF Downloads 132
213 Coastal Resources Spatial Planning and Potential Oil Risk Analysis: Case Study of Misratah’s Coastal Resources, Libya

Authors: Abduladim Maitieg, Kevin Lynch, Mark Johnson

Abstract:

The goal of the Libyan Environmental General Authority (EGA) and National Oil Corporation (Department of Health, Safety & Environment) during the last 5 years has been to adopt a common approach to coastal and marine spatial planning. Protection and planning of the coastal zone is a significant for Libya, due to the length of coast and, the high rate of oil export, and spills’ potential negative impacts on coastal and marine habitats. Coastal resource scenarios constitute an important tool for exploring the long-term and short-term consequences of oil spill impact and available response options that would provide an integrated perspective on mitigation. To investigate that, this paper reviews the Misratah coastal parameters to present the physical and human controls and attributes of coastal habitats as the first step in understanding how they may be damaged by an oil spill. This paper also investigates costal resources, providing a better understanding of the resources and factors that impact the integrity of the ecosystem. Therefore, the study described the potential spatial distribution of oil spill risk and the coastal resources value, and also created spatial maps of coastal resources and their vulnerability to oil spills along the coast. This study proposes an analysis of coastal resources condition at a local level in the Misratah region of the Mediterranean Sea, considering the implementation of coastal and marine spatial planning over time as an indication of the will to manage urban development. Oil spill contamination analysis and their impact on the coastal resources depend on (1) oil spill sequence, (2) oil spill location, (3) oil spill movement near the coastal area. The resulting maps show natural, socio-economic activity, environmental resources along of the coast, and oil spill location. Moreover, the study provides significant geodatabase information which is required for coastal sensitivity index mapping and coastal management studies. The outcome of study provides the information necessary to set an Environmental Sensitivity Index (ESI) for the Misratah shoreline, which can be used for management of coastal resources and setting boundaries for each coastal sensitivity sectors, as well as to help planners measure the impact of oil spills on coastal resources. Geographic Information System (GIS) tools were used in order to store and illustrate the spatial convergence of existing socio-economic activities such as fishing, tourism, and the salt industry, and ecosystem components such as sea turtle nesting area, Sabkha habitats, and migratory birds feeding sites. These geodatabases help planners investigate the vulnerability of coastal resources to an oil spill.

Keywords: coastal and marine spatial planning advancement training, GIS mapping, human uses, ecosystem components, Misratah coast, Libyan, oil spill

Procedia PDF Downloads 362
212 Adaption of the Design Thinking Method for Production Planning in the Meat Industry Using Machine Learning Algorithms

Authors: Alica Höpken, Hergen Pargmann

Abstract:

The resource-efficient planning of the complex production planning processes in the meat industry and the reduction of food waste is a permanent challenge. The complexity of the production planning process occurs in every part of the supply chain, from agriculture to the end consumer. It arises from long and uncertain planning phases. Uncertainties such as stochastic yields, fluctuations in demand, and resource variability are part of this process. In the meat industry, waste mainly relates to incorrect storage, technical causes in production, or overproduction. The high amount of food waste along the complex supply chain in the meat industry could not be reduced by simple solutions until now. Therefore, resource-efficient production planning by conventional methods is currently only partially feasible. The realization of intelligent, automated production planning is basically possible through the application of machine learning algorithms, such as those of reinforcement learning. By applying the adapted design thinking method, machine learning methods (especially reinforcement learning algorithms) are used for the complex production planning process in the meat industry. This method represents a concretization to the application area. A resource-efficient production planning process is made available by adapting the design thinking method. In addition, the complex processes can be planned efficiently by using this method, since this standardized approach offers new possibilities in order to challenge the complexity and the high time consumption. It represents a tool to support the efficient production planning in the meat industry. This paper shows an elegant adaption of the design thinking method to apply the reinforcement learning method for a resource-efficient production planning process in the meat industry. Following, the steps that are necessary to introduce machine learning algorithms into the production planning of the food industry are determined. This is achieved based on a case study which is part of the research project ”REIF - Resource Efficient, Economic and Intelligent Food Chain” supported by the German Federal Ministry for Economic Affairs and Climate Action of Germany and the German Aerospace Center. Through this structured approach, significantly better planning results are achieved, which would be too complex or very time consuming using conventional methods.

Keywords: change management, design thinking method, machine learning, meat industry, reinforcement learning, resource-efficient production planning

Procedia PDF Downloads 126
211 Transcriptomic and Translational Regulation of Peroxisome Proliferator-Activated Receptors after Different Feedings in Salmon

Authors: Mahsa Jalili, Essa Ehsan Khan, Signe Dille Lovmo, Augustine Akruwe, Egil Lien, Rolf Erik Olsen, Trygve Sigholt, Atle Magnus Bones

Abstract:

Data from the Norwegian Directorate of Fisheries reported that >1.2 million tons of Atlantic salmon were produced in Norway aquaculture industry in 2016. Peroxisome proliferator-activated receptors (PPARs) are one of the key transcription factor families that respond to nutritional ligands. Recent studies have shown the connection between PPARs with lipid and carbohydrate metabolism in aquaculture. To our knowledge, there is no published data about the effects of krill meal, soybean meal, Bactocell ® and butyrate feedings compared to control group on PPARs gene and protein expressions in Atlantic salmon. Fish, 1year +postsmolt, average weight 250 gram were cultured for 12 weeks after acclimatization by control commercial feeding in 2 weeks after hatchery. Water oxygen rate, salinity, and temperature were monitored every second day. At the end of the trial, fish were taken from tanks randomly, and four replicates per group were collected and stored in -80 freezers until analysis. Total RNA extracted from posterior part of dorsal fin muscle tissues and Nanodrop and Bioanalyzer was used to check the quality of RNA. Gene expression of PPAR α, β and γ were determined by RT-PCR. The expression of genes of interest was measured relative to control group after normalization to three reference genes. Total protein concentration was calculated by Bradford method, and protein expression was determined with primary PPARγ antibody by western blot. All data were analyzed by ANOVA followed by Benjamini-Hochberg and Bonferroni tests. Probability values <0.05 considered significant. Bactocell® and butyrate groups showed significantly lower PPARα expression. PPARβ and γ were not significantly different among groups. PPARγ mRNA expression was approximately consistent with protein expression pattern, except than butyrate group showed lower mRNA level. The order of PPARγ expression was Bactocell® > soy meal > butyrate > krill meal > control respectively. PPARβ gene expression decreased more in soy meal > butyrate > krill meal > Bactocell® > control groups respectively. In conclusion, the increased expression of PPARγ and α is proposed to represent a reduction tendency of lipid storage in fish fed by Bactocell®, butyrate, soy and krill meal.

Keywords: aquaculture, blotting western, gene expression, krill protein extract, prebiotics, probiotics, Salmo salar

Procedia PDF Downloads 224
210 AIR SAFE: an Internet of Things System for Air Quality Management Leveraging Artificial Intelligence Algorithms

Authors: Mariangela Viviani, Daniele Germano, Simone Colace, Agostino Forestiero, Giuseppe Papuzzo, Sara Laurita

Abstract:

Nowadays, people spend most of their time in closed environments, in offices, or at home. Therefore, secure and highly livable environmental conditions are needed to reduce the probability of aerial viruses spreading. Also, to lower the human impact on the planet, it is important to reduce energy consumption. Heating, Ventilation, and Air Conditioning (HVAC) systems account for the major part of energy consumption in buildings [1]. Devising systems to control and regulate the airflow is, therefore, essential for energy efficiency. Moreover, an optimal setting for thermal comfort and air quality is essential for people’s well-being, at home or in offices, and increases productivity. Thanks to the features of Artificial Intelligence (AI) tools and techniques, it is possible to design innovative systems with: (i) Improved monitoring and prediction accuracy; (ii) Enhanced decision-making and mitigation strategies; (iii) Real-time air quality information; (iv) Increased efficiency in data analysis and processing; (v) Advanced early warning systems for air pollution events; (vi) Automated and cost-effective m onitoring network; and (vii) A better understanding of air quality patterns and trends. We propose AIR SAFE, an IoT-based infrastructure designed to optimize air quality and thermal comfort in indoor environments leveraging AI tools. AIR SAFE employs a network of smart sensors collecting indoor and outdoor data to be analyzed in order to take any corrective measures to ensure the occupants’ wellness. The data are analyzed through AI algorithms able to predict the future levels of temperature, relative humidity, and CO₂ concentration [2]. Based on these predictions, AIR SAFE takes actions, such as opening/closing the window or the air conditioner, to guarantee a high level of thermal comfort and air quality in the environment. In this contribution, we present the results from the AI algorithm we have implemented on the first s et o f d ata c ollected i n a real environment. The results were compared with other models from the literature to validate our approach.

Keywords: air quality, internet of things, artificial intelligence, smart home

Procedia PDF Downloads 93
209 Elimination of Mother to Child Transmission of HIV/AIDS: A Study of the Knowledge, Attitudes and Perceptions of Healthcare Workers in Abuja Nigeria

Authors: Ezinne K. Okoro, Takahiko Katoh, Yoko Kawamura, Stanley C. Meribe

Abstract:

HIV infection in children is largely as a result of vertical transmission (mother to child transmission [MTCT]). Thus, elimination of mother to child transmission of HIV/AIDS is critical in eliminating HIV infection in children. In Nigeria, drawbacks such as; limited pediatric screening, limited human capital, insufficient advocacy and poor understanding of ART guidelines, have impacted efforts at combating the disease, even as treatment services are free. Prevention of Mother to Child Transmission (PMTCT) program relies on health workers who not only counsel pregnant women on first contact but can competently provide HIV-positive pregnant women with accurate information about the PMTCT program such as feeding techniques and drug adherence. In developing regions like Nigeria where health care delivery faces a lot of drawbacks, it becomes paramount to address these issues of poor PMTCT coverage by conducting a baseline assessment of the knowledge, practices and perceptions related to HIV prevention amongst healthcare workers in Nigeria. A descriptive cross-sectional study was conducted amongst 250 health workers currently employed in health facilities in Abuja, Nigeria where PMTCT services were offered with the capacity to carry out early infant diagnosis testing (EID). Data was collected using a self-administered, pretested, structured questionnaire. This study showed that the knowledge of PMTCT of HIV was poor (30%) among healthcare workers who offer this service day-to-day to pregnant women. When PMTCT practices were analyzed in keeping with National PMTCT guidelines, over 61% of the respondents reported observing standard practices and the majority (58%) had good attitudes towards caring for patients with HIV/AIDS. Although 61% of the respondents reported being satisfied with the quality of service being rendered, 63% reported not being satisfied with their level of knowledge. Predictors of good knowledge were job designation and level of educational attainment. Health workers who were more satisfied with their working conditions and those who had worked for a longer time in the PMTCT service were more likely to observe standard PMTCT practices. With over 62% of the healthcare workers suggesting that more training would improve the quality of service being rendered, this is a strong pointer to stakeholders to consider a ‘healthcare worker-oriented approach’ when planning and conducting PMTCT training for healthcare workers. This in turn will increase pediatric ARV coverage, the knowledge and effectiveness of the healthcare workers in carrying out appropriate PMTCT interventions and culminating in the reduction/elimination of HIV transmission to newborns.

Keywords: attitudes, HIV/AIDS, healthcare workers, knowledge, mother to child transmission, Nigeria, perceptions

Procedia PDF Downloads 205