Search results for: Whale Optimization Algorithm
4834 Modelling and Optimization of Laser Cutting Operations
Authors: Hany Mohamed Abdu, Mohamed Hassan Gadallah, El-Giushi Mokhtar, Yehia Mahmoud Ismail
Abstract:
Laser beam cutting is one nontraditional machining process. This paper optimizes the parameters of Laser beam cutting machining parameters of Stainless steel (316L) by considering the effect of input parameters viz. power, oxygen pressure, frequency and cutting speed. Statistical design of experiments are carried in three different levels and process responses such as 'Average kerf taper (Ta)' and 'Surface Roughness (Ra)' are measured accordingly. A quadratic mathematical model (RSM) for each of the responses is developed as a function of the process parameters. Responses predicted by the models (as per Taguchi’s L27 OA) are employed to search for an optimal parametric combination to achieve desired yield of the process. RSM models are developed for mean responses, S/N ratio, and standard deviation of responses. Optimization models are formulated as single objective problem subject to process constraints. Models are formulated based on Analysis of Variance (ANOVA) using MATLAB environment. Optimum solutions are compared with Taguchi Methodology results.Keywords: optimization, laser cutting, robust design, kerf width, Taguchi method, RSM and DOE
Procedia PDF Downloads 6204833 Using LTE-Sim in New Hanover Decision Algorithm for 2-Tier Macrocell-Femtocell LTE Network
Authors: Umar D. M., Aminu A. M., Izaddeen K. Y.
Abstract:
Deployments of mini macrocell base stations also referred to as femtocells, improve the quality of service of indoor and outdoor users. Nevertheless, mobility management remains a key issue with regards to their deployment. This paper is leaned towards this issue, with an in-depth focus on the most important aspect of mobility management -handover. In handover management, making a handover decision in the LTE two-tier macrocell femtocell network is a crucial research area. Decision algorithms in this research are classified and comparatively analyzed according to received signal strength, user equipment speed, cost function, and interference. However, it was observed that most of the discussed decision algorithms fail to consider cell selection with hybrid access policy in a single macrocell multiple femtocell scenario, another observation was a majority of these algorithms lack the incorporation of user equipment residence parameter. Not including this parameter boosts the number of unnecessary handover occurrence. To deal with these issues, a sophisticated handover decision algorithm is proposed. The proposed algorithm considers the user’s velocity, received signal strength, residence time, as well as the femtocell base station’s access policy. Simulation results have shown that the proposed algorithm reduces the number of unnecessary handovers when compared to conventional received signal strength-based handover decision algorithm.Keywords: user-equipment, radio signal service, long term evolution, mobility management, handoff
Procedia PDF Downloads 1254832 Generation of Photo-Mosaic Images through Block Matching and Color Adjustment
Authors: Hae-Yeoun Lee
Abstract:
Mosaic refers to a technique that makes image by gathering lots of small materials in various colours. This paper presents an automatic algorithm that makes the photomosaic image using photos. The algorithm is composed of four steps: Partition and feature extraction, block matching, redundancy removal and colour adjustment. The input image is partitioned in the small block to extract feature. Each block is matched to find similar photo in database by comparing similarity with Euclidean difference between blocks. The intensity of the block is adjusted to enhance the similarity of image by replacing the value of light and darkness with that of relevant block. Further, the quality of image is improved by minimizing the redundancy of tiles in the adjacent blocks. Experimental results support that the proposed algorithm is excellent in quantitative analysis and qualitative analysis.Keywords: photomosaic, Euclidean distance, block matching, intensity adjustment
Procedia PDF Downloads 2804831 Optimization of Surface Coating on Magnetic Nanoparticles for Biomedical Applications
Authors: Xiao-Li Liu, Ling-Yun Zhao, Xing-Jie Liang, Hai-Ming Fan
Abstract:
Owing to their unique properties, magnetic nanoparticles have been used as diagnostic and therapeutic agents for biomedical applications. Highly monodispersed magnetic nanoparticles with controlled particle size and surface coating have been successfully synthesized as a model system to investigate the effect of surface coating on the T2 relaxivity and specific absorption rate (SAR) under an alternating magnetic field, respectively. Amongst, by using mPEG-g-PEI to solubilize oleic-acid capped 6 nm magnetic nanoparticles, the T2 relaxivity could be significantly increased by up to 4-fold as compared to PEG coated nanoparticles. Moreover, it largely enhances the cell uptake with a T2 relaxivity of 92.6 mM-1s-1 for in vitro cell MRI. As for hyperthermia agent, SAR value increase with the decreased thickness of PEG surface coating. By elaborate optimization of surface coating and particle size, a significant increase of SAR (up to 74%) could be achieved with a minimal variation on the saturation magnetization (<5%). The 19 nm magnetic nanoparticles with 2000 Da PEG exhibited the highest SAR of 930 W•g-1 among the samples, which can be maintained in various simulated physiological conditions. This systematic work provides a general strategy for the optimization of surface coating of magnetic core for high performance MRI contrast agent and hyperthermia agent.Keywords: magnetic nanoparticles, magnetic hyperthermia, magnetic resonance imaging, surface modification
Procedia PDF Downloads 5104830 Converting Scheduling Time into Calendar Date Considering Non-Interruptible Construction Tasks
Authors: Salman Ali Nisar, Suzuki Koji
Abstract:
In this paper we developed a new algorithm to convert the project scheduling time into calendar date in order to handle non-interruptible activities not to be split by non-working days (such as weekend and holidays). In a construction project some activities might require not to be interrupted even on non-working days, or to be finished on the end day of business days. For example, concrete placing work might be required to be completed by the end day of weekdays i.e. Friday, and curing in the weekend. This research provides an algorithm that imposes time constraint for start and finish times of non-interruptible activities. The algorithm converts working days, which is obtained by Critical Path Method (CPM), to calendar date with consideration of the start date of a project. After determining the interruption by non-working days, the start time of a certain activity should be postponed, if there is enough total float value. Otherwise, the duration is shortened by hiring additional resources capacity or/and using overtime work execution. Then, time constraints are imposed to start time and finish time of the activity. The algorithm is developed in Excel Spreadsheet for microcomputer and therefore we can easily get a feasible, calendared construction schedule for such a construction project with some non-interruptible activities.Keywords: project management, scheduling, critical path method, time constraint, non-interruptible tasks
Procedia PDF Downloads 5024829 Modification of Rk Equation of State for Liquid and Vapor of Ammonia by Genetic Algorithm
Authors: S. Mousavian, F. Mousavian, V. Nikkhah Rashidabad
Abstract:
Cubic equations of state like Redlich–Kwong (RK) EOS have been proved to be very reliable tools in the prediction of phase behavior. Despite their good performance in compositional calculations, they usually suffer from weaknesses in the predictions of saturated liquid density. In this research, RK equation was modified. The result of this study shows that modified equation has good agreement with experimental data.Keywords: equation of state, modification, ammonia, genetic algorithm
Procedia PDF Downloads 3834828 Impact of the Electricity Market Prices during the COVID-19 Pandemic on Energy Storage Operation
Authors: Marin Mandić, Elis Sutlović, Tonći Modrić, Luka Stanić
Abstract:
With the restructuring and deregulation of the power system, storage owners, generation companies or private producers can offer their multiple services on various power markets and earn income in different types of markets, such as the day-ahead, real-time, ancillary services market, etc. During the COVID-19 pandemic, electricity prices, as well as ancillary services prices, increased significantly. The optimization of the energy storage operation was performed using a suitable model for simulating the operation of a pumped storage hydropower plant under market conditions. The objective function maximizes the income earned through energy arbitration, regulation-up, regulation-down and spinning reserve services. The optimization technique used for solving the objective function is mixed integer linear programming (MILP). In numerical examples, the pumped storage hydropower plant operation has been optimized considering the already achieved hourly electricity market prices from Nord Pool for the pre-pandemic (2019) and the pandemic (2020 and 2021) years. The impact of the electricity market prices during the COVID-19 pandemic on energy storage operation is shown through the analysis of income, operating hours, reserved capacity and consumed energy for each service. The results indicate the role of energy storage during a significant fluctuation in electricity and services prices.Keywords: electrical market prices, electricity market, energy storage optimization, mixed integer linear programming (MILP) optimization
Procedia PDF Downloads 1754827 Implementation and Performance Analysis of Data Encryption Standard and RSA Algorithm with Image Steganography and Audio Steganography
Authors: S. C. Sharma, Ankit Gambhir, Rajeev Arya
Abstract:
In today’s era data security is an important concern and most demanding issues because it is essential for people using online banking, e-shopping, reservations etc. The two major techniques that are used for secure communication are Cryptography and Steganography. Cryptographic algorithms scramble the data so that intruder will not able to retrieve it; however steganography covers that data in some cover file so that presence of communication is hidden. This paper presents the implementation of Ron Rivest, Adi Shamir, and Leonard Adleman (RSA) Algorithm with Image and Audio Steganography and Data Encryption Standard (DES) Algorithm with Image and Audio Steganography. The coding for both the algorithms have been done using MATLAB and its observed that these techniques performed better than individual techniques. The risk of unauthorized access is alleviated up to a certain extent by using these techniques. These techniques could be used in Banks, RAW agencies etc, where highly confidential data is transferred. Finally, the comparisons of such two techniques are also given in tabular forms.Keywords: audio steganography, data security, DES, image steganography, intruder, RSA, steganography
Procedia PDF Downloads 2904826 The Importance of Optimization of Halal Tourism: A Study of the Development of Halal Tourism in Indonesia
Authors: Rizqi W. Romadhon, Nur Arifan
Abstract:
Halal Tourism is a part of tourism industry which is based on Islamic Principle and addressed to the Muslim tourist. The potency of halal tourism is very broad to be developed, because the growth of Muslim populations is rapidly increasing. Indonesia is one of the biggest countries with Majority of its population is Muslim, therefore human resources and natural resources have very good potential to be part of the Halal tourism industry. But the fact is Indonesia can not optimize the potential of human resources and natural resources as well as neighboring countries carried out. This paper will discuss the reasons of the importance of developing Halal tourism, and the factors influencing the success of developing halal tourism in Indonesia, and also the optimization strategies which can be adopted by the government so that the Halal tourism industry in Indonesia has a sustainable competitive advantage. The existence of this research is expected to government, tourism agents and others can optimize the potency of Indonesia’s Human resources and natural resources for developing Halal tourism industry in Indonesia.Keywords: halal tourism, Islamic principle, optimization, sustainable competitive advantage
Procedia PDF Downloads 3844825 Analysis of Genomics Big Data in Cloud Computing Using Fuzzy Logic
Authors: Mohammad Vahed, Ana Sadeghitohidi, Majid Vahed, Hiroki Takahashi
Abstract:
In the genomics field, the huge amounts of data have produced by the next-generation sequencers (NGS). Data volumes are very rapidly growing, as it is postulated that more than one billion bases will be produced per year in 2020. The growth rate of produced data is much faster than Moore's law in computer technology. This makes it more difficult to deal with genomics data, such as storing data, searching information, and finding the hidden information. It is required to develop the analysis platform for genomics big data. Cloud computing newly developed enables us to deal with big data more efficiently. Hadoop is one of the frameworks distributed computing and relies upon the core of a Big Data as a Service (BDaaS). Although many services have adopted this technology, e.g. amazon, there are a few applications in the biology field. Here, we propose a new algorithm to more efficiently deal with the genomics big data, e.g. sequencing data. Our algorithm consists of two parts: First is that BDaaS is applied for handling the data more efficiently. Second is that the hybrid method of MapReduce and Fuzzy logic is applied for data processing. This step can be parallelized in implementation. Our algorithm has great potential in computational analysis of genomics big data, e.g. de novo genome assembly and sequence similarity search. We will discuss our algorithm and its feasibility.Keywords: big data, fuzzy logic, MapReduce, Hadoop, cloud computing
Procedia PDF Downloads 2994824 Solutions to Probabilistic Constrained Optimal Control Problems Using Concentration Inequalities
Authors: Tomoaki Hashimoto
Abstract:
Recently, optimal control problems subject to probabilistic constraints have attracted much attention in many research field. Although probabilistic constraints are generally intractable in optimization problems, several methods haven been proposed to deal with probabilistic constraints. In most methods, probabilistic constraints are transformed to deterministic constraints that are tractable in optimization problems. This paper examines a method for transforming probabilistic constraints into deterministic constraints for a class of probabilistic constrained optimal control problems.Keywords: optimal control, stochastic systems, discrete-time systems, probabilistic constraints
Procedia PDF Downloads 2784823 Iterative Method for Lung Tumor Localization in 4D CT
Authors: Sarah K. Hagi, Majdi Alnowaimi
Abstract:
In the last decade, there were immense advancements in the medical imaging modalities. These advancements can scan a whole volume of the lung organ in high resolution images within a short time. According to this performance, the physicians can clearly identify the complicated anatomical and pathological structures of lung. Therefore, these advancements give large opportunities for more advance of all types of lung cancer treatment available and will increase the survival rate. However, lung cancer is still one of the major causes of death with around 19% of all the cancer patients. Several factors may affect survival rate. One of the serious effects is the breathing process, which can affect the accuracy of diagnosis and lung tumor treatment plan. We have therefore developed a semi automated algorithm to localize the 3D lung tumor positions across all respiratory data during respiratory motion. The algorithm can be divided into two stages. First, a lung tumor segmentation for the first phase of the 4D computed tomography (CT). Lung tumor segmentation is performed using an active contours method. Then, localize the tumor 3D position across all next phases using a 12 degrees of freedom of an affine transformation. Two data set where used in this study, a compute simulate for 4D CT using extended cardiac-torso (XCAT) phantom and 4D CT clinical data sets. The result and error calculation is presented as root mean square error (RMSE). The average error in data sets is 0.94 mm ± 0.36. Finally, evaluation and quantitative comparison of the results with a state-of-the-art registration algorithm was introduced. The results obtained from the proposed localization algorithm show a promising result to localize alung tumor in 4D CT data.Keywords: automated algorithm , computed tomography, lung tumor, tumor localization
Procedia PDF Downloads 6024822 Induction Motor Eccentricity Fault Recognition Using Rotor Slot Harmonic with Stator Current Technique
Authors: Nouredine Benouzza, Ahmed Hamida Boudinar, Azeddine Bendiabdellah
Abstract:
An algorithm for Eccentricity Fault Detection (EFD) applied to a squirrel cage induction machine is proposed in this paper. This algorithm employs the behavior of the stator current spectral analysis and the localization of the Rotor Slot Harmonic (RSH) frequency to detect eccentricity faults in three phase induction machine. The RHS frequency once obtained is used as a key parameter into a simple developed expression to directly compute the eccentricity fault frequencies in the induction machine. Experimental tests performed for both a healthy motor and a faulty motor with different eccentricity fault severities illustrate the effectiveness and merits of the proposed EFD algorithm.Keywords: squirrel cage motor, diagnosis, eccentricity faults, current spectral analysis, rotor slot harmonic
Procedia PDF Downloads 4894821 Category-Base Theory of the Optimum Signal Approximation Clarifying the Importance of Parallel Worlds in the Recognition of Human and Application to Secure Signal Communication with Feedback
Authors: Takuro Kida, Yuichi Kida
Abstract:
We show a base of the new trend of algorithm mathematically that treats a historical reason of continuous discrimination in the world as well as its solution by introducing new concepts of parallel world that includes an invisible set of errors as its companion. With respect to a matrix operator-filter bank that the matrix operator-analysis-filter bank H and the matrix operator-sampling-filter bank S are given, firstly, we introduce the detailed algorithm to derive the optimum matrix operator-synthesis-filter bank Z that minimizes all the worst-case measures of the matrix operator-error-signals E(ω) = F(ω) − Y(ω) between the matrix operator-input-signals F(ω) and the matrix operator-output signals Y(ω) of the matrix operator-filter bank at the same time. Further, feedback is introduced to the above approximation theory and it is indicated that introducing conversations with feedback does not superior automatically to the accumulation of existing knowledge of signal prediction. Secondly, the concept of category in the field of mathematics is applied to the above optimum signal approximation and is indicated that the category-based approximation theory is applied to the set-theoretic consideration of the recognition of humans. Based on this discussion, it is shown naturally why the narrow perception that tends to create isolation shows an apparent advantage in the short term and, often, why such narrow thinking becomes intimate with discriminatory action in a human group. Throughout these considerations, it is presented that, in order to abolish easy and intimate discriminatory behavior, it is important to create a parallel world of conception where we share the set of invisible error signals, including the words and the consciousness of both worlds.Keywords: signal prediction, pseudo inverse matrix, artificial intelligence, conditional optimization
Procedia PDF Downloads 1564820 Estimation of Elastic Modulus of Soil Surrounding Buried Pipeline Using Multi-Response Surface Methodology
Authors: Won Mog Choi, Seong Kyeong Hong, Seok Young Jeong
Abstract:
The stress on the buried pipeline under pavement is significantly affected by vehicle loads and elastic modulus of the soil surrounding the pipeline. The correct elastic modulus of soil has to be applied to the finite element model to investigate the effect of the vehicle loads on the buried pipeline using finite element analysis. The purpose of this study is to establish the approach to calculating the correct elastic modulus of soil using the optimization process. The optimal elastic modulus of soil, which minimizes the difference between the strain measured from vehicle driving test at the velocity of 35km/h and the strain calculated from finite element analyses, was calculated through the optimization process using multi-response surface methodology. Three elastic moduli of soil (road layer, original soil, dense sand) surrounding the pipeline were defined as the variables for the optimization. Further analyses with the optimal elastic modulus at the velocities of 4.27km/h, 15.47km/h, 24.18km/h were performed and compared to the test results to verify the applicability of multi-response surface methodology. The results indicated that the strain of the buried pipeline was mostly affected by the elastic modulus of original soil, followed by the dense sand and the load layer, as well as the results of further analyses with optimal elastic modulus of soil show good agreement with the test.Keywords: pipeline, optimization, elastic modulus of soil, response surface methodology
Procedia PDF Downloads 3864819 Recognition and Counting Algorithm for Sub-Regional Objects in a Handwritten Image through Image Sets
Authors: Kothuri Sriraman, Mattupalli Komal Teja
Abstract:
In this paper, a novel algorithm is proposed for the recognition of hulls in a hand written images that might be irregular or digit or character shape. Identification of objects and internal objects is quite difficult to extract, when the structure of the image is having bulk of clusters. The estimation results are easily obtained while going through identifying the sub-regional objects by using the SASK algorithm. Focusing mainly to recognize the number of internal objects exist in a given image, so as it is shadow-free and error-free. The hard clustering and density clustering process of obtained image rough set is used to recognize the differentiated internal objects, if any. In order to find out the internal hull regions it involves three steps pre-processing, Boundary Extraction and finally, apply the Hull Detection system. By detecting the sub-regional hulls it can increase the machine learning capability in detection of characters and it can also be extend in order to get the hull recognition even in irregular shape objects like wise black holes in the space exploration with their intensities. Layered hulls are those having the structured layers inside while it is useful in the Military Services and Traffic to identify the number of vehicles or persons. This proposed SASK algorithm is helpful in making of that kind of identifying the regions and can useful in undergo for the decision process (to clear the traffic, to identify the number of persons in the opponent’s in the war).Keywords: chain code, Hull regions, Hough transform, Hull recognition, Layered Outline Extraction, SASK algorithm
Procedia PDF Downloads 3494818 Real-Time Nonintrusive Heart Rate Measurement: Comparative Case Study of LED Sensorics' Accuracy and Benefits in Heart Monitoring
Authors: Goran Begović
Abstract:
In recent years, many researchers are focusing on non-intrusive measuring methods when it comes to human biosignals. These methods provide solutions for everyday use, whether it’s health monitoring or finessing the workout routine. One of the biggest issues with these solutions is that the sensors’ accuracy is highly variable due to many factors, such as ambiental light, skin color diversity, etc. That is why we wanted to explore different outcomes under those kinds of circumstances in order to find the most optimal algorithm(s) for extracting heart rate (HR) information. The optimization of such algorithms can benefit the wider, cheaper, and safer application of home health monitoring, without having to visit medical professionals as often when it comes to observing heart irregularities. In this study, we explored the accuracy of infrared (IR), red, and green LED sensorics in a controlled environment and compared the results with a medically accurate ECG monitoring device.Keywords: data science, ECG, heart rate, holter monitor, LED sensors
Procedia PDF Downloads 1274817 An Algorithm for Estimating the Stable Operation Conditions of the Synchronous Motor of the Ore Mill Electric Drive
Authors: M. Baghdasaryan, A. Sukiasyan
Abstract:
An algorithm for estimating the stable operation conditions of the synchronous motor of the ore mill electric drive is proposed. The stable operation conditions of the synchronous motor are revealed, taking into account the estimation of the q angle change and the technological factors. The stability condition obtained allows to ensure the stable operation of the motor in the synchronous mode, taking into account the nonlinear character of the mill loading. The developed algorithm gives an opportunity to present the undesirable phenomena, arising in the electric drive system. The obtained stability condition can be successfully applied for the optimal control of the electromechanical system of the mill.Keywords: electric drive, synchronous motor, ore mill, stability, technological factors
Procedia PDF Downloads 4254816 An Analysis on Clustering Based Gene Selection and Classification for Gene Expression Data
Authors: K. Sathishkumar, V. Thiagarasu
Abstract:
Due to recent advances in DNA microarray technology, it is now feasible to obtain gene expression profiles of tissue samples at relatively low costs. Many scientists around the world use the advantage of this gene profiling to characterize complex biological circumstances and diseases. Microarray techniques that are used in genome-wide gene expression and genome mutation analysis help scientists and physicians in understanding of the pathophysiological mechanisms, in diagnoses and prognoses, and choosing treatment plans. DNA microarray technology has now made it possible to simultaneously monitor the expression levels of thousands of genes during important biological processes and across collections of related samples. Elucidating the patterns hidden in gene expression data offers a tremendous opportunity for an enhanced understanding of functional genomics. However, the large number of genes and the complexity of biological networks greatly increase the challenges of comprehending and interpreting the resulting mass of data, which often consists of millions of measurements. A first step toward addressing this challenge is the use of clustering techniques, which is essential in the data mining process to reveal natural structures and identify interesting patterns in the underlying data. This work presents an analysis of several clustering algorithms proposed to deals with the gene expression data effectively. The existing clustering algorithms like Support Vector Machine (SVM), K-means algorithm and evolutionary algorithm etc. are analyzed thoroughly to identify the advantages and limitations. The performance evaluation of the existing algorithms is carried out to determine the best approach. In order to improve the classification performance of the best approach in terms of Accuracy, Convergence Behavior and processing time, a hybrid clustering based optimization approach has been proposed.Keywords: microarray technology, gene expression data, clustering, gene Selection
Procedia PDF Downloads 3234815 Heuristic Methods for the Capacitated Location- Allocation Problem with Stochastic Demand
Authors: Salinee Thumronglaohapun
Abstract:
The proper number and appropriate locations of service centers can save cost, raise revenue and gain more satisfaction from customers. Establishing service centers is high-cost and difficult to relocate. In long-term planning periods, several factors may affect the service. One of the most critical factors is uncertain demand of customers. The opened service centers need to be capable of serving customers and making a profit although the demand in each period is changed. In this work, the capacitated location-allocation problem with stochastic demand is considered. A mathematical model is formulated to determine suitable locations of service centers and their allocation to maximize total profit for multiple planning periods. Two heuristic methods, a local search and genetic algorithm, are used to solve this problem. For the local search, five different chances to choose each type of moves are applied. For the genetic algorithm, three different replacement strategies are considered. The results of applying each method to solve numerical examples are compared. Both methods reach to the same best found solution in most examples but the genetic algorithm provides better solutions in some cases.Keywords: location-allocation problem, stochastic demand, local search, genetic algorithm
Procedia PDF Downloads 1244814 Multimedia Firearms Training System
Authors: Aleksander Nawrat, Karol Jędrasiak, Artur Ryt, Dawid Sobel
Abstract:
The goal of the article is to present a novel Multimedia Firearms Training System. The system was developed in order to compensate for major problems of existing shooting training systems. The designed and implemented solution can be characterized by five major advantages: algorithm for automatic geometric calibration, algorithm of photometric recalibration, firearms hit point detection using thermal imaging camera, IR laser spot tracking algorithm for after action review analysis, and implementation of ballistics equations. The combination of the abovementioned advantages in a single multimedia firearms training system creates a comprehensive solution for detecting and tracking of the target point usable for shooting training systems and improving intervention tactics of uniformed services. The introduced algorithms of geometric and photometric recalibration allow the use of economically viable commercially available projectors for systems that require long and intensive use without most of the negative impacts on color mapping of existing multi-projector multimedia shooting range systems. The article presents the results of the developed algorithms and their application in real training systems.Keywords: firearms shot detection, geometric recalibration, photometric recalibration, IR tracking algorithm, thermography, ballistics
Procedia PDF Downloads 2234813 Model-Based Software Regression Test Suite Reduction
Authors: Shiwei Deng, Yang Bao
Abstract:
In this paper, we present a model-based regression test suite reducing approach that uses EFSM model dependence analysis and probability-driven greedy algorithm to reduce software regression test suites. The approach automatically identifies the difference between the original model and the modified model as a set of elementary model modifications. The EFSM dependence analysis is performed for each elementary modification to reduce the regression test suite, and then the probability-driven greedy algorithm is adopted to select the minimum set of test cases from the reduced regression test suite that cover all interaction patterns. Our initial experience shows that the approach may significantly reduce the size of regression test suites.Keywords: dependence analysis, EFSM model, greedy algorithm, regression test
Procedia PDF Downloads 4274812 Unified Coordinate System Approach for Swarm Search Algorithms in Global Information Deficit Environments
Authors: Rohit Dey, Sailendra Karra
Abstract:
This paper aims at solving the problem of multi-target searching in a Global Positioning System (GPS) denied environment using swarm robots with limited sensing and communication abilities. Typically, existing swarm-based search algorithms rely on the presence of a global coordinate system (vis-à-vis, GPS) that is shared by the entire swarm which, in turn, limits its application in a real-world scenario. This can be attributed to the fact that robots in a swarm need to share information among themselves regarding their location and signal from targets to decide their future course of action but this information is only meaningful when they all share the same coordinate frame. The paper addresses this very issue by eliminating any dependency of a search algorithm on the need of a predetermined global coordinate frame by the unification of the relative coordinate of individual robots when within the communication range, therefore, making the system more robust in real scenarios. Our algorithm assumes that all the robots in the swarm are equipped with range and bearing sensors and have limited sensing range and communication abilities. Initially, every robot maintains their relative coordinate frame and follow Levy walk random exploration until they come in range with other robots. When two or more robots are within communication range, they share sensor information and their location w.r.t. their coordinate frames based on which we unify their coordinate frames. Now they can share information about the areas that were already explored, information about the surroundings, and target signal from their location to make decisions about their future movement based on the search algorithm. During the process of exploration, there can be several small groups of robots having their own coordinate systems but eventually, it is expected for all the robots to be under one global coordinate frame where they can communicate information on the exploration area following swarm search techniques. Using the proposed method, swarm-based search algorithms can work in a real-world scenario without GPS and any initial information about the size and shape of the environment. Initial simulation results show that running our modified-Particle Swarm Optimization (PSO) without global information we can still achieve the desired results that are comparable to basic PSO working with GPS. In the full paper, we plan on doing the comparison study between different strategies to unify the coordinate system and to implement them on other bio-inspired algorithms, to work in GPS denied environment.Keywords: bio-inspired search algorithms, decentralized control, GPS denied environment, swarm robotics, target searching, unifying coordinate systems
Procedia PDF Downloads 1374811 Topology Optimization Design of Transmission Structure in Flapping-Wing Micro Aerial Vehicle via 3D Printing
Authors: Zuyong Chen, Jianghao Wu, Yanlai Zhang
Abstract:
Flapping-wing micro aerial vehicle (FMAV) is a new type of aircraft by mimicking the flying behavior to that of small birds or insects. Comparing to the traditional fixed wing or rotor-type aircraft, FMAV only needs to control the motion of flapping wings, by changing the size and direction of lift to control the flight attitude. Therefore, its transmission system should be designed very compact. Lightweight design can effectively extend its endurance time, while engineering experience alone is difficult to simultaneously meet the requirements of FMAV for structural strength and quality. Current researches still lack the guidance of considering nonlinear factors of 3D printing material when carrying out topology optimization, especially for the tiny FMAV transmission system. The coupling of non-linear material properties and non-linear contact behaviors of FMAV transmission system is a great challenge to the reliability of the topology optimization result. In this paper, topology optimization design based on FEA solver package Altair Optistruct for the transmission system of FMAV manufactured by 3D Printing was carried out. Firstly, the isotropic constitutive behavior of the Ultraviolet (UV) Cureable Resin used to fabricate the structure of FMAV was evaluated and confirmed through tensile test. Secondly, a numerical computation model describing the mechanical behavior of FMAV transmission structure was established and verified by experiments. Then topology optimization modeling method considering non-linear factors were presented, and optimization results were verified by dynamic simulation and experiments. Finally, detail discussions of different load status and constraints were carried out to explore the leading factors affecting the optimization results. The contributions drawn from this article helpful for guiding the lightweight design of FMAV are summarizing as follow; first, a dynamic simulation modeling method used to obtain the load status is presented. Second, verification method of optimized results considering non-linear factors is introduced. Third, based on or can achieve a better weight reduction effect and improve the computational efficiency rather than taking multi-states into account. Fourth, basing on makes for improving the ability to resist bending deformation. Fifth, constraint of displacement helps to improve the structural stiffness of optimized result. Results and engineering guidance in this paper may shed lights on the structural optimization and light-weight design for future advanced FMAV.Keywords: flapping-wing micro aerial vehicle, 3d printing, topology optimization, finite element analysis, experiment
Procedia PDF Downloads 1704810 Optimum Design of Helical Gear System on Basis of Maximum Power Transmission Capability
Authors: Yasaman Esfandiari
Abstract:
Mechanical engineering has always dealt with amplification of the input power in power trains. One of the ways to achieve this goal is to use gears to change the amplitude and direction of the torque and the speed. However, the gears should be optimally designed to best achieve these objectives. In this study, helical gear systems are optimized to achieve maximum power. Material selection, space restriction, available facilities for manufacturing, the probability of tooth breakage, and tooth wear are taken into account and governing equations are derived. Finally, a Matlab code was generated to solve the optimization problem and the results are verified.Keywords: design, gears, Matlab, optimization
Procedia PDF Downloads 2404809 Reliability Analysis of Variable Stiffness Composite Laminate Structures
Authors: A. Sohouli, A. Suleman
Abstract:
This study focuses on reliability analysis of variable stiffness composite laminate structures to investigate the potential structural improvement compared to conventional (straight fibers) composite laminate structures. A computational framework was developed which it consists of a deterministic design step and reliability analysis. The optimization part is Discrete Material Optimization (DMO) and the reliability of the structure is computed by Monte Carlo Simulation (MCS) after using Stochastic Response Surface Method (SRSM). The design driver in deterministic optimization is the maximum stiffness, while optimization method concerns certain manufacturing constraints to attain industrial relevance. These manufacturing constraints are the change of orientation between adjacent patches cannot be too large and the maximum number of successive plies of a particular fiber orientation should not be too high. Variable stiffness composites may be manufactured by Automated Fiber Machines (AFP) which provides consistent quality with good production rates. However, laps and gaps are the most important challenges to steer fibers that effect on the performance of the structures. In this study, the optimal curved fiber paths at each layer of composites are designed in the first step by DMO, and then the reliability analysis is applied to investigate the sensitivity of the structure with different standard deviations compared to the straight fiber angle composites. The random variables are material properties and loads on the structures. The results show that the variable stiffness composite laminate structures are much more reliable, even for high standard deviation of material properties, than the conventional composite laminate structures. The reason is that the variable stiffness composite laminates allow tailoring stiffness and provide the possibility of adjusting stress and strain distribution favorably in the structures.Keywords: material optimization, Monte Carlo simulation, reliability analysis, response surface method, variable stiffness composite structures
Procedia PDF Downloads 5204808 Influence of Radio Frequency Identification Technology at Cost of Supply Chain as a Driver for the Generation of Competitive Advantage
Authors: Mona Baniahmadi, Saied Haghanifar
Abstract:
Radio Frequency Identification (RFID) is regarded as a promising technology for the optimization of supply chain processes since it improves manufacturing and retail operations from forecasting demand for planning, managing inventory, and distribution. This study precisely aims at learning to know the RFID technology and at explaining how it can concretely be used for supply chain management and how it can help improving it in the case of Hejrat Company which is located in Iran and works on the distribution of medical drugs and cosmetics. This study uses some statistical analysis to calculate the expected benefits of an integrated RFID system on supply chain obtained through competitive advantages increases with decreasing cost factor. The study investigates how the cost of storage process, labor cost, the cost of missing goods, inventory management optimization, on-time delivery, order cost, lost sales and supply process optimization affect the performance of the integrated RFID supply chain regarding cost factors and provides a competitive advantage.Keywords: cost, competitive advantage, radio frequency identification, supply chain
Procedia PDF Downloads 2774807 Simulation of Wet Scrubbers for Flue Gas Desulfurization
Authors: Anders Schou Simonsen, Kim Sorensen, Thomas Condra
Abstract:
Wet scrubbers are used for flue gas desulfurization by injecting water directly into the flue gas stream from a set of sprayers. The water droplets will flow freely inside the scrubber, and flow down along the scrubber walls as a thin wall film while reacting with the gas phase to remove SO₂. This complex multiphase phenomenon can be divided into three main contributions: the continuous gas phase, the liquid droplet phase, and the liquid wall film phase. This study proposes a complete model, where all three main contributions are taken into account and resolved using OpenFOAM for the continuous gas phase, and MATLAB for the liquid droplet and wall film phases. The 3D continuous gas phase is composed of five species: CO₂, H₂O, O₂, SO₂, and N₂, which are resolved along with momentum, energy, and turbulence. Source terms are present for four species, energy and momentum, which are affecting the steady-state solution. The liquid droplet phase experiences breakup, collisions, dynamics, internal chemistry, evaporation and condensation, species mass transfer, energy transfer and wall film interactions. Numerous sub-models have been implemented and coupled to realise the above-mentioned phenomena. The liquid wall film experiences impingement, acceleration, atomization, separation, internal chemistry, evaporation and condensation, species mass transfer, and energy transfer, which have all been resolved using numerous sub-models as well. The continuous gas phase has been coupled with the liquid phases using source terms by an approach, where the two software packages are couples using a link-structure. The complete CFD model has been verified using 16 experimental tests from an existing scrubber installation, where a gradient-based pattern search optimization algorithm has been used to tune numerous model parameters to match the experimental results. The CFD model needed to be fast for evaluation in order to apply this optimization routine, where approximately 1000 simulations were needed. The results show that the complex multiphase phenomena governing wet scrubbers can be resolved in a single model. The optimization routine was able to tune the model to accurately predict the performance of an existing installation. Furthermore, the study shows that a coupling between OpenFOAM and MATLAB is realizable, where the data and source term exchange increases the computational requirements by approximately 5%. This allows for exploiting the benefits of both software programs.Keywords: desulfurization, discrete phase, scrubber, wall film
Procedia PDF Downloads 2654806 A Linear Programming Approach to Assist Roster Construction Under a Salary Cap
Authors: Alex Contarino
Abstract:
Professional sports leagues often have a “free agency” period, during which teams may sign players with expiring contracts.To promote parity, many leagues operate under a salary cap that limits the amount teams can spend on player’s salaries in a given year. Similarly, in fantasy sports leagues, salary cap drafts are a popular method for selecting players. In order to sign a free agent in either setting, teams must bid against one another to buy the player’s services while ensuring the sum of their player’s salaries is below the salary cap. This paper models the bidding process for a free agent as a constrained optimization problem that can be solved using linear programming. The objective is to determine the largest bid that a team should offer the player subject to the constraint that the value of signing the player must exceed the value of using the salary cap elsewhere. Iteratively solving this optimization problem for each available free agent provides teams with an effective framework for maximizing the talent on their rosters. The utility of this approach is demonstrated for team sport roster construction and fantasy sport drafts, using recent data sets from both settings.Keywords: linear programming, optimization, roster management, salary cap
Procedia PDF Downloads 1114805 Abdominal Organ Segmentation in CT Images Based On Watershed Transform and Mosaic Image
Authors: Belgherbi Aicha, Hadjidj Ismahen, Bessaid Abdelhafid
Abstract:
Accurate Liver, spleen and kidneys segmentation in abdominal CT images is one of the most important steps for computer aided abdominal organs pathology diagnosis. In this paper, we have proposed a new semi-automatic algorithm for Liver, spleen and kidneys area extraction in abdominal CT images. Our proposed method is based on hierarchical segmentation and watershed algorithm. In our approach, a powerful technique has been designed to suppress over-segmentation based on mosaic image and on the computation of the watershed transform. The algorithm is currency in two parts. In the first, we seek to improve the quality of the gradient-mosaic image. In this step, we propose a method for improving the gradient-mosaic image by applying the anisotropic diffusion filter followed by the morphological filters. Thereafter we proceed to the hierarchical segmentation of the liver, spleen and kidney. To validate the segmentation technique proposed, we have tested it on several images. Our segmentation approach is evaluated by comparing our results with the manual segmentation performed by an expert. The experimental results are described in the last part of this work.Keywords: anisotropic diffusion filter, CT images, morphological filter, mosaic image, multi-abdominal organ segmentation, mosaic image, the watershed algorithm
Procedia PDF Downloads 499