Search results for: ubiquitin editing complex
4107 Medical Image Classification Using Legendre Multifractal Spectrum Features
Authors: R. Korchiyne, A. Sbihi, S. M. Farssi, R. Touahni, M. Tahiri Alaoui
Abstract:
Trabecular bone structure is important texture in the study of osteoporosis. Legendre multifractal spectrum can reflect the complex and self-similarity characteristic of structures. The main objective of this paper is to develop a new technique of medical image classification based on Legendre multifractal spectrum. Novel features have been developed from basic geometrical properties of this spectrum in a supervised image classification. The proposed method has been successfully used to classify medical images of bone trabeculations, and could be a useful supplement to the clinical observations for osteoporosis diagnosis. A comparative study with existing data reveals that the results of this approach are concordant.Keywords: multifractal analysis, medical image, osteoporosis, fractal dimension, Legendre spectrum, supervised classification
Procedia PDF Downloads 5114106 Smart Grids Cyber Security Issues and Challenges
Authors: Imen Aouini, Lamia Ben Azzouz
Abstract:
The energy need is growing rapidly due to the population growth and the large new usage of power. Several works put considerable efforts to make the electricity grid more intelligent to reduce essentially energy consumption and provide efficiency and reliability of power systems. The Smart Grid is a complex architecture that covers critical devices and systems vulnerable to significant attacks. Hence, security is a crucial factor for the success and the wide deployment of Smart Grids. In this paper, we present security issues of the Smart Grid architecture and we highlight open issues that will make the Smart Grid security a challenging research area in the future.Keywords: smart grids, smart meters, home area network, neighbor area network
Procedia PDF Downloads 4224105 Kinetic Façade Design Using 3D Scanning to Convert Physical Models into Digital Models
Authors: Do-Jin Jang, Sung-Ah Kim
Abstract:
In designing a kinetic façade, it is hard for the designer to make digital models due to its complex geometry with motion. This paper aims to present a methodology of converting a point cloud of a physical model into a single digital model with a certain topology and motion. The method uses a Microsoft Kinect sensor, and color markers were defined and applied to three paper folding-inspired designs. Although the resulted digital model cannot represent the whole folding range of the physical model, the method supports the designer to conduct a performance-oriented design process with the rough physical model in the reduced folding range.Keywords: design media, kinetic facades, tangible user interface, 3D scanning
Procedia PDF Downloads 4124104 Both Floristic Studies and Molecular Markers Are Necessary to Study of the Flora of a Region
Authors: Somayeh Akrami, Vali-Allah Mozaffarian, Habib Onsori
Abstract:
The studied region in this research, watershed Kuhkamar river, is about 112.66 square kilometers, it is located between 45º 48' 9" to 45º 2' 20" N and 38º 34' 15" to 38º 40' 28" E. The gained results of the studies on flora combinations, proved 287 plant species in 190 genera and 51 families. Asteracea with 49 and Lamiaceae with 27 plant species are the major plant families. Among collected species one interesting plant was found and determined as a new record Anemone narcissiflora L. for flora of Iran. This plant is known as a complex species that shows intraspecific speciation and is classified into about 12 subspecies and 10 varieties in world. To identify the infraspecies taxons of this species, in addition to morphological characteristics, the use of appropriate molecular markers for the better isolation of the individuals were needed.Keywords: Anemone narcissiflora, floristic Study, kuhkamar, molecular marker
Procedia PDF Downloads 4854103 Incidence of Breast Cancer and Enterococcus Infection: A Retrospective Analysis
Authors: Matthew Cardeiro, Amalia D. Ardeljan, Lexi Frankel, Dianela Prado Escobar, Catalina Molnar, Omar M. Rashid
Abstract:
Introduction: Enterococci comprise the natural flora of nearly all animals and are ubiquitous in food manufacturing and probiotics. However, its role in the microbiome remains controversial. The gut microbiome has shown to play an important role in immunology and cancer. Further, recent data has suggested a relationship between gut microbiota and breast cancer. These studies have shown that the gut microbiome of patients with breast cancer differs from that of healthy patients. Research regarding enterococcus infection and its sequala is limited, and further research is needed in order to understand the relationship between infection and cancer. Enterococcus may prevent the development of breast cancer (BC) through complex immunologic and microbiotic adaptations following an enterococcus infection. This study investigated the effect of enterococcus infection and the incidence of BC. Methods: A retrospective study (January 2010- December 2019) was provided by a Health Insurance Portability and Accountability Act (HIPAA) compliant national database and conducted using a Humans Health Insurance Database. International Classification of Disease (ICD) 9th and 10th codes, Current Procedural Terminology (CPT), and National Drug Codes were used to identify BC diagnosis and enterococcus infection. Patients were matched for age, sex, Charlson Comorbidity Index (CCI), antibiotic treatment, and region of residence. Chi-squared, logistic regression, and odds ratio were implemented to assess the significance and estimate relative risk. Results: 671 out of 28,518 (2.35%) patients with a prior enterococcus infection and 1,459 out of 28,518 (5.12%) patients without enterococcus infection subsequently developed BC, and the difference was statistically significant (p<2.2x10⁻¹⁶). Logistic regression also indicated enterococcus infection was associated with a decreased incidence of BC (RR=0.60, 95% CI [0.57, 0.63]). Treatment for enterococcus infection was analyzed and controlled for in both enterococcus infected and noninfected populations. 398 out of 11,523 (3.34%) patients with a prior enterococcus infection and treated with antibiotics were compared to 624 out of 11,523 (5.41%) patients with no history of enterococcus infection (control) and received antibiotic treatment. Both populations subsequently developed BC. Results remained statistically significant (p<2.2x10-16) with a relative risk of 0.57 (95% CI [0.54, 0.60]). Conclusion & Discussion: This study shows a statistically significant correlation between enterococcus infection and a decrease incidence of breast cancer. Further exploration is needed to identify and understand not only the role of enterococcus in the microbiome but also the protective mechanism(s) and impact enterococcus infection may have on breast cancer development. Ultimately, further research is needed in order to understand the complex and intricate relationship between the microbiome, immunology, bacterial infections, and carcinogenesis.Keywords: breast cancer, enterococcus, immunology, infection, microbiome
Procedia PDF Downloads 1714102 Projectification: Using Project Management Methodology to Manage the Academic Program Review
Authors: Adam Marks, Munir Majdalawieh, Maytha Al Ali
Abstract:
While research is rich with what criteria could be included in the academic program review processes, there is rarely any mention of how this significant and complex process should be managed. This paper proposes using project management methodology in alignment with the program review criteria of the Dickeson’s Prioritizing Academic Programs model. Project management and academic program review share two distinct characteristics; one is their life cycle, and the second is the core knowledge areas they use. This aligned and structured approach offers academic administrators a step-by-step guide that can help them manage this process and effectively assess academic programs.Keywords: project management, academic program, program review, education, higher education institution, strategic management
Procedia PDF Downloads 3624101 Design and 3D-Printout of The Stack-Corrugate-Sheel Core Sandwiched Decks for The Bridging System
Authors: K. Kamal
Abstract:
Structural sandwich panels with core of Advanced Composites Laminates l Honeycombs / PU-foams are used in aerospace applications and are also fabricated for use now in some civil engineering applications. An all Advanced Composites Foot Over Bridge (FOB) system, designed and developed for pedestrian traffic is one such application earlier, may be cited as an example here. During development stage of this FoB, a profile of its decks was then spurred as a single corrugate sheet core sandwiched between two Glass Fibre Reinforced Plastics(GFRP) flat laminates. Once successfully fabricated and used, these decks did prove suitable also to form other structure on assembly, such as, erecting temporary shelters. Such corrugated sheet core profile sandwiched panels were then also tried using the construction materials but any conventional method of construction only posed certain difficulties in achieving the required core profile monolithically within the sandwiched slabs and hence it was then abended. Such monolithic construction was, however, subsequently eased out on demonstration by dispensing building materials mix through a suitably designed multi-dispenser system attached to a 3D Printer. This study conducted at lab level was thus reported earlier and it did include the fabrication of a 3D printer in-house first as ‘3DcMP’ as well as on its functional operation, some required sandwich core profiles also been 3D-printed out producing panels hardware. Once a number of these sandwich panels in single corrugated sheet core monolithically printed out, panels were subjected to load test in an experimental set up as also their structural behavior was studied analytically, and subsequently, these results were correlated as reported in the literature. In achieving the required more depths and also to exhibit further the stronger and creating sandwiched decks of better structural and mechanical behavior, further more complex core configuration such as stack corrugate sheets core with a flat mid plane was felt to be the better sandwiched core. Such profile remained as an outcome that turns out merely on stacking of two separately printed out monolithic units of single corrugated sheet core developed earlier as above and bonded them together initially, maintaining a different orientation. For any required sequential understanding of the structural behavior of any such complex profile core sandwiched decks with special emphasis to study of the effect in the variation of corrugation orientation in each distinct tire in this core, it obviously calls for an analytical study first. The rectangular,simply supported decks have therefore been considered for analysis adopting the ‘Advanced Composite Technology(ACT), some numerical results along with some fruitful findings were obtained and these are all presented here in this paper. From this numerical result, it has been observed that a mid flat layer which eventually get created monolethically itself, in addition to eliminating the bonding process in development, has been found to offer more effective bending resistance by such decks subjected to UDL over them. This is understood to have resulted here since the existence of a required shear resistance layer at the mid of the core in this profile, unlike other bending elements. As an addendum to all such efforts made as covered above and was published earlier, this unique stack corrugate sheet core profile sandwiched structural decks, monolithically construction with ease at the site itself, has been printed out from a 3D Printer. On employing 3DcMP and using some innovative building construction materials, holds the future promises of such research & development works since all those several aspects of a 3D printing in construction are now included such as reduction in the required construction time, offering cost effective solutions with freedom in design of any such complex shapes thus can widely now be realized by the modern construction industry.Keywords: advance composite technology(ACT), corrugated laminates, 3DcMP, foot over bridge (FOB), sandwiched deck units
Procedia PDF Downloads 1704100 Health Monitoring of Concrete Assets in Refinery
Authors: Girish M. Bhatia
Abstract:
Most of the important structures in refinery complex are RCC Structures for which in-depth structural monitoring and inspection is required for incessant service. Reinforced concrete structures can be under threat from a combination of insidious challenges due to environmental conditions, including temperature and humidity that lead to accelerated deterioration mechanisms like carbonation, as well as marine exposure, above and below ground structures can experience ingress from aggressive ground waters carrying chlorides and sulphates leading to unexpected deterioration that threaten the integrity of a vital structural asset. By application of health monitoring techniques like corrosion monitoring with help of sensor probes, visual inspection of high rise structures with help of drones, it is possible to establish an early warning at the onset of these destructive processes.Keywords: concrete structures, corrosion sensors, drones, health monitoring
Procedia PDF Downloads 3964099 Assessment of Psychomotor Development of Preschool Children: A Review of Eight Psychomotor Developmental Tools
Authors: Viola Hubačová Pirová
Abstract:
The assessment of psychomotor development allows us to identify children with motor delays, helps us to monitor progress in time and prepare suitable intervention programs. The foundation of psychomotor development lies in pre-school age and is crucial for child´s further cognitive and social development. Many assessment tools of psychomotor development have been developed over the years. Some of them are easy screening tools; others are more complex and sophisticated. The purpose of this review is to describe the history of psychomotor assessment, specify preschool children´s psychomotor evaluation and review eight psychomotor development assessment tools for preschool children (Denver II., DEMOST-PRE, TGMD -2/3, BOT-2, MABC-2, PDMS-2, KTK, MOT 4-6). The selection of test depends on purpose and context in which is the assessment planned.Keywords: assessment of psychomotor development, preschool children, psychomotor development, review of assessment tools
Procedia PDF Downloads 1654098 Solution of the Blast Wave Problem in Dusty Gas
Authors: Triloki Nath, R. K. Gupta, L. P. Singh
Abstract:
The aim of this paper is to find the new exact solution of the blast wave problem in one-dimensional unsteady adiabatic flow for generalized geometry in a compressible, inviscid ideal gas with dust particles. The density of the undisturbed region is assumed to vary according to a power law of the distance from the point of explosion. The exact solution of the problem in form of a power in the distance and the time is obtained. Further, the behaviour of the total energy carried out by the blast wave for planar, cylindrically symmetric and spherically symmetric flow corresponding to different Mach number of the fluid flow in dusty gas is presented. It is observed that the presence of dust particles in the gas yields more complex expression as compared to the ordinary Gasdynamics.Keywords: shock wave, blast wave, dusty gas, strong shock
Procedia PDF Downloads 3314097 GenAI Agents in Product Management: A Case Study from the Manufacturing Sector
Authors: Aron Witkowski, Andrzej Wodecki
Abstract:
Purpose: This study aims to explore the feasibility and effectiveness of utilizing Generative Artificial Intelligence (GenAI) agents as product managers within the manufacturing sector. It seeks to evaluate whether current GenAI capabilities can fulfill the complex requirements of product management and deliver comparable outcomes to human counterparts. Study Design/Methodology/Approach: This research involved the creation of a support application for product managers, utilizing high-quality sources on product management and generative AI technologies. The application was designed to assist in various aspects of product management tasks. To evaluate its effectiveness, a study was conducted involving 10 experienced product managers from the manufacturing sector. These professionals were tasked with using the application and providing feedback on the tool's responses to common questions and challenges they encounter in their daily work. The study employed a mixed-methods approach, combining quantitative assessments of the tool's performance with qualitative interviews to gather detailed insights into the user experience and perceived value of the application. Findings: The findings reveal that GenAI-based product management agents exhibit significant potential in handling routine tasks, data analysis, and predictive modeling. However, there are notable limitations in areas requiring nuanced decision-making, creativity, and complex stakeholder interactions. The case study demonstrates that while GenAI can augment human capabilities, it is not yet fully equipped to independently manage the holistic responsibilities of a product manager in the manufacturing sector. Originality/Value: This research provides an analysis of GenAI's role in product management within the manufacturing industry, contributing to the limited body of literature on the application of GenAI agents in this domain. It offers practical insights into the current capabilities and limitations of GenAI, helping organizations make informed decisions about integrating AI into their product management strategies. Implications for Academic and Practical Fields: For academia, the study suggests new avenues for research in AI-human collaboration and the development of advanced AI systems capable of higher-level managerial functions. Practically, it provides industry professionals with a nuanced understanding of how GenAI can be leveraged to enhance product management, guiding investments in AI technologies and training programs to bridge identified gaps.Keywords: generative artificial intelligence, GenAI, NPD, new product development, product management, manufacturing
Procedia PDF Downloads 484096 Gas Sweetening Process Simulation: Investigation on Recovering Waste Hydraulic Energy
Authors: Meisam Moghadasi, Hassan Ali Ozgoli, Foad Farhani
Abstract:
In this research, firstly, a commercial gas sweetening unit with methyl-di-ethanol-amine (MDEA) solution is simulated and comprised in an integrated model in accordance with Aspen HYSYS software. For evaluation purposes, in the second step, the results of the simulation are compared with operating data gathered from South Pars Gas Complex (SPGC). According to the simulation results, the considerable energy potential contributed to the pressure difference between absorber and regenerator columns causes this energy driving force to be applied in power recovery turbine (PRT). In the last step, the amount of waste hydraulic energy is calculated, and its recovery methods are investigated.Keywords: gas sweetening unit, simulation, MDEA, power recovery turbine, waste-to-energy
Procedia PDF Downloads 1774095 The Role of Group Size, Public Employees’ Wages and Control Corruption Institutions in a Game-Theoretical Model of Public Corruption
Authors: Pablo J. Valverde, Jaime E. Fernandez
Abstract:
This paper shows under which conditions public corruption can emerge. The theoretical model includes variables such as the public employee wage (w), a control corruption parameter (c), and the group size of interactions (GS) between clusters of public officers and contractors. The system behavior is analyzed using phase diagrams based on combinations of such parameters (c, w, GS). Numerical simulations are implemented in order to contrast analytic results based on Nash equilibria of the theoretical model. Major findings include the functional relationship between wages and network topology, which attempts to reduce the emergence of corrupt behavior.Keywords: public corruption, game theory, complex systems, Nash equilibrium.
Procedia PDF Downloads 2414094 Devising a Paradigm for the Assessment of Guilt across Species
Authors: Trisha S. Malhotra
Abstract:
While there exist frameworks to study the induction, manifestation, duration and general nature of emotions like shame, guilt, embarrassment and pride in humans, the same cannot be said for other species. This is because such 'complex' emotions have situational inductions and manifestations that supposedly vary due to differences between and within different species' ethology. This paper looks at the socio-adaptive functions of guilt to posit why this emotion might be observed across varying species. Primarily, the experimental paradigm of guilt-assessment in domesticated dogs is critiqued for lack of ethological consideration in its measurement and analysis. It is argued that a paradigm for guilt-assessment should measure the species-specific prosocial approach behavior instead of the immediate feedback of the 'guilty'. Finally, it is asserted that the origin of guilt is subjective and if it must be studied across a plethora of species, its definition must be tailored to fit accordingly.Keywords: guilt, assessment, dogs, prosocial approach behavior, empathy, species, ethology
Procedia PDF Downloads 3064093 Monitoring Potential Temblor Localities as a Supplemental Risk Control System
Authors: Mikhail Zimin, Svetlana Zimina, Maxim Zimin
Abstract:
Without question, the basic method of prevention of human and material losses is the provision for adequate strength of constructions. At the same time, seismic load has a stochastic character. So, at all times, there is little danger of earthquake forces exceeding the selected design load. This risk is very low, but the consequences of such events may be extremely serious. Very dangerous are also occasional mistakes in seismic zoning, soil conditions changing before temblors, and failure to take into account hazardous natural phenomena caused by earthquakes. Besides, it is known that temblors detrimentally affect the environmental situation in regions where they occur, resulting in panic and worsening various disease courses. It may lead to mistakes of personnel of hazardous production facilities like the production and distribution of gas and oil, which may provoke severe accidents. In addition, gas and oil pipelines often have long mileage and cross many perilous zones by contrast with buildings. This situation increases the risk of heavy accidents. In such cases, complex monitoring of potential earthquake localities would be relevant. Even though the number of successful real-time forecasts of earthquakes is not great, it is well in excess, such as may be under random guessing. Experimental performed time-lapse study and analysis consist of searching seismic, biological, meteorological, and light earthquake precursors, processing such data with the help of fuzzy sets, collecting weather information, utilizing a database of terrain, and computing risk of slope processes under the temblor in a given setting. Works were done in a real-time environment and broadly acceptable results took place. Observations from already in-place seismic recording systems are used. Furthermore, a look back study of precursors of known earthquakes is done. Situations before Ashkhabad, Tashkent, and Haicheng seismic events are analyzed. Fairish findings are obtained. Results of earthquake forecasts can be used for predicting dangerous natural phenomena caused by temblors such as avalanches and mudslides. They may also be utilized for prophylaxis of some diseases and their complications. Relevant software is worked out too. It should be emphasized that such control does not require serious financial expenses and can be performed by a small group of professionals. Thus, complex monitoring of potential earthquake localities, including short-term earthquake forecasts and analysis of possible hazardous consequences of temblors, may further the safety of pipeline facilities.Keywords: risk, earthquake, monitoring, forecast, precursor
Procedia PDF Downloads 194092 Optimizing Inanda Dam Using Water Resources Models
Authors: O. I. Nkwonta, B. Dzwairo, J. Adeyemo, A. Jaiyola, N. Sawyerr, F. Otieno
Abstract:
The effective management of water resources is of great importance to ensure the supply of water resources to support changing water requirements over a selected planning horizon and in a sustainable and cost-effective way. Essentially, the purpose of the water resources planning process is to balance the available water resources in a system with the water requirements and losses to which the system is subjected. In such situations, Water resources yield and planning model can be used to solve those difficulties. It has an advantage over other models by managing model runs, developing a representative system network, modelling incremental sub-catchments, creating a variety of standard system features, special modelling features, and run result output options.Keywords: complex, water resources, planning, cost effective and management
Procedia PDF Downloads 5724091 3D Mesh Coarsening via Uniform Clustering
Authors: Shuhua Lai, Kairui Chen
Abstract:
In this paper, we present a fast and efficient mesh coarsening algorithm for 3D triangular meshes. Theis approach can be applied to very complex 3D meshes of arbitrary topology and with millions of vertices. The algorithm is based on the clustering of the input mesh elements, which divides the faces of an input mesh into a given number of clusters for clustering purpose by approximating the Centroidal Voronoi Tessellation of the input mesh. Once a clustering is achieved, it provides us an efficient way to construct uniform tessellations, and therefore leads to good coarsening of polygonal meshes. With proliferation of 3D scanners, this coarsening algorithm is particularly useful for reverse engineering applications of 3D models, which in many cases are dense, non-uniform, irregular and arbitrary topology. Examples demonstrating effectiveness of the new algorithm are also included in the paper.Keywords: coarsening, mesh clustering, shape approximation, mesh simplification
Procedia PDF Downloads 3784090 Research on the Optimization of Satellite Mission Scheduling
Authors: Pin-Ling Yin, Dung-Ying Lin
Abstract:
Satellites play an important role in our daily lives, from monitoring the Earth's environment and providing real-time disaster imagery to predicting extreme weather events. As technology advances and demands increase, the tasks undertaken by satellites have become increasingly complex, with more stringent resource management requirements. A common challenge in satellite mission scheduling is the limited availability of resources, including onboard memory, ground station accessibility, and satellite power. In this context, efficiently scheduling and managing the increasingly complex satellite missions under constrained resources has become a critical issue that needs to be addressed. The core of Satellite Onboard Activity Planning (SOAP) lies in optimizing the scheduling of the received tasks, arranging them on a timeline to form an executable onboard mission plan. This study aims to develop an optimization model that considers the various constraints involved in satellite mission scheduling, such as the non-overlapping execution periods for certain types of tasks, the requirement that tasks must fall within the contact range of specified types of ground stations during their execution, onboard memory capacity limits, and the collaborative constraints between different types of tasks. Specifically, this research constructs a mixed-integer programming mathematical model and solves it with a commercial optimization package. Simultaneously, as the problem size increases, the problem becomes more difficult to solve. Therefore, in this study, a heuristic algorithm has been developed to address the challenges of using commercial optimization package as the scale increases. The goal is to effectively plan satellite missions, maximizing the total number of executable tasks while considering task priorities and ensuring that tasks can be completed as early as possible without violating feasibility constraints. To verify the feasibility and effectiveness of the algorithm, test instances of various sizes were generated, and the results were validated through feedback from on-site users and compared against solutions obtained from a commercial optimization package. Numerical results show that the algorithm performs well under various scenarios, consistently meeting user requirements. The satellite mission scheduling algorithm proposed in this study can be flexibly extended to different types of satellite mission demands, achieving optimal resource allocation and enhancing the efficiency and effectiveness of satellite mission execution.Keywords: mixed-integer programming, meta-heuristics, optimization, resource management, satellite mission scheduling
Procedia PDF Downloads 244089 Radar-Based Classification of Pedestrian and Dog Using High-Resolution Raw Range-Doppler Signatures
Authors: C. Mayr, J. Periya, A. Kariminezhad
Abstract:
In this paper, we developed a learning framework for the classification of vulnerable road users (VRU) by their range-Doppler signatures. The frequency-modulated continuous-wave (FMCW) radar raw data is first pre-processed to obtain robust object range-Doppler maps per coherent time interval. The complex-valued range-Doppler maps captured from our outdoor measurements are further fed into a convolutional neural network (CNN) to learn the classification. This CNN has gone through a hyperparameter optimization process for improved learning. By learning VRU range-Doppler signatures, the three classes 'pedestrian', 'dog', and 'noise' are classified with an average accuracy of almost 95%. Interestingly, this classification accuracy holds for a combined longitudinal and lateral object trajectories.Keywords: machine learning, radar, signal processing, autonomous driving
Procedia PDF Downloads 2414088 The Quantitative Analysis of the Traditional Rural Settlement Plane Boundary
Authors: Yifan Dong, Xincheng Pu
Abstract:
Rural settlements originate from the accumulation of residential building elements, and their agglomeration forms the settlement pattern and defines the relationship between the settlement and the inside and outside. The settlement boundary is an important part of the settlement pattern. Compared with the simplification of the urban settlement boundary, the settlement of the country is more complex, fuzzy and uncertain, and then presents a rich and diverse boundary morphological phenomenon. In this paper, China traditional rural settlements plane boundary as the research object, using fractal theory and fractal dimension method, quantitative analysis of planar shape boundary settlement, and expounds the research for the architectural design, ancient architecture protection and renewal and development and the significance of the protection of settlements.Keywords: rural settlement, border, fractal, quantification
Procedia PDF Downloads 2474087 Characteristics of the Severe Rollover Crashes in the UAE Using In-Depth Crash Investigation Data
Authors: Yaser E. Hawas, Md. Didarul Alam
Abstract:
Rollover crashes are complex events entailing interactions of driver, road, vehicle, and environmental factors. The primary objective of this paper is to present an empirical approach that can be used to characterise the rollover crashes and to identify some of the important factors that may lead to rollovers. Among the studied factors are the vehicle types and the rollover occurrence rate after hitting various barrier types. The carried analysis indicated that 71% of the rollover crashes occurred after impact and the type of rollover initiation is “trip/turn over” (nearly 50%). It was also found that light trucks (LTVs) vehicles are more likely to rollover than the sedan vehicles. Barrier impacts are associated with increased incidence of rollover.Keywords: empirical, hitting barrier, in-depth crash investigation, rollover, severe crash
Procedia PDF Downloads 3694086 Two Concurrent Convolution Neural Networks TC*CNN Model for Face Recognition Using Edge
Authors: T. Alghamdi, G. Alaghband
Abstract:
In this paper we develop a model that couples Two Concurrent Convolution Neural Network with different filters (TC*CNN) for face recognition and compare its performance to an existing sequential CNN (base model). We also test and compare the quality and performance of the models on three datasets with various levels of complexity (easy, moderate, and difficult) and show that for the most complex datasets, edges will produce the most accurate and efficient results. We further show that in such cases while Support Vector Machine (SVM) models are fast, they do not produce accurate results.Keywords: Convolution Neural Network, Edges, Face Recognition , Support Vector Machine.
Procedia PDF Downloads 1524085 Efficient Management of Construction Logistics: A Challenge to Both Conventional and Technological Systems in the Developing Nations
Authors: Nuruddeen Usman, Ahmad Muhammad Ibrahim
Abstract:
Management of construction logistics at construction sites becomes increasingly complex with rising construction volume, which made it relatively inefficient in the developing nations even with the technological advancement. The objective of this research is to conceptually synthesise the approaches and challenges befall in the course of construction logistic management, with the aim to proffer possible solution to it. Therefore, this study appraised the glitches associated with both conventional and technological methods of construction logistic management that result in its inefficiency. Thus, this investigation found that, both conventional and the technological issues were due to certain obstacles that affect the construction logistic management which resulted into delays, accidents, fraudulent activities, time and cost overrun. Therefore, this study has developed a framework that might bring a lasting solution to the challenges of construction logistic management.Keywords: construction, conventional, logistic, technological
Procedia PDF Downloads 5524084 A Study on Big Data Analytics, Applications and Challenges
Authors: Chhavi Rana
Abstract:
The aim of the paper is to highlight the existing development in the field of big data analytics. Applications like bioinformatics, smart infrastructure projects, Healthcare, and business intelligence contain voluminous and incremental data, which is hard to organise and analyse and can be dealt with using the framework and model in this field of study. An organization's decision-making strategy can be enhanced using big data analytics and applying different machine learning techniques and statistical tools on such complex data sets that will consequently make better things for society. This paper reviews the current state of the art in this field of study as well as different application domains of big data analytics. It also elaborates on various frameworks in the process of Analysis using different machine-learning techniques. Finally, the paper concludes by stating different challenges and issues raised in existing research.Keywords: big data, big data analytics, machine learning, review
Procedia PDF Downloads 814083 A Study on Big Data Analytics, Applications, and Challenges
Authors: Chhavi Rana
Abstract:
The aim of the paper is to highlight the existing development in the field of big data analytics. Applications like bioinformatics, smart infrastructure projects, healthcare, and business intelligence contain voluminous and incremental data which is hard to organise and analyse and can be dealt with using the framework and model in this field of study. An organisation decision-making strategy can be enhanced by using big data analytics and applying different machine learning techniques and statistical tools to such complex data sets that will consequently make better things for society. This paper reviews the current state of the art in this field of study as well as different application domains of big data analytics. It also elaborates various frameworks in the process of analysis using different machine learning techniques. Finally, the paper concludes by stating different challenges and issues raised in existing research.Keywords: big data, big data analytics, machine learning, review
Procedia PDF Downloads 934082 Designing a Robust Controller for a 6 Linkage Robot
Authors: G. Khamooshian
Abstract:
One of the main points of application of the mechanisms of the series and parallel is the subject of managing them. The control of this mechanism and similar mechanisms is one that has always been the intention of the scholars. On the other hand, modeling the behavior of the system is difficult due to the large number of its parameters, and it leads to complex equations that are difficult to solve and eventually difficult to control. In this paper, a six-linkage robot has been presented that could be used in different areas such as medical robots. Using these robots needs a robust control. In this paper, the system equations are first found, and then the system conversion function is written. A new controller has been designed for this robot which could be used in other parallel robots and could be very useful. Parallel robots are so important in robotics because of their stability, so methods for control of them are important and the robust controller, especially in parallel robots, makes a sense.Keywords: 3-RRS, 6 linkage, parallel robot, control
Procedia PDF Downloads 1564081 Multilayer Perceptron Neural Network for Rainfall-Water Level Modeling
Authors: Thohidul Islam, Md. Hamidul Haque, Robin Kumar Biswas
Abstract:
Floods are one of the deadliest natural disasters which are very complex to model; however, machine learning is opening the door for more reliable and accurate flood prediction. In this research, a multilayer perceptron neural network (MLP) is developed to model the rainfall-water level relation, in a subtropical monsoon climatic region of the Bangladesh-India border. Our experiments show promising empirical results to forecast the water level for 1 day lead time. Our best performing MLP model achieves 98.7% coefficient of determination with lower model complexity which surpasses previously reported results on similar forecasting problems.Keywords: flood forecasting, machine learning, multilayer perceptron network, regression
Procedia PDF Downloads 1704080 Basket Option Pricing under Jump Diffusion Models
Authors: Ali Safdari-Vaighani
Abstract:
Pricing financial contracts on several underlying assets received more and more interest as a demand for complex derivatives. The option pricing under asset price involving jump diffusion processes leads to the partial integral differential equation (PIDEs), which is an extension of the Black-Scholes PDE with a new integral term. The aim of this paper is to show how basket option prices in the jump diffusion models, mainly on the Merton model, can be computed using RBF based approximation methods. For a test problem, the RBF-PU method is applied for numerical solution of partial integral differential equation arising from the two-asset European vanilla put options. The numerical result shows the accuracy and efficiency of the presented method.Keywords: basket option, jump diffusion, radial basis function, RBF-PUM
Procedia PDF Downloads 3524079 STEM Curriculum Development Using Robotics with K-12 Students in Brazil
Authors: Flavio Campos
Abstract:
This paper describes an implementation of a STEM curriculum program using robotics as a technological resource at a private school in Brazil. Emphasized the pedagogic and didactic aspects and brings a discussion about STEM curriculum and the perspective of using robotics and the relation between curriculum, science and technologies into the learning process. The results indicate that STEM curriculum integration with robotics as a technological resource in K-12 students learning process has complex aspects, such as relation between time/space, the development of educators and the relation between robotics and other subjects. Therefore, the comprehension of these aspects could indicate some steps that we should consider when integrating STEM basis and robotics into curriculum, which can improve education for science and technology significantly.Keywords: STEM curriculum, educational robotics, constructionist approach, education and technology
Procedia PDF Downloads 3404078 Batteryless DCM Boost Converter for Kinetic Energy Harvesting Applications
Authors: Andrés Gomez-Casseres, Rubén Contreras
Abstract:
In this paper, a bidirectional boost converter operated in Discontinuous Conduction Mode (DCM) is presented as a suitable power conditioning circuit for tuning of kinetic energy harvesters without the need of a battery. A nonlinear control scheme, composed by two linear controllers, is used to control the average value of the input current, enabling the synthesization of complex loads. The converter, along with the control system, is validated through SPICE simulations using the LTspice tool. The converter model and the controller transfer functions are derived. From the simulation results, it was found that the input current distortion increases with the introduced phase shift and that, such distortion, is almost entirely present at the zero-crossing point of the input voltage.Keywords: average current control, boost converter, electrical tuning, energy harvesting
Procedia PDF Downloads 759