Search results for: process model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28081

Search results for: process model

15511 Engineering Academics’ Strategies of Modelling Mathematical Concepts into Their Teaching of an Antenna Design

Authors: Vojo George Fasinu, Nadaraj Govender, Predeep Kumar

Abstract:

An Antenna, which remains the hub of technological development in Africa had been found to be a course that is been taught and designed in an abstract manner in some universities. One of the reasons attached to this is that the appropriate approach of teaching antenna design is not yet understood by many engineering academics in some universities in South Africa. Also, another problem reported is the main difficulty encountered when interpreting and applying some of the mathematical concepts learned into their practical antenna design course. As a result of this, some engineering experts classified antenna as a mysterious technology that could not be described by anybody using mathematical concepts. In view of this, this paper takes it as its point of departure in explaining what an antenna is all about with a strong emphasis on its mathematical modelling. It also argues that the place of modelling mathematical concepts into the teaching of engineering design cannot be overemphasized. Therefore, it explains the mathematical concepts adopted during the teaching of an antenna design course, the Strategies of modelling those mathematics concepts, the behavior of antennas, and their mathematics usage were equally discussed. More so, the paper also sheds more light on mathematical modelling in South Africa context, and also comparative analysis of mathematics concepts taught in mathematics class and mathematics concepts taught in engineering courses. This paper focuses on engineering academics teaching selected topics in electronic engineering (Antenna design), with special attention on the mathematical concepts they teach and how they teach them when teaching the course. A qualitative approach was adopted as a means of collecting data in order to report the naturalistic views of the engineering academics teaching Antenna design. The findings of the study confirmed that some mathematical concepts are being modeled into the teaching of an antenna design with the adoption of some teaching approaches. Furthermore, the paper reports a didactical-realistic mathematical model as a conceptual framework used by the researchers in describing how academics teach mathematical concepts during their teaching of antenna design. Finally, the paper concludes with the importance of mathematical modelling to the engineering academics and recommendations for further researchers.

Keywords: modelling, mathematical concepts, engineering, didactical, realistic model

Procedia PDF Downloads 179
15510 A Comparative Study of Euglena gracilis Cultivations for Improving Laminaribiose Phosphorylase Production

Authors: Akram Abi, Clarissa Müller, Hans-Joachim Jördening

Abstract:

Laminaribiose is a beta-1,3-glycoside which is used in the medical field for the treatment of dermatitis and also can be used as a building block for new pharmaceutics. The conventional process of laminaribiose production is the uneconomical process of hydrolysis of laminarin extracted from natural polysaccharides of plant origin. A more economical approach however is attainable by enzymatically synthesis of laminaribiose via a reverse phosphorylase reaction catalyzed by laminaribiose phosphorylase (LP) from Euglena gracilis. Different cultivation methods of Euglena gracilis and the effect on LP production have been investigated. Buffered/unbuffered heterotrophic and mixotrophic cultivations of Euglena gracilis has been carried out. Changes of biomass and LP production, glucose level and pH, cell count and shape has been monitored in the course of time. The results obtained from experiments each in three repetitions, show that in the heterotrophic cultivation of Euglena gracilis not only more biomass is produced compared to mixotrophic cultivation, but also higher specific protein concentration is achieved. Furthermore, the LP activity test showed that the protein extracted from heterotrophically cultured cells has a higher LP activity. It was also observed that the cells develop in a distinctive different shape between these two cultures and have different length to width ratios. Taking the heterotrophic culture as the more efficient cultivation method in LP production, another comparative experiment between buffered and unbuffered heterothrophic culture was carried out that showed the unbuffered culture has advantages over the other one in respect of both LP production and resulting activity. A hetrotrophic cultivation of Euglena gracilis in a 5L bioreactor with controlled operating conditions showed a distinctive improvement of all the aspects of culture compared to the shaking flask cultivations. Biomass production was improved from 5 to more than 8 g/l (dry weight) which resulted in a specific protein concentration of 45 g/l in the heterotrophic cultivation in the bioreactor. In further attempts to improve LP production, different purification methods were tested and each method was checks through an activity assay. A laminaribiose yield of 35% was achieved which was by far the highest amount amongst different methods tested.

Keywords: euglena gracilis, heterotrophic culture, laminaribiose production, mixotrophic culture

Procedia PDF Downloads 358
15509 Well-Being of Elderly with Nanonutrients

Authors: Naqvi Shraddha Rathi

Abstract:

During the aging process, physical frailty may develop. A more sedentary lifestyle, a reduction in metabolic cell mass and, consequently, lower energy expenditure and dietary intake are important contributors to the progression of frailty. A decline in intake is in turn associated with the risk of developing a suboptimal nutritional state or multiple micro nutrient deficiencies.The tantalizing potential of nanotechnology is to fabricate and combine nano scale approaches and building blocks to make useful tools and, ultimately, interventions for medical science, including nutritional science, at the scale of ∼1–100 nm.

Keywords: aging, cells frailty, micronutrients, biochemical reactivity

Procedia PDF Downloads 389
15508 Experimental Study of Upsetting and Die Forging with Controlled Impact

Authors: T. Penchev, D. Karastoyanov

Abstract:

The results from experimental research of deformation by upsetting and die forging of lead specimens wit controlled impact are presented. Laboratory setup for conducting the investigations, which uses cold rocket engine operated with compressed air, is described. The results show that when using controlled impact is achieving greater plastic deformation and consumes less impact energy than at ordinary impact deformation process.

Keywords: rocket engine, forging hammer, sticking impact, plastic deformation

Procedia PDF Downloads 363
15507 Rehabilitation Team after Brain Damages as Complex System Integrating Consciousness

Authors: Olga Maksakova

Abstract:

A work with unconscious patients after acute brain damages besides special knowledge and practical skills of all the participants requires a very specific organization. A lot of said about team approach in neurorehabilitation, usually as for outpatient mode. Rehabilitologists deal with fixed patient problems or deficits (motion, speech, cognitive or emotional disorder). Team-building means superficial paradigm of management psychology. Linear mode of teamwork fits casual relationships there. Cases with deep altered states of consciousness (vegetative states, coma, and confusion) require non-linear mode of teamwork: recovery of consciousness might not be the goal due to phenomenon uncertainty. Rehabilitation team as Semi-open Complex System includes the patient as a part. Patient's response pattern becomes formed not only with brain deficits but questions-stimuli, context, and inquiring person. Teamwork is sourcing of phenomenology knowledge of patient's processes as Third-person approach is replaced with Second- and after First-person approaches. Here is a chance for real-time change. Patient’s contacts with his own body and outward things create a basement for restoration of consciousness. The most important condition is systematic feedbacks to any minimal movement or vegetative signal of the patient. Up to now, recovery work with the most severe contingent is carried out in the mode of passive physical interventions, while an effective rehabilitation team should include specially trained psychologists and psychotherapists. It is they who are able to create a network of feedbacks with the patient and inter-professional ones building up the team. Characteristics of ‘Team-Patient’ system (TPS) are energy, entropy, and complexity. Impairment of consciousness as the absence of linear contact appears together with a loss of essential functions (low energy), vegetative-visceral fits (excessive energy and low order), motor agitation (excessive energy and excessive order), etc. Techniques of teamwork are different in these cases for resulting optimization of the system condition. Directed regulation of the system complexity is one of the recovery tools. Different signs of awareness appear as a result of system self-organization. Joint meetings are an important part of teamwork. Regular or event-related discussions form the language of inter-professional communication, as well as the patient's shared mental model. Analysis of complex communication process in TPS may be useful for creation of the general theory of consciousness.

Keywords: rehabilitation team, urgent rehabilitation, severe brain damage, consciousness disorders, complex system theory

Procedia PDF Downloads 138
15506 Using Large Databases and Interviews to Explore the Temporal Phases of Technology-Based Entrepreneurial Ecosystems

Authors: Elsie L. Echeverri-Carroll

Abstract:

Entrepreneurial ecosystems have become an important concept to explain the birth and sustainability of technology-based entrepreneurship within regions. However, as a theoretical concept, the temporal evolution of entrepreneurship systems remain underdeveloped, making it difficult to understand their dynamic contributions to entrepreneurs. This paper argues that successful technology-based ecosystems go over three cumulative spawning stages: corporate spawning, entrepreneurial spawning, and community spawning. The importance of corporate incubation in vibrant entrepreneurial ecosystems is well documented in the entrepreneurial literature. Similarly, entrepreneurial spawning processes for venture capital-backed startups are well documented in the financial literature. In contrast, there is little understanding of both the third stage of entrepreneurial spawning (when a community of entrepreneurs become a source of firm spawning) and the temporal sequence in which spawning effects occur in a region. We test this three-stage model of entrepreneurial spawning using data from two large databases on firm births—the Secretary of State (160,000 observations) and the National Establishment Time Series (NEST with 150,000 observations)—and information collected from 60 1½-hour interviews with startup founders and representatives of key entrepreneurial organizations. This temporal model is illustrated with case study of Austin, Texas ranked by the Kauffman Foundation as the number one entrepreneurial city in the United States in 2015 and 2016. The 1½-year study founded by the Kauffman Foundation demonstrates the importance of taken into consideration the temporal contributions of both large and entrepreneurial firms in understanding the factors that contribute to the birth and growth of technology-based entrepreneurial regions. More important, these learnings could offer an important road map for regions that pursue to advance their entrepreneurial ecosystems.

Keywords: entrepreneurial ecosystems, entrepreneurial industrial clusters, high-technology, temporal changes

Procedia PDF Downloads 261
15505 Promising Anti-Displacement Practices for High Cost Cities

Authors: Leslie M. Mullins

Abstract:

In the face of dramatically shifting demographic trends and macroeconomic pressures on affordable housing in high-cost cities, municipalities and developers have been forced to develop new models of sustainable development that integrates elements of substantial rehabilitation and new construction while controlling for relocation and mass displacement. Community development partners in the San Francisco Bay Area of Northern California are starting to prioritize anti-displacement strategies when rehabilitating severely neglected public housing developments. This study explored the community-driven efforts to transform four dilapidated public housing sites (N=2,600 households) into thriving mixed-income housing communities. Eight interviews were conducted with frontline workers (property managers and service providers), who directly worked with residents throughout critical stages of the relocation and leasing process. Interviews were audio-recorded, transcribed, and analyzed by a systematic procedure for qualitative analysis to identify key themes on the topics of interest. Also, an extensive literature analysis was conducted to determine promising practices throughout the industry. This study highlighted that resident’s emotional attachment to their homes (regardless of the deteriorating conditions of their unit) could both a) impede the relocation process and substantially impact the budget and timeline, while b) simultaneously providing a basis for an enhanced sense of belonging and community cohesion. This phenomenon often includes the welcoming of new residents and cultures. Resident centered workshops, healing centered rituals, and extensive 'hands-on' guidance was highlighted as promising practices that resulted in residential retention rates that were two to three times the national average and positively impacted the overall project’s budget and timeline.

Keywords: anti-displacement strategies, community based practices, community cohesion, cultural preservation, healing-centered, public housing, relocation, trauma-informed

Procedia PDF Downloads 126
15504 A Surrealist Play of Associations: Neoliberalism, Critical Pedagogy and Surrealism in Secondary English Language Arts

Authors: Stephanie Ho

Abstract:

This project utilizes principles derived from the Surrealist movement to prioritize creative and critical thinking in secondary English Language Arts (ELA). The implementation of Surrealist-style pedagogies within an ELA classroom will be rooted in critical, radical pedagogy, which addresses the injustices caused by economic-oriented educational systems. The use of critical pedagogy will enable the subversive artistic and political aims of Surrealism to be transmitted to a classroom context. Through aesthetic reading strategies, appreciative questioning and dialogue, students will actively critique the power dynamics which structure (and often restrict) their lives. Within the ELA domain, cost-effective approaches often replace the actual “arts” of ELA. This research will therefore explore how Surrealist-oriented pedagogies could restore imaginative freedom and deconstruct conceptual barriers (normative standards, curricular constraints, and status quo power relations) in secondary ELA. This research will also examine how Surrealism can be used as a political and pedagogical model to treat societal problems mirrored in ELA classrooms. The stakeholders are teachers, as they experience constant pressure within their practices. Similarly, students encounter rigorous, results-based pressures. These dynamics contribute to feelings of powerlessness, thus reinforcing a formulaic model of ELA. The ELA curriculum has potential to create laboratories for critical discussion and active movement towards social change. This proposed research strategy of Surrealist-oriented pedagogies could enable students to experiment with social issues and develop senses of agency and voice that reflect awareness of contemporary society while simultaneously building their ELA skills.

Keywords: arts-informed pedagogies, language arts, literature, surrealism

Procedia PDF Downloads 125
15503 Dispersion Rate of Spilled Oil in Water Column under Non-Breaking Water Waves

Authors: Hanifeh Imanian, Morteza Kolahdoozan

Abstract:

The purpose of this study is to present a mathematical phrase for calculating the dispersion rate of spilled oil in water column under non-breaking waves. In this regard, a multiphase numerical model is applied for which waves and oil phase were computed concurrently, and accuracy of its hydraulic calculations have been proven. More than 200 various scenarios of oil spilling in wave waters were simulated using the multiphase numerical model and its outcome were collected in a database. The recorded results were investigated to identify the major parameters affected vertical oil dispersion and finally 6 parameters were identified as main independent factors. Furthermore, some statistical tests were conducted to identify any relationship between the dependent variable (dispersed oil mass in the water column) and independent variables (water wave specifications containing height, length and wave period and spilled oil characteristics including density, viscosity and spilled oil mass). Finally, a mathematical-statistical relationship is proposed to predict dispersed oil in marine waters. To verify the proposed relationship, a laboratory example available in the literature was selected. Oil mass rate penetrated in water body computed by statistical regression was in accordance with experimental data was predicted. On this occasion, it was necessary to verify the proposed mathematical phrase. In a selected laboratory case available in the literature, mass oil rate penetrated in water body computed by suggested regression. Results showed good agreement with experimental data. The validated mathematical-statistical phrase is a useful tool for oil dispersion prediction in oil spill events in marine areas.

Keywords: dispersion, marine environment, mathematical-statistical relationship, oil spill

Procedia PDF Downloads 227
15502 Modeling Average Paths Traveled by Ferry Vessels Using AIS Data

Authors: Devin Simmons

Abstract:

At the USDOT’s Bureau of Transportation Statistics, a biannual census of ferry operators in the U.S. is conducted, with results such as route mileage used to determine federal funding levels for operators. AIS data allows for the possibility of using GIS software and geographical methods to confirm operator-reported mileage for individual ferry routes. As part of the USDOT’s work on the ferry census, an algorithm was developed that uses AIS data for ferry vessels in conjunction with known ferry terminal locations to model the average route travelled for use as both a cartographic product and confirmation of operator-reported mileage. AIS data from each vessel is first analyzed to determine individual journeys based on the vessel’s velocity, and changes in velocity over time. These trips are then converted to geographic linestring objects. Using the terminal locations, the algorithm then determines whether the trip represented a known ferry route. Given a large enough dataset, routes will be represented by multiple trip linestrings, which are then filtered by DBSCAN spatial clustering to remove outliers. Finally, these remaining trips are ready to be averaged into one route. The algorithm interpolates the point on each trip linestring that represents the start point. From these start points, a centroid is calculated, and the first point of the average route is determined. Each trip is interpolated again to find the point that represents one percent of the journey’s completion, and the centroid of those points is used as the next point in the average route, and so on until 100 points have been calculated. Routes created using this algorithm have shown demonstrable improvement over previous methods, which included the implementation of a LOESS model. Additionally, the algorithm greatly reduces the amount of manual digitizing needed to visualize ferry activity.

Keywords: ferry vessels, transportation, modeling, AIS data

Procedia PDF Downloads 164
15501 Influence of Geologic and Geotechnical Dataset Resolution on Regional Liquefaction Assessment of the Lower Wairau Plains

Authors: Omer Altaf, Liam Wotherspoon, Rolando Orense

Abstract:

The Wairau Plains are located in the northeast of the South Island of New Zealand, with alluvial deposits of fine-grained silts and sands combined with low-lying topography suggesting the presence of liquefiable deposits over significant portions of the region. Liquefaction manifestations were observed in past earthquakes, including the 1848 Marlborough and 1855 Wairarapa earthquakes, and more recently during the 2013 Lake Grassmere and 2016 Kaikōura earthquakes. Therefore, a good understanding of the deposits that may be susceptible to liquefaction is important for land use planning in the region and to allow developers and asset owners to appropriately address their risk. For this purpose, multiple approaches have been employed to develop regional-scale maps showing the liquefaction vulnerability categories for the region. After applying semi-qualitative criteria linked to geologic age and deposit type, the higher resolution surface mapping of geomorphologic characteristics encompassing the Wairau River and the Opaoa River was used for screening. A detailed basin geologic model developed for groundwater modelling was analysed to provide a higher level of resolution than the surface-geology based classification. This is used to identify the thickness of near-surface gravel deposits, providing an improved understanding of the presence or lack of potentially non-liquefiable crust deposits. This paper describes the methodology adopted for this project and focuses on the influence of geomorphic characteristics and analysis of the detailed geologic basin model on the liquefaction classification of the Lower Wairau Plains.

Keywords: liquefaction, earthquake, cone penetration test, mapping, liquefaction-induced damage

Procedia PDF Downloads 169
15500 Poly(L-Lactic Acid) Scaffolds for Bone Tissue Engineering

Authors: Aleksandra BužArovska, Gordana Bogoeva Gaceva

Abstract:

Biodegradable polymers have received significant scientific attention in tissue engineering (TE) application, in particular their composites consisting of inorganic nanoparticles. In the last 15 years, they are subject of intensive research by many groups, aiming to develop polymer scaffolds with defined biodegradability, porosity and adequate mechanical stability. The most important characteristic making these materials attractive for TE is their biodegradability, a process that could be time controlled and long enough to enable generation of a new tissue as a replacement for the degraded polymer scaffold. In this work poly(L-lactic acid) scaffolds, filled with TiO2 nanoparticles functionalized with oleic acid, have been prepared by thermally induced phase separation method (TIPS). The functionalization of TiO2 nanoparticles with oleic acid was performed in order to improve the nanoparticles dispersibility within the polymer matrix and at the same time to inhibit the cytotoxicity of the nanofiller. The oleic acid was chosen as amphiphilic molecule belonging to the fatty acid family because of its non-toxicity and possibility for mediation between the hydrophilic TiO2 nanoparticles and hydrophobic PLA matrix. The produced scaffolds were characterized with thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and mechanical compression measurements. The bioactivity for bone tissue engineering application was tested in supersaturated simulated body fluid. The degradation process was followed by Fourier transform infrared spectroscopy (FTIR). The results showed anisotropic morphology with elongated open pores (100 µm), high porosity (around 92%) and perfectly dispersed nanofiller. The compression moduli up to 10 MPa were identified independent on the nanofiller content. Functionalized TiO2 nanoparticles induced formation of hydroxyapatite clusters as much as unfunctionalized TiO2. The prepared scaffolds showed properties ideal for scaffold vascularization, cell attachment, growth and proliferation.

Keywords: biodegradation, bone tissue engineering, mineralization, PLA scaffolds

Procedia PDF Downloads 265
15499 Energy Consumption Estimation for Hybrid Marine Power Systems: Comparing Modeling Methodologies

Authors: Kamyar Maleki Bagherabadi, Torstein Aarseth Bø, Truls Flatberg, Olve Mo

Abstract:

Hydrogen fuel cells and batteries are one of the promising solutions aligned with carbon emission reduction goals for the marine sector. However, the higher installation and operation costs of hydrogen-based systems compared to conventional diesel gensets raise questions about the appropriate hydrogen tank size, energy, and fuel consumption estimations. Ship designers need methodologies and tools to calculate energy and fuel consumption for different component sizes to facilitate decision-making regarding feasibility and performance for retrofits and design cases. The aim of this work is to compare three alternative modeling approaches for the estimation of energy and fuel consumption with various hydrogen tank sizes, battery capacities, and load-sharing strategies. A fishery vessel is selected as an example, using logged load demand data over a year of operations. The modeled power system consists of a PEM fuel cell, a diesel genset, and a battery. The methodologies used are: first, an energy-based model; second, considering load variations during the time domain with a rule-based Power Management System (PMS); and third, a load variations model and dynamic PMS strategy based on optimization with perfect foresight. The errors and potentials of the methods are discussed, and design sensitivity studies for this case are conducted. The results show that the energy-based method can estimate fuel and energy consumption with acceptable accuracy. However, models that consider time variation of the load provide more realistic estimations of energy and fuel consumption regarding hydrogen tank and battery size, still within low computational time.

Keywords: fuel cell, battery, hydrogen, hybrid power system, power management system

Procedia PDF Downloads 22
15498 Metacognitive Processing in Early Readers: The Role of Metacognition in Monitoring Linguistic and Non-Linguistic Performance and Regulating Students' Learning

Authors: Ioanna Taouki, Marie Lallier, David Soto

Abstract:

Metacognition refers to the capacity to reflect upon our own cognitive processes. Although there is an ongoing discussion in the literature on the role of metacognition in learning and academic achievement, little is known about its neurodevelopmental trajectories in early childhood, when children begin to receive formal education in reading. Here, we evaluate the metacognitive ability, estimated under a recently developed Signal Detection Theory model, of a cohort of children aged between 6 and 7 (N=60), who performed three two-alternative-forced-choice tasks (two linguistic: lexical decision task, visual attention span task, and one non-linguistic: emotion recognition task) including trial-by-trial confidence judgements. Our study has three aims. First, we investigated how metacognitive ability (i.e., how confidence ratings track accuracy in the task) relates to performance in general standardized tasks related to students' reading and general cognitive abilities using Spearman's and Bayesian correlation analysis. Second, we assessed whether or not young children recruit common mechanisms supporting metacognition across the different task domains or whether there is evidence for domain-specific metacognition at this early stage of development. This was done by examining correlations in metacognitive measures across different task domains and evaluating cross-task covariance by applying a hierarchical Bayesian model. Third, using robust linear regression and Bayesian regression models, we assessed whether metacognitive ability in this early stage is related to the longitudinal learning of children in a linguistic and a non-linguistic task. Notably, we did not observe any association between students’ reading skills and metacognitive processing in this early stage of reading acquisition. Some evidence consistent with domain-general metacognition was found, with significant positive correlations between metacognitive efficiency between lexical and emotion recognition tasks and substantial covariance indicated by the Bayesian model. However, no reliable correlations were found between metacognitive performance in the visual attention span and the remaining tasks. Remarkably, metacognitive ability significantly predicted children's learning in linguistic and non-linguistic domains a year later. These results suggest that metacognitive skill may be dissociated to some extent from general (i.e., language and attention) abilities and further stress the importance of creating educational programs that foster students’ metacognitive ability as a tool for long term learning. More research is crucial to understand whether these programs can enhance metacognitive ability as a transferable skill across distinct domains or whether unique domains should be targeted separately.

Keywords: confidence ratings, development, metacognitive efficiency, reading acquisition

Procedia PDF Downloads 143
15497 Strength Properties of Ca-Based Alkali Activated Fly Ash System

Authors: Jung-Il Suh, Hong-Gun Park, Jae-Eun Oh

Abstract:

Recently, the use of long-span precast concrete (PC) construction has increased in modular construction such as storage buildings and parking facilities. When applying long span PC member, reducing weight of long span PC member should be conducted considering lifting capacity of crane and self-weight of PC member and use of structural lightweight concrete made by lightweight aggregate (LWA) can be considered. In the process of lightweight concrete production, segregation and bleeding could occur due to difference of specific gravity between cement (3.3) and lightweight aggregate (1.2~1.8) and reducing weight of binder is needed to prevent the segregation between binder and aggregate. Also, lightweight precast concrete made by cementitious materials such as fly ash and ground granulated blast furnace (GGBFS) which is lower than specific gravity of cement as a substitute for cement has been studied. When only using fly ash for cementless binder alkali-activation of fly ash is most important chemical process in which the original fly ash is dissolved by a strong alkaline medium in steam curing with high-temperature condition. Because curing condition is similar with environment of precast member production, additional process is not needed. Na-based chloride generally used as a strong alkali activator has a practical problem such as high pH toxicity and high manufacturing cost. Instead of Na-based alkali activator calcium hydroxide [Ca(OH)2] and sodium hydroxide [Na2CO3] might be used because it has a lower pH and less expensive than Na-based alkali activator. This study explored the influences on Ca(OH)2-Na2CO3-activated fly ash system in its microstructural aspects and strength and permeability using powder X-ray analysis (XRD), thermogravimetry (TGA), mercury intrusion porosimetry (MIP). On the basis of microstructural analysis, the conclusions are made as follows. Increase of Ca(OH)2/FA wt.% did not affect improvement of compressive strength. Also, Ca(OH)2/FA wt.% and Na2CO3/FA wt.% had little effect on specific gravity of saturated surface dry (SSD) and absolute dry (AD) condition to calculate water absorption. Especially, the binder is appropriate for structural lightweight concrete because specific gravity of the hardened paste has no difference with that of lightweight aggregate. The XRD and TGA/DTG results did not present considerable difference for the types and quantities of hydration products depending on w/b ratio, Ca(OH)2 wt.%, and Na2CO3 wt.%. In the case of higher molar quantity of Ca(OH)2 to Na2CO3, XRD peak indicated unreacted Ca(OH)2 while DTG peak was not presented because of small quantity. Thus, presence of unreacted Ca(OH)2 is too small quantity to effect on mechanical performance. As a result of MIP, the porosity volume related to capillary pore depends on the w/b ratio. In the same condition of w/b ratio, quantities of Ca(OH)2 and Na2CO3 have more influence on pore size distribution rather than total porosity. While average pore size decreased as Na2CO3/FA w.t% increased, the average pore size increased over 20 nm as Ca(OH)2/FA wt.% increased which has inverse proportional relationship between pore size and mechanical properties such as compressive strength and water permeability.

Keywords: Ca(OH)2, compressive strength, microstructure, fly ash, Na2CO3, water absorption

Procedia PDF Downloads 218
15496 Fabrication of All-Cellulose Composites from End-of-Life Textiles

Authors: Behnaz Baghaei, Mikael Skrifvars

Abstract:

Sustainability is today a trend that is seen everywhere, with no exception for the textiles 31 industry. However, there is a rather significant downside regarding how the textile industry currently operates, namely the huge amount of end-of-life textiles coming along with it. Approximately 73% of the 53 million tonnes of fibres used annually for textile production is landfilled or incinerated, while only 12% is recycled as secondary products. Mechanical recycling of end-of-life textile fabrics into yarns and fabrics was before very common, but due to the low costs for virgin man-made fibres, the current textile material composition diversity, the fibre material quality variations and the high recycling costs this route is not feasible. Another way to decrease the ever-growing pile of textile waste is to repurpose the textile. If a feasible methodology can be found to reuse end-of life textiles as secondary market products including a manufacturing process that requires rather low investment costs, then this can be highly beneficial to counteract the increasing textile waste volumes. In structural composites, glass fibre textiles are used as reinforcements, but today there is a growing interest in biocomposites where the reinforcement and/or the resin are from a biomass resource. All-cellulose composites (ACCs) are monocomponent or single polymer composites, and they are entirely made from cellulose, ideally leading to a homogeneous biocomposite. Since the matrix and the reinforcement are both made from cellulose, and therefore chemically identical, they are fully compatible with each other which allow efficient stress transfer and adhesion at their interface. Apart from improving the mechanical performance of the final products, the recycling of the composites will be facilitated. This paper reports the recycling of end-of-life cellulose containing textiles by fabrication of all-cellulose composites (ACCs). Composite laminates were prepared by using an ionic liquid (IL) in a hot process, involving a partial dissolving of the cellulose fibres. Discharged denim fabrics were used as the reinforcement while dissolved cellulose from two different cellulose resources was used as the matrix phase. Virgin cotton staple fibres and recovered cotton from polyester/cotton (polycotton) waste fabrics were used to form the matrix phase. The process comprises the dissolving 6 wt.% cellulose solution in the ionic liquid 1-butyl-3-methyl imidazolium acetate ([BMIM][Ac]), this solution acted as a precursor for the matrix component. The denim fabrics were embedded in the cellulose/IL solution after which laminates were formed, which also involved removal of the IL by washing. The effect of reuse of the recovered IL was also investigated. The mechanical properties of the obtained ACCs were determined regarding tensile, impact and flexural properties. Mechanical testing revealed that there are no clear differences between the values measured for mechanical strength and modulus of the manufactured ACCs from denim/cotton-fresh IL, denim/recovered cotton-fresh IL and denim/cotton-recycled IL. This could be due to the low weight fraction of the cellulose matrix in the final ACC laminates and presumably the denim as cellulose reinforcement strongly influences and dominates the mechanical properties. Fabricated ACC composite laminates were further characterized regarding scanning electron microscopy.

Keywords: all-cellulose composites, denim fabrics, ionic liquid, mechanical properties

Procedia PDF Downloads 106
15495 High Cycle Fatigue Analysis of a Lower Hopper Knuckle Connection of a Large Bulk Carrier under Dynamic Loading

Authors: Vaso K. Kapnopoulou, Piero Caridis

Abstract:

The fatigue of ship structural details is of major concern in the maritime industry as it can generate fracture issues that may compromise structural integrity. In the present study, a fatigue analysis of the lower hopper knuckle connection of a bulk carrier was conducted using the Finite Element Method by means of ABAQUS/CAE software. The fatigue life was calculated using Miner’s Rule and the long-term distribution of stress range by the use of the two-parameter Weibull distribution. The cumulative damage ratio was estimated using the fatigue damage resulting from the stress range occurring at each load condition. For this purpose, a cargo hold model was first generated, which extends over the length of two holds (the mid-hold and half of each of the adjacent holds) and transversely over the full breadth of the hull girder. Following that, a submodel of the area of interest was extracted in order to calculate the hot spot stress of the connection and to estimate the fatigue life of the structural detail. Two hot spot locations were identified; one at the top layer of the inner bottom plate and one at the top layer of the hopper plate. The IACS Common Structural Rules (CSR) require that specific dynamic load cases for each loading condition are assessed. Following this, the dynamic load case that causes the highest stress range at each loading condition should be used in the fatigue analysis for the calculation of the cumulative fatigue damage ratio. Each load case has a different effect on ship hull response. Of main concern, when assessing the fatigue strength of the lower hopper knuckle connection, was the determination of the maximum, i.e. the critical value of the stress range, which acts in a direction normal to the weld toe line. This acts in the transverse direction, that is, perpendicularly to the ship's centerline axis. The load cases were explored both theoretically and numerically in order to establish the one that causes the highest damage to the location examined. The most severe one was identified to be the load case induced by beam sea condition where the encountered wave comes from the starboard. At the level of the cargo hold model, the model was assumed to be simply supported at its ends. A coarse mesh was generated in order to represent the overall stiffness of the structure. The elements employed were quadrilateral shell elements, each having four integration points. A linear elastic analysis was performed because linear elastic material behavior can be presumed, since only localized yielding is allowed by most design codes. At the submodel level, the displacements of the analysis of the cargo hold model to the outer region nodes of the submodel acted as boundary conditions and applied loading for the submodel. In order to calculate the hot spot stress at the hot spot locations, a very fine mesh zone was generated and used. The fatigue life of the detail was found to be 16.4 years which is lower than the design fatigue life of the structure (25 years), making this location vulnerable to fatigue fracture issues. Moreover, the loading conditions that induce the most damage to the location were found to be the various ballasting conditions.

Keywords: dynamic load cases, finite element method, high cycle fatigue, lower hopper knuckle

Procedia PDF Downloads 413
15494 Copula Autoregressive Methodology for Simulation of Solar Irradiance and Air Temperature Time Series for Solar Energy Forecasting

Authors: Andres F. Ramirez, Carlos F. Valencia

Abstract:

The increasing interest in renewable energies strategies application and the path for diminishing the use of carbon related energy sources have encouraged the development of novel strategies for integration of solar energy into the electricity network. A correct inclusion of the fluctuating energy output of a photovoltaic (PV) energy system into an electric grid requires improvements in the forecasting and simulation methodologies for solar energy potential, and the understanding not only of the mean value of the series but the associated underlying stochastic process. We present a methodology for synthetic generation of solar irradiance (shortwave flux) and air temperature bivariate time series based on copula functions to represent the cross-dependence and temporal structure of the data. We explore the advantages of using this nonlinear time series method over traditional approaches that use a transformation of the data to normal distributions as an intermediate step. The use of copulas gives flexibility to represent the serial variability of the real data on the simulation and allows having more control on the desired properties of the data. We use discrete zero mass density distributions to assess the nature of solar irradiance, alongside vector generalized linear models for the bivariate time series time dependent distributions. We found that the copula autoregressive methodology used, including the zero mass characteristics of the solar irradiance time series, generates a significant improvement over state of the art strategies. These results will help to better understand the fluctuating nature of solar energy forecasting, the underlying stochastic process, and quantify the potential of a photovoltaic (PV) energy generating system integration into a country electricity network. Experimental analysis and real data application substantiate the usage and convenience of the proposed methodology to forecast solar irradiance time series and solar energy across northern hemisphere, southern hemisphere, and equatorial zones.

Keywords: copula autoregressive, solar irradiance forecasting, solar energy forecasting, time series generation

Procedia PDF Downloads 312
15493 The Role of Mass Sport Guidance in the Health Service Industry of China

Authors: Qiu Jian-Rong, Li Qing-Hui, Zhan Dong, Zhang Lei

Abstract:

Facing the problem of the demand of economic restructuring and risk of social economy stagnation due to the ageing of population, the Health Service Industry will play a very important role in the structure of industry in the future. During the process, the orient of Chinese sports medicine as well as the joint with preventive medicine, and the integration with data bank and cloud computing will be involved.

Keywords: China, the health service industry, mass sport, data bank

Procedia PDF Downloads 619
15492 Urban Security through Urban Transformation: Case of Saraycik District

Authors: Emir Sunguroglu, Merve Sunguroglu, Yesim Aliefendioglu, Harun Tanrivermis

Abstract:

Basic human needs range from physiological needs such as food, water and shelter to safety needs such as security, protection from natural disasters and even urban terrorism which are extant and not fulfilled even in urban areas where people live civilly in large communities. These basic needs when arose in urban life lead to a different kind of crime set defined as urban crimes. Urban crimes mostly result from differences between socioeconomic conditions in society. Income inequality increases tendency towards urban crimes. Especially in slum areas and suburbs, urban crimes not only threaten public security but they also affect deliverance of public services. It is highlighted that, construction of urban security against problems caused by urban crimes is not only achieved by involvement of urban security in security of the community but also comprises juridical development and staying above a level of legal standards concurrently. The idea of urban transformation emerged as interventions to demolishment and rebuilding of built environment to solve the unhealthy urban environment, inadequate infrastructure and socioeconomic problems came up during the industrialization process. Considering the probability of urbanization process driving citizens to commit crimes, The United Nations Commission on Human Security’s focus on this theme is conferred to be a proper approach. In this study, the analysis and change in security before, through and after urban transformation, which is one of the tools related to urbanization process, is strived to be discussed through the case of Sincan County Saraycik District. The study also aims to suggest improvements to current legislation on public safety, urban resilience, and urban transformation. In spite of Saraycik District residing in a developing County in Ankara, Turkey, from urbanization perspective as well as socioeconomic and demographic indicators the District exhibits a negative view throughout the County and the country. When related to the county, rates of intentional harm reports, burglary reports, the offense of libel and threat reports and narcotic crime reports are higher. The District is defined as ‘crime hotspot’. Interviews with residents of Saraycik claim that the greatest issue of the neighborhood is Public Order and Security (82.44 %). The District becomes prominent with negative aspects, especially with the presence of unlicensed constructions, occurrence of important social issues such as crime and insecurity and complicated lives of inhabitants from poverty and low standard conditions of living. Additionally, the social structure and demographic properties and crime and insecurity of the field have been addressed in this study. Consequently, it is claimed that urban crime rates were related to level of education, employment and household income, poverty trap, physical condition of housing and structuration, accessibility of public services, security, migration, safety in terms of disasters and emphasized that urban transformation is one of the most important tools in order to provide urban security.

Keywords: urban security, urban crimes, urban transformation, Saraycik district

Procedia PDF Downloads 293
15491 Combat Plastic Entering in Kanpur City, Uttar Pradesh, India Marine Environment

Authors: Arvind Kumar

Abstract:

The city of Kanpur is located in the terrestrial plain area on the bank of the river Ganges and is the second largest city in the state of Uttar Pradesh. The city generates approximately 1400-1600 tons per day of MSW. Kanpur has been known as a major point and non-points-based pollution hotspot for the river Ganges. The city has a major industrial hub, probably the largest in the state, catering to the manufacturing and recycling of plastic and other dry waste streams. There are 4 to 5 major drains flowing across the city, which receive a significant quantity of waste leakage, which subsequently adds to the Ganges flow and is carried to the Bay of Bengal. A river-to-sea flow approach has been established to account for leaked waste into urban drains, leading to the build-up of marine litter. Throughout its journey, the river accumulates plastic – macro, meso, and micro, from various sources and transports it towards the sea. The Ganges network forms the second-largest plastic-polluting catchment in the world, with over 0.12 million tonnes of plastic discharged into marine ecosystems per year and is among 14 continental rivers into which over a quarter of global waste is discarded 3.150 Kilo tons of plastic waste is generated in Kanpur, out of which 10%-13% of plastic is leaked into the local drains and water flow systems. With the Support of Kanpur Municipal Corporation, 1TPD capacity MRF for drain waste management was established at Krishna Nagar, Kanpur & A German startup- Plastic Fisher, was identified for providing a solution to capture the drain waste and achieve its recycling in a sustainable manner with a circular economy approach. The team at Plastic Fisher conducted joint surveys and identified locations on 3 drains at Kanpur using GIS maps developed during the survey. It suggested putting floating 'Boom Barriers' across the drains with a low-cost material, which reduced their cost to only 2000 INR per barrier. The project was built upon the self-sustaining financial model. The project includes activities where a cost-efficient model is developed and adopted for a socially self-inclusive model. The project has recommended the use of low-cost floating boom barriers for capturing waste from drains. This involves a one-time time cost and has no operational cost. Manpower is engaged in fishing and capturing immobilized waste, whose salaries are paid by the Plastic Fisher. The captured material is sun-dried and transported to the designated place, where the shed and power connection, which act as MRF, are provided by the city Municipal corporation. Material aggregation, baling, and transportation costs to end-users are borne by Plastic Fisher as well.

Keywords: Kanpur, marine environment, drain waste management, plastic fisher

Procedia PDF Downloads 64
15490 Bivariate Analyses of Factors That May Influence HIV Testing among Women Living in the Democratic Republic of the Congo

Authors: Danielle A. Walker, Kyle L. Johnson, Patrick J. Fox, Jacen S. Moore

Abstract:

The HIV Continuum of Care has become a universal model to provide context for the process of HIV testing, linkage to care, treatment, and viral suppression. HIV testing is the first step in moving toward community viral suppression. Countries with a lower socioeconomic status experience the lowest rates of testing and access to care. The Democratic Republic of the Congo is located in the heart of sub-Saharan Africa, where testing and access to care are low and women experience higher HIV prevalence compared to men. In the Democratic Republic of the Congo there is only a 21.6% HIV testing rate among women. Because a critical gap exists between a woman’s risk of contracting HIV and the decision to be tested, this study was conducted to obtain a better understanding of the relationship between factors that could influence HIV testing among women. The datasets analyzed were from the 2013-14 Democratic Republic of the Congo Demographic and Health Survey Program. The data was subset for women with an age range of 18-49 years. All missing cases were removed and one variable was recoded. The total sample size analyzed was 14,982 women. The results showed that there did not seem to be a difference in HIV testing by mean age. Out of 11 religious categories (Catholic, Protestant, Armee de salut, Kimbanguiste, Other Christians, Muslim, Bundu dia kongo, Vuvamu, Animist, no religion, and other), those who identified as Other Christians had the highest testing rate of 25.9% and those identified as Vuvamu had a 0% testing rate (p<0.001). There was a significant difference in testing by religion. Only 0.7% of women surveyed identified as having no religious affiliation. This suggests partnerships with key community and religious leaders could be a tool to increase testing. Over 60% of women who had never been tested for HIV did not know where to be tested. This highlights the need to educate communities on where testing facilities can be located. Almost 80% of women who believed HIV could be transmitted by supernatural means and/or witchcraft had never been tested before (p=0.08). Cultural beliefs could influence risk perception and testing decisions. Consequently, misconceptions need to be considered when implementing HIV testing and prevention programs. Location by province, years of education, and wealth index were also analyzed to control for socioeconomic status. Kinshasa had the highest testing rate of 54.2% of women living there, and both Equateur and Kasai-Occidental had less than a 10% testing rate (p<0.001). As the education level increased up to 12 years, testing increased (p<0.001). Women within the highest quintile of the wealth index had a 56.1% testing rate, and women within the lowest quintile had a 6.5% testing rate (p<0.001). This study concludes that further research is needed to identify culturally competent methods to increase HIV education programs, build partnerships with key community leaders, and improve knowledge on access to care.

Keywords: Democratic Republic of the Congo, cultural beliefs, education, HIV testing

Procedia PDF Downloads 283
15489 Dynamic Analysis of Turbine Foundation

Authors: Mogens Saberi

Abstract:

This paper presents different design approaches for the design of turbine foundations. In the design process, several unknown factors must be considered such as the soil stiffness at the site. The main static and dynamic loads are presented and the results of a dynamic simulation are presented for a turbine foundation that is currently being built. A turbine foundation is an important part of a power plant since a non-optimal behavior of the foundation can damage the turbine itself and thereby stop the power production with large consequences.

Keywords: dynamic turbine design, harmonic response analysis, practical turbine design experience, concrete foundation

Procedia PDF Downloads 309
15488 Understanding and Explaining Urban Resilience and Vulnerability: A Framework for Analyzing the Complex Adaptive Nature of Cities

Authors: Richard Wolfel, Amy Richmond

Abstract:

Urban resilience and vulnerability are critical concepts in the modern city due to the increased sociocultural, political, economic, demographic, and environmental stressors that influence current urban dynamics. Urban scholars need help explaining urban resilience and vulnerability. First, cities are dominated by people, which is challenging to model, both from an explanatory and a predictive perspective. Second, urban regions are highly recursive in nature, meaning they not only influence human action, but the structures of cities are constantly changing due to human actions. As a result, explanatory frameworks must continuously evolve as humans influence and are influenced by the urban environment in which they operate. Finally, modern cities have populations, sociocultural characteristics, economic flows, and environmental impacts on order of magnitude well beyond the cities of the past. As a result, the frameworks that seek to explain the various functions of a city that influence urban resilience and vulnerability must address the complex adaptive nature of cities and the interaction of many distinct factors that influence resilience and vulnerability in the city. This project develops a taxonomy and framework for organizing and explaining urban vulnerability. The framework is built on a well-established political development model that includes six critical classes of urban dynamics: political presence, political legitimacy, political participation, identity, production, and allocation. In addition, the framework explores how environmental security and technology influence and are influenced by the six elements of political development. The framework aims to identify key tipping points in society that act as influential agents of urban vulnerability in a region. This will help analysts and scholars predict and explain the influence of both physical and human geographical stressors in a dense urban area.

Keywords: urban resilience, vulnerability, sociocultural stressors, political stressors

Procedia PDF Downloads 108
15487 Problems and Challenges of Implementing Distance Learning against the Background of the COVID-19 Pandemic

Authors: Tinatin Sabauri, Eduard Gelagutashvili, Salome Pataridze

Abstract:

The COVID-19 pandemic presents a serious challenge to all sectors of the country. Particularly difficult and important was the rapid mobilization of educational institutions to ensure the continuous flow of the educational process and effective fulfillment of the transaction. Developed countries managed to overcome this challenge quickly because, before the pandemic, part of universities had implemented blended learning (a mixture of online and face-to-face learning). The article aims to evaluate the use of electronic platforms by non-Georgian-speaking students and their involvement in the e-learning process at Ilia State University. Based on the phenomenological research design, a comparative analysis has been conducted - what was the use of electronic systems by non-Georgian-speaking students before 2019, and what was it like during the COVID-19 pandemic? Concretely, the phenomenological design was used in the research to evaluate the efficiency of distance learning with non-Georgian speaking students at Ilia State University. Focus groups were created within the phenomenological design. In the focus groups, students answered a pre-designed semi-structured questionnaire. Based on the analysis of the questionnaires, it was revealed that online learning and access to electronic portals were not a particular difficulty for ethnic minorities. The following positive and negative aspects of e-learning were identified in the research. Students named as positive aspects: Enables joining online classes directly from home before the start of the lecture, It saves time and money on travel and accommodation (for some students). It was named as negative aspects: Learning a language online is more difficult than in face-to-face classrooms, lack of teamwork activity, lack of strong and stable internet connections, and audio problems. Based on the results of the research, it was shown that in the post-pandemic period, the involvement of non-Georgian speaking students has significantly increased; therefore, the use of electronic systems by non-Georgian speaking students.

Keywords: electronic system, distance learning, COVID-19, students

Procedia PDF Downloads 75
15486 Personality Based Tailored Learning Paths Using Cluster Analysis Methods: Increasing Students' Satisfaction in Online Courses

Authors: Orit Baruth, Anat Cohen

Abstract:

Online courses have become common in many learning programs and various learning environments, particularly in higher education. Social distancing forced in response to the COVID-19 pandemic has increased the demand for these courses. Yet, despite the frequency of use, online learning is not free of limitations and may not suit all learners. Hence, the growth of online learning alongside with learners' diversity raises the question: is online learning, as it currently offered, meets the needs of each learner? Fortunately, today's technology allows to produce tailored learning platforms, namely, personalization. Personality influences learner's satisfaction and therefore has a significant impact on learning effectiveness. A better understanding of personality can lead to a greater appreciation of learning needs, as well to assists educators ensure that an optimal learning environment is provided. In the context of online learning and personality, the research on learning design according to personality traits is lacking. This study explores the relations between personality traits (using the 'Big-five' model) and students' satisfaction with five techno-pedagogical learning solutions (TPLS): discussion groups, digital books, online assignments, surveys/polls, and media, in order to provide an online learning process to students' satisfaction. Satisfaction level and personality identification of 108 students who participated in a fully online learning course at a large, accredited university were measured. Cluster analysis methods (k-mean) were applied to identify learners’ clusters according to their personality traits. Correlation analysis was performed to examine the relations between the obtained clusters and satisfaction with the offered TPLS. Findings suggest that learners associated with the 'Neurotic' cluster showed low satisfaction with all TPLS compared to learners associated with the 'Non-neurotics' cluster. learners associated with the 'Consciences' cluster were satisfied with all TPLS except discussion groups, and those in the 'Open-Extroverts' cluster were satisfied with assignments and media. All clusters except 'Neurotic' were highly satisfied with the online course in general. According to the findings, dividing learners into four clusters based on personality traits may help define tailor learning paths for them, combining various TPLS to increase their satisfaction. As personality has a set of traits, several TPLS may be offered in each learning path. For the neurotics, however, an extended selection may suit more, or alternatively offering them the TPLS they less dislike. Study findings clearly indicate that personality plays a significant role in a learner's satisfaction level. Consequently, personality traits should be considered when designing personalized learning activities. The current research seeks to bridge the theoretical gap in this specific research area. Establishing the assumption that different personalities need different learning solutions may contribute towards a better design of online courses, leaving no learner behind, whether he\ she likes online learning or not, since different personalities need different learning solutions.

Keywords: online learning, personality traits, personalization, techno-pedagogical learning solutions

Procedia PDF Downloads 97
15485 Secure Optimized Ingress Filtering in Future Internet Communication

Authors: Bander Alzahrani, Mohammed Alreshoodi

Abstract:

Information-centric networking (ICN) using architectures such as the Publish-Subscribe Internet Technology (PURSUIT) has been proposed as a new networking model that aims at replacing the current used end-centric networking model of the Internet. This emerged model focuses on what is being exchanged rather than which network entities are exchanging information, which gives the control plane functions such as routing and host location the ability to be specified according to the content items. The forwarding plane of the PURSUIT ICN architecture uses a simple and light mechanism based on Bloom filter technologies to forward the packets. Although this forwarding scheme solve many problems of the today’s Internet such as the growth of the routing table and the scalability issues, it is vulnerable to brute force attacks which are starting point to distributed- denial-of-service (DDoS) attacks. In this work, we design and analyze a novel source-routing and information delivery technique that keeps the simplicity of using Bloom filter-based forwarding while being able to deter different attacks such as denial of service attacks at the ingress of the network. To achieve this, special forwarding nodes called Edge-FW are directly attached to end user nodes and used to perform a security test for malicious injected random packets at the ingress of the path to prevent any possible attack brute force attacks at early stage. In this technique, a core entity of the PURSUIT ICN architecture called topology manager, that is responsible for finding shortest path and creating a forwarding identifiers (FId), uses a cryptographically secure hash function to create a 64-bit hash, h, over the formed FId for authentication purpose to be included in the packet. Our proposal restricts the attacker from injecting packets carrying random FIds with a high amount of filling factor ρ, by optimizing and reducing the maximum allowed filling factor ρm in the network. We optimize the FId to the minimum possible filling factor where ρ ≤ ρm, while it supports longer delivery trees, so the network scalability is not affected by the chosen ρm. With this scheme, the filling factor of any legitimate FId never exceeds the ρm while the filling factor of illegitimate FIds cannot exceed the chosen small value of ρm. Therefore, injecting a packet containing an FId with a large value of filling factor, to achieve higher attack probability, is not possible anymore. The preliminary analysis of this proposal indicates that with the designed scheme, the forwarding function can detect and prevent malicious activities such DDoS attacks at early stage and with very high probability.

Keywords: forwarding identifier, filling factor, information centric network, topology manager

Procedia PDF Downloads 144
15484 Analyzing the Sound of Space - The Glissando of the Planets and the Spiral Movement on the Sound of Earth, Saturn and Jupiter

Authors: L. Tonia, I. Daglis, W. Kurth

Abstract:

The sound of the universe creates an affinity with the sounds of music. The analysis of the sound of space focuses on the existence of a tone material, the microstructure and macrostructure, and the form of the sound through the signals recorded during the flight of the spacecraft Van Allen Probes and Cassini’s mission. The sound becomes from the frequencies that belong to electromagnetic waves. Plasma Wave Science Instrument and Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) recorded the signals from space. A transformation of that signals to audio gave the opportunity to study and analyze the sound. Due to the fact that the musical tone pitch has a frequency and every electromagnetic wave produces a frequency too, the creation of a musical score, which appears as the sound of space, can give information about the form, the symmetry, and the harmony of the sound. The conversion of space radio emissions to audio provides a number of tone pitches corresponding to the original frequencies. Through the process of these sounds, we have the opportunity to present a music score that “composed” from space. In this score, we can see some basic features associated with the music form, the structure, the tone center of music material, the construction and deconstruction of the sound. The structure, which was built through a harmonic world, includes tone centers, major and minor scales, sequences of chords, and types of cadences. The form of the sound represents the symmetry of a spiral movement not only in micro-structural but also to macro-structural shape. Multiple glissando sounds in linear and polyphonic process of the sound, founded in magnetic fields around Earth, Saturn, and Jupiter, but also a spiral movement appeared on the spectrogram of the sound. Whistles, Auroral Kilometric Radiations, and Chorus emissions reveal movements similar to musical excerpts of works by contemporary composers like Sofia Gubaidulina, Iannis Xenakis, EinojuhamiRautavara.

Keywords: space sound analysis, spiral, space music, analysis

Procedia PDF Downloads 166
15483 Energy Efficiency of Secondary Refrigeration with Phase Change Materials and Impact on Greenhouse Gases Emissions

Authors: Michel Pons, Anthony Delahaye, Laurence Fournaison

Abstract:

Secondary refrigeration consists of splitting large-size direct-cooling units into volume-limited primary cooling units complemented by secondary loops for transporting and distributing cold. Such a design reduces the refrigerant leaks, which represents a source of greenhouse gases emitted into the atmosphere. However, inserting the secondary circuit between the primary unit and the ‘users’ heat exchangers (UHX) increases the energy consumption of the whole process, which induces an indirect emission of greenhouse gases. It is thus important to check whether that efficiency loss is sufficiently limited for the change to be globally beneficial to the environment. Among the likely secondary fluids, phase change slurries offer several advantages: they transport latent heat, they stabilize the heat exchange temperature, and the formerly evaporators still can be used as UHX. The temperature level can also be adapted to the desired cooling application. Herein, the slurry {ice in mono-propylene-glycol solution} (melting temperature Tₘ of 6°C) is considered for food preservation, and the slurry {mixed hydrate of CO₂ + tetra-n-butyl-phosphonium-bromide in aqueous solution of this salt + CO₂} (melting temperature Tₘ of 13°C) is considered for air conditioning. For the sake of thermodynamic consistency, the analysis encompasses the whole process, primary cooling unit plus secondary slurry loop, and the various properties of the slurries, including their non-Newtonian viscosity. The design of the whole process is optimized according to the properties of the chosen slurry and under explicit constraints. As a first constraint, all the units must deliver the same cooling power to the user. The other constraints concern the heat exchanges areas, which are prescribed, and the flow conditions, which prevent deposition of the solid particles transported in the slurry, and their agglomeration. Minimization of the total energy consumption leads to the optimal design. In addition, the results are analyzed in terms of exergy losses, which allows highlighting the couplings between the primary unit and the secondary loop. One important difference between the ice-slurry and the mixed-hydrate one is the presence of gaseous carbon dioxide in the latter case. When the mixed-hydrate crystals melt in the UHX, CO₂ vapor is generated at a rate that depends on the phase change kinetics. The flow in the UHX, and its heat and mass transfer properties are significantly modified. This effect has never been investigated before. Lastly, inserting the secondary loop between the primary unit and the users increases the temperature difference between the refrigerated space and the evaporator. This results in a loss of global energy efficiency, and therefore in an increased energy consumption. The analysis shows that this loss of efficiency is not critical in the first case (Tₘ = 6°C), while the second case leads to more ambiguous results, partially because of the higher melting temperature.The consequences in terms of greenhouse gases emissions are also analyzed.

Keywords: exergy, hydrates, optimization, phase change material, thermodynamics

Procedia PDF Downloads 127
15482 Implementation of the Collaborative Learning Approach in Learning of Second Language English

Authors: Ashwini Mahesh Jagatap

Abstract:

This paper presents the language learning strategy with respect to speaking skill with collaborative learning approach. Collaborative learning has been proven to be efficient learning methodology for all kinds of students. Students are working in groups of two or more, reciprocally searching for understanding, Solutions, or meanings, or creating a product. The presentation highlights the different stages which can be implemented during actual implementation of the methodology in the class room teaching learning process.

Keywords: collaborative classroom, collaborative learning approach, language skills, traditional teaching

Procedia PDF Downloads 568