Search results for: strength prediction models
10413 Development of a Predictive Model to Prevent Financial Crisis
Authors: Tengqin Han
Abstract:
Delinquency has been a crucial factor in economics throughout the years. Commonly seen in credit card and mortgage, it played one of the crucial roles in causing the most recent financial crisis in 2008. In each case, a delinquency is a sign of the loaner being unable to pay off the debt, and thus may cause a lost of property in the end. Individually, one case of delinquency seems unimportant compared to the entire credit system. China, as an emerging economic entity, the national strength and economic strength has grown rapidly, and the gross domestic product (GDP) growth rate has remained as high as 8% in the past decades. However, potential risks exist behind the appearance of prosperity. Among the risks, the credit system is the most significant one. Due to long term and a large amount of balance of the mortgage, it is critical to monitor the risk during the performance period. In this project, about 300,000 mortgage account data are analyzed in order to develop a predictive model to predict the probability of delinquency. Through univariate analysis, the data is cleaned up, and through bivariate analysis, the variables with strong predictive power are detected. The project is divided into two parts. In the first part, the analysis data of 2005 are split into 2 parts, 60% for model development, and 40% for in-time model validation. The KS of model development is 31, and the KS for in-time validation is 31, indicating the model is stable. In addition, the model is further validation by out-of-time validation, which uses 40% of 2006 data, and KS is 33. This indicates the model is still stable and robust. In the second part, the model is improved by the addition of macroeconomic economic indexes, including GDP, consumer price index, unemployment rate, inflation rate, etc. The data of 2005 to 2010 is used for model development and validation. Compared with the base model (without microeconomic variables), KS is increased from 41 to 44, indicating that the macroeconomic variables can be used to improve the separation power of the model, and make the prediction more accurate.Keywords: delinquency, mortgage, model development, model validation
Procedia PDF Downloads 22810412 Principles for the Realistic Determination of the in-situ Concrete Compressive Strength under Consideration of Rearrangement Effects
Authors: Rabea Sefrin, Christian Glock, Juergen Schnell
Abstract:
The preservation of existing structures is of great economic interest because it contributes to higher sustainability and resource conservation. In the case of existing buildings, in addition to repair and maintenance, modernization or reconstruction works often take place in the course of adjustments or changes in use. Since the structural framework and the associated load level are usually changed in the course of the structural measures, the stability of the structure must be verified in accordance with the currently valid regulations. The concrete compressive strength of the existing structures concrete and the derived mechanical parameters are of central importance for the recalculation and verification. However, the compressive strength of the existing concrete is usually set comparatively low and thus underestimated. The reasons for this are too small numbers, and large scatter of material properties of the drill cores, which are used for the experimental determination of the design value of the compressive strength. Within a structural component, the load is usually transferred over the area with higher stiffness and consequently with higher compressive strength. Therefore, existing strength variations within a component only play a subordinate role due to rearrangement effects. This paper deals with the experimental and numerical determination of such rearrangement effects in order to calculate the concrete compressive strength of existing structures more realistic and economical. The influence of individual parameters such as the specimen geometry (prism or cylinder) or the coefficient of variation of the concrete compressive strength is analyzed in experimental small-part tests. The coefficients of variation commonly used in practice are adjusted by dividing the test specimens into several layers consisting of different concretes, which are monolithically connected to each other. From each combination, a sufficient number of the test specimen is produced and tested to enable evaluation on a statistical basis. Based on the experimental tests, FE simulations are carried out to validate the test results. In the frame of a subsequent parameter study, a large number of combinations is considered, which had not been investigated in the experimental tests yet. Thus, the influence of individual parameters on the size and characteristic of the rearrangement effect is determined and described more detailed. Based on the parameter study and the experimental results, a calculation model for a more realistic determination of the in situ concrete compressive strength is developed and presented. By considering rearrangement effects in concrete during recalculation, a higher number of existing structures can be maintained without structural measures. The preservation of existing structures is not only decisive from an economic, sustainable, and resource-saving point of view but also represents an added value for cultural and social aspects.Keywords: existing structures, in-situ concrete compressive strength, rearrangement effects, recalculation
Procedia PDF Downloads 11810411 Relevance of Reliability Approaches to Predict Mould Growth in Biobased Building Materials
Authors: Lucile Soudani, Hervé Illy, Rémi Bouchié
Abstract:
Mould growth in living environments has been widely reported for decades all throughout the world. A higher level of moisture in housings can lead to building degradation, chemical component emissions from construction materials as well as enhancing mould growth within the envelope elements or on the internal surfaces. Moreover, a significant number of studies have highlighted the link between mould presence and the prevalence of respiratory diseases. In recent years, the proportion of biobased materials used in construction has been increasing, as seen as an effective lever to reduce the environmental impact of the building sector. Besides, bio-based materials are also hygroscopic materials: when in contact with the wet air of a surrounding environment, their porous structures enable a better capture of water molecules, thus providing a more suitable background for mould growth. Many studies have been conducted to develop reliable models to be able to predict mould appearance, growth, and decay over many building materials and external exposures. Some of them require information about temperature and/or relative humidity, exposure times, material sensitivities, etc. Nevertheless, several studies have highlighted a large disparity between predictions and actual mould growth in experimental settings as well as in occupied buildings. The difficulty of considering the influence of all parameters appears to be the most challenging issue. As many complex phenomena take place simultaneously, a preliminary study has been carried out to evaluate the feasibility to sadopt a reliability approach rather than a deterministic approach. Both epistemic and random uncertainties were identified specifically for the prediction of mould appearance and growth. Several studies published in the literature were selected and analysed, from the agri-food or automotive sectors, as the deployed methodology appeared promising.Keywords: bio-based materials, mould growth, numerical prediction, reliability approach
Procedia PDF Downloads 4610410 Estimation of Rock Strength from Diamond Drilling
Authors: Hing Hao Chan, Thomas Richard, Masood Mostofi
Abstract:
The mining industry relies on an estimate of rock strength at several stages of a mine life cycle: mining (excavating, blasting, tunnelling) and processing (crushing and grinding), both very energy-intensive activities. An effective comminution design that can yield significant dividends often requires a reliable estimate of the material rock strength. Common laboratory tests such as rod, ball mill, and uniaxial compressive strength share common shortcomings such as time, sample preparation, bias in plug selection cost, repeatability, and sample amount to ensure reliable estimates. In this paper, the authors present a methodology to derive an estimate of the rock strength from drilling data recorded while coring with a diamond core head. The work presented in this paper builds on a phenomenological model of the bit-rock interface proposed by Franca et al. (2015) and is inspired by the now well-established use of the scratch test with PDC (Polycrystalline Diamond Compact) cutter to derive the rock uniaxial compressive strength. The first part of the paper introduces the phenomenological model of the bit-rock interface for a diamond core head that relates the forces acting on the drill bit (torque, axial thrust) to the bit kinematic variables (rate of penetration and angular velocity) and introduces the intrinsic specific energy or the energy required to drill a unit volume of rock for an ideally sharp drilling tool (meaning ideally sharp diamonds and no contact between the bit matrix and rock debris) that is found well correlated to the rock uniaxial compressive strength for PDC and roller cone bits. The second part describes the laboratory drill rig, the experimental procedure that is tailored to minimize the effect of diamond polishing over the duration of the experiments, and the step-by-step methodology to derive the intrinsic specific energy from the recorded data. The third section presents the results and shows that the intrinsic specific energy correlates well to the uniaxial compressive strength for the 11 tested rock materials (7 sedimentary and 4 igneous rocks). The last section discusses best drilling practices and a method to estimate the rock strength from field drilling data considering the compliance of the drill string and frictional losses along the borehole. The approach is illustrated with a case study from drilling data recorded while drilling an exploration well in Australia.Keywords: bit-rock interaction, drilling experiment, impregnated diamond drilling, uniaxial compressive strength
Procedia PDF Downloads 13710409 Review of Friction Stir Welding of Dissimilar 5000 and 6000 Series Aluminum Alloy Plates
Authors: K. Subbaiah
Abstract:
Friction stir welding is a solid state welding process. Friction stir welding process eliminates the defects found in fusion welding processes. It is environmentally friend process. 5000 and 6000 series aluminum alloys are widely used in the transportation industries. The Al-Mg-Mn (5000) and Al-Mg-Si (6000) alloys are preferably offer best combination of use in Marine construction. The medium strength and high corrosion resistant 5000 series alloys are the aluminum alloys, which are found maximum utility in the world. In this review, the tool pin profile, process parameters such as hardness, yield strength and tensile strength, and microstructural evolution of friction stir welding of Al-Mg alloys 5000 Series and 6000 series have been discussed.Keywords: 5000 series and 6000 series Al alloys, friction stir welding, tool pin profile, microstructure and properties
Procedia PDF Downloads 46610408 Prediction of B-Cell Epitope for 24 Mite Allergens: An in Silico Approach towards Epitope-Based Immune Therapeutics
Authors: Narjes Ebrahimi, Soheila Alyasin, Navid Nezafat, Hossein Esmailzadeh, Younes Ghasemi, Seyed Hesamodin Nabavizadeh
Abstract:
Immunotherapy with allergy vaccines is of great importance in allergen-specific immunotherapy. In recent years, B-cell epitope-based vaccines have attracted considerable attention and the prediction of epitopes is crucial to design these types of allergy vaccines. B-cell epitopes might be linear or conformational. The prerequisite for the identification of conformational epitopes is the information about allergens' tertiary structures. Bioinformatics approaches have paved the way towards the design of epitope-based allergy vaccines through the prediction of tertiary structures and epitopes. Mite allergens are one of the major allergy contributors. Several mite allergens can elicit allergic reactions; however, their structures and epitopes are not well established. So, B-cell epitopes of various groups of mite allergens (24 allergens in 6 allergen groups) were predicted in the present work. Tertiary structures of 17 allergens with unknown structure were predicted and refined with RaptorX and GalaxyRefine servers, respectively. The predicted structures were further evaluated by Rampage, ProSA-web, ERRAT and Verify 3D servers. Linear and conformational B-cell epitopes were identified with Ellipro, Bcepred, and DiscoTope 2 servers. To improve the accuracy level, consensus epitopes were selected. Fifty-four conformational and 133 linear consensus epitopes were predicted. Furthermore, overlapping epitopes in each allergen group were defined, following the sequence alignment of the allergens in each group. The predicted epitopes were also compared with the experimentally identified epitopes. The presented results provide valuable information for further studies about allergy vaccine design.Keywords: B-cell epitope, Immunotherapy, In silico prediction, Mite allergens, Tertiary structure
Procedia PDF Downloads 16010407 Correlation and Prediction of Biodiesel Density
Authors: Nieves M. C. Talavera-Prieto, Abel G. M. Ferreira, António T. G. Portugal, Rui J. Moreira, Jaime B. Santos
Abstract:
The knowledge of biodiesel density over large ranges of temperature and pressure is important for predicting the behavior of fuel injection and combustion systems in diesel engines, and for the optimization of such systems. In this study, cottonseed oil was transesterified into biodiesel and its density was measured at temperatures between 288 K and 358 K and pressures between 0.1 MPa and 30 MPa, with expanded uncertainty estimated as ±1.6 kg.m^-3. Experimental pressure-volume-temperature (pVT) cottonseed data was used along with literature data relative to other 18 biodiesels, in order to build a database used to test the correlation of density with temperarure and pressure using the Goharshadi–Morsali–Abbaspour equation of state (GMA EoS). To our knowledge, this is the first that density measurements are presented for cottonseed biodiesel under such high pressures, and the GMA EoS used to model biodiesel density. The new tested EoS allowed correlations within 0.2 kg•m-3 corresponding to average relative deviations within 0.02%. The built database was used to develop and test a new full predictive model derived from the observed linear relation between density and degree of unsaturation (DU), which depended from biodiesel FAMEs profile. The average density deviation of this method was only about 3 kg.m-3 within the temperature and pressure limits of application. These results represent appreciable improvements in the context of density prediction at high pressure when compared with other equations of state.Keywords: biodiesel density, correlation, equation of state, prediction
Procedia PDF Downloads 61510406 Forecasting the Volatility of Geophysical Time Series with Stochastic Volatility Models
Authors: Maria C. Mariani, Md Al Masum Bhuiyan, Osei K. Tweneboah, Hector G. Huizar
Abstract:
This work is devoted to the study of modeling geophysical time series. A stochastic technique with time-varying parameters is used to forecast the volatility of data arising in geophysics. In this study, the volatility is defined as a logarithmic first-order autoregressive process. We observe that the inclusion of log-volatility into the time-varying parameter estimation significantly improves forecasting which is facilitated via maximum likelihood estimation. This allows us to conclude that the estimation algorithm for the corresponding one-step-ahead suggested volatility (with ±2 standard prediction errors) is very feasible since it possesses good convergence properties.Keywords: Augmented Dickey Fuller Test, geophysical time series, maximum likelihood estimation, stochastic volatility model
Procedia PDF Downloads 31510405 Determination of the Shear Strength of Wastes Using Back-Analyses from Observed Failures
Authors: Sadek Salah
Abstract:
The determination of the strength characteristics of waste materials is essential when evaluating the stability of waste fills during initial placement and at the time of closure and rehabilitation of the landfill. Significant efforts, mostly experimental, have been deployed to date in attempts to quantify the mechanical properties of municipal wastes various stages of decomposition. Even though the studies and work done so far have helped in setting baseline parameters and characteristics for waste materials, inherent concerns remain as to the scalability of the findings between the laboratory and the field along with questions as to the suitability of the actual test conditions. These concerns are compounded by the complexity of the problem itself with significant variability in composition, placement conditions, and levels of decay of the various constituents of the waste fills. A complimentary, if not necessarily an alternative approach is to rely on field observations of behavior and instability of such materials. This paper describes an effort at obtaining relevant shear strength parameters from back-analyses of failures which have been observed at a major un-engineered waste fill along the Mediterranean shoreline. Results from the limit-equilibrium failure back-analyses are presented and compared to results from laboratory-scale testing on comparable waste materials.Keywords: solid waste, shear strength, landfills, slope stability
Procedia PDF Downloads 24210404 Directional Solidification of Al–Cu–Mg Eutectic Alloy
Authors: Yusuf Kaygısız, Necmetti̇n Maraşlı
Abstract:
Aluminum alloys are produced and used at various areas of industry and especially in the aerospace industry. The advantages of these alloys over traditional iron-based alloys are lightweight, corrosion resistance, and very good thermal and electrical conductivity. The aim of this work is to experimentally investigate the effect of growth rates on the eutectic spacings (λ), microhardness, tensile strength and electrical resistivity in Al–30wt.%Cu–6wt.%Mg eutectic alloy. Al–Cu–Mg eutectic alloy was directionally solidified at a constant temperature gradient (G=8.55 K/mm) with different growth rates, 9.43 to 173.3 µm/s by using a Bridgman-type furnace. The dependency of microstructure, microhardness, tensile strength and electrical resistivity for directionally solidified the Al-Cu-Mg eutectic alloy were investigated. Eutectic microstructure is consisting of regular Al2CuMg lamellar and Al2Cu rod phases with in the α (Al) solid solution matrix. The lamellar eutectic spacings were measured from transverse sections of the samples. It was found that the value of microstructures decrease with the increase the value the growth rates. The microhardness, tensile strength and electrical resistivity of the alloy also were measured from sample and relationships between them were experimentally analyzed by using regression analysis. According to present results, values tensile strength and electrical resistivity increase with increasing growth rates.Keywords: directional solidification, aluminum alloys, microstructure, electrical properties, hardness test
Procedia PDF Downloads 29410403 Improved 3D Structure Prediction of Beta-Barrel Membrane Proteins by Using Evolutionary Coupling Constraints, Reduced State Space and an Empirical Potential Function
Authors: Wei Tian, Jie Liang, Hammad Naveed
Abstract:
Beta-barrel membrane proteins are found in the outer membrane of gram-negative bacteria, mitochondria, and chloroplasts. They carry out diverse biological functions, including pore formation, membrane anchoring, enzyme activity, and bacterial virulence. In addition, beta-barrel membrane proteins increasingly serve as scaffolds for bacterial surface display and nanopore-based DNA sequencing. Due to difficulties in experimental structure determination, they are sparsely represented in the protein structure databank and computational methods can help to understand their biophysical principles. We have developed a novel computational method to predict the 3D structure of beta-barrel membrane proteins using evolutionary coupling (EC) constraints and a reduced state space. Combined with an empirical potential function, we can successfully predict strand register at > 80% accuracy for a set of 49 non-homologous proteins with known structures. This is a significant improvement from previous results using EC alone (44%) and using empirical potential function alone (73%). Our method is general and can be applied to genome-wide structural prediction.Keywords: beta-barrel membrane proteins, structure prediction, evolutionary constraints, reduced state space
Procedia PDF Downloads 61810402 Project Time Prediction Model: A Case Study of Construction Projects in Sindh, Pakistan
Authors: Tauha Hussain Ali, Shabir Hussain Khahro, Nafees Ahmed Memon
Abstract:
Accurate prediction of project time for planning and bid preparation stage should contain realistic dates. Constructors use their experience to estimate the project duration for the new projects, which is based on intuitions. It has been a constant concern to both researchers and constructors to analyze the accurate prediction of project duration for bid preparation stage. In Pakistan, such study for time cost relationship has been lacked to predict duration performance for the construction projects. This study is an attempt to explore the time cost relationship that would conclude with a mathematical model to predict the time for the drainage rehabilitation projects in the province of Sindh, Pakistan. The data has been collected from National Engineering Services (NESPAK), Pakistan and regression analysis has been carried out for the analysis of results. Significant relationship has been found between time and cost of the construction projects in Sindh and the generated mathematical model can be used by the constructors to predict the project duration for the upcoming projects of same nature. This study also provides the professionals with a requisite knowledge to make decisions regarding project duration, which is significantly important to win the projects at the bid stage.Keywords: BTC Model, project time, relationship of time cost, regression
Procedia PDF Downloads 38210401 Teaching Children With Differential Learning Needs By Understanding Their Talents And Interests
Authors: Eunice Tan
Abstract:
The purpose of this presentation is to look at an alternative to the approach and methodologies of working with special needs. The strength-based approach to education embodies a paradigm shift. It is a strategy to move away from a deficit-based methodology which inadvertently may lead to an extensive list of things that the child cannot do or is unable to do. Today, many parents of individuals with special needs are focused on the child’s deficits rather than on his or her strengths. Even when parents Recognise and identify their child’s strengths to be valuable and wish to develop their abilities, they face the challenge that there are insufficient programs committed to supporting the development and improvement of such abilities. What is a strength-based approach in education? A strength-based approach in education focuses on students' positive qualities and contributions to class instead of the skills and abilities they may not have. Many schools are focused on the child’s special educational needs rather than the whole child. Parents interviewed have said that they have to engage external tutors to help hone in on their child’s interests and strengths.Keywords: differential learning needs, special needs, instructional style, talents
Procedia PDF Downloads 19710400 Comparison of Reserve Strength Ratio and Capacity Curve Parameters of Offshore Platforms with Distinct Bracing Arrangements
Authors: Aran Dezhban, Hooshang Dolatshahi Pirooz
Abstract:
The phenomenon of corrosion, especially in the Persian Gulf region, is the main cause of the deterioration of offshore platforms, due to the high corrosion of its water. This phenomenon occurs mostly in the area of water spraying, threatening the members of the first floor of the jacket, legs, and piles in this area. In the current study, the effect of bracing arrangement on the Capacity Curve and Reserve Strength Ratio of Fixed-Type Offshore Platforms is investigated. In order to continue the operation of the platform, two modes of robust and damaged structures are considered, while checking the adequacy of the platform capacity based on the allowable values of API RP-2SIM regulations. The platform in question is located in the Persian Gulf, which is modeled on the OpenSEES software. In this research, the Nonlinear Pushover Analysis has been used. After validation, the Capacity Curve of the studied platforms is obtained and then their Reserve Strength Ratio is calculated. Results are compared with the criteria in the API-2SIM regulations.Keywords: fixed-type jacket structure, structural integrity management, nonlinear pushover analysis, robust and damaged structure, reserve strength ration, capacity curve
Procedia PDF Downloads 11510399 A Review of Current Knowledge on Assessment of Precast Structures Using Fragility Curves
Authors: E. Akpinar, A. Erol, M.F. Cakir
Abstract:
Precast reinforced concrete (RC) structures are excellent alternatives for construction world all over the globe, thanks to their rapid erection phase, ease mounting process, better quality and reasonable prices. Such structures are rather popular for industrial buildings. For the sake of economic importance of such industrial buildings as well as significance of safety, like every other type of structures, performance assessment and structural risk analysis are important. Fragility curves are powerful tools for damage projection and assessment for any sort of building as well as precast structures. In this study, a comparative review of current knowledge on fragility analysis of industrial precast RC structures were presented and findings in previous studies were compiled. Effects of different structural variables, parameters and building geometries as well as soil conditions on fragility analysis of precast structures are reviewed. It was aimed to briefly present the information in the literature about the procedure of damage probability prediction including fragility curves for such industrial facilities. It is found that determination of the aforementioned structural parameters as well as selecting analysis procedure are critically important for damage prediction of industrial precast RC structures using fragility curves.Keywords: damage prediction, fragility curve, industrial buildings, precast reinforced concrete structures
Procedia PDF Downloads 18910398 Methaheuristic Bat Algorithm in Training of Feed-Forward Neural Network for Stock Price Prediction
Authors: Marjan Golmaryami, Marzieh Behzadi
Abstract:
Recent developments in stock exchange highlight the need for an efficient and accurate method that helps stockholders make better decision. Since stock markets have lots of fluctuations during the time and different effective parameters, it is difficult to make good decisions. The purpose of this study is to employ artificial neural network (ANN) which can deal with time series data and nonlinear relation among variables to forecast next day stock price. Unlike other evolutionary algorithms which were utilized in stock exchange prediction, we trained our proposed neural network with metaheuristic bat algorithm, with fast and powerful convergence and applied it in stock price prediction for the first time. In order to prove the performance of the proposed method, this research selected a 7 year dataset from Parsian Bank stocks and after imposing data preprocessing, used 3 types of ANN (back propagation-ANN, particle swarm optimization-ANN and bat-ANN) to predict the closed price of stocks. Afterwards, this study engaged MATLAB to simulate 3 types of ANN, with the scoring target of mean absolute percentage error (MAPE). The results may be adapted to other companies stocks too.Keywords: artificial neural network (ANN), bat algorithm, particle swarm optimization algorithm (PSO), stock exchange
Procedia PDF Downloads 54810397 Using Deep Learning Neural Networks and Candlestick Chart Representation to Predict Stock Market
Authors: Rosdyana Mangir Irawan Kusuma, Wei-Chun Kao, Ho-Thi Trang, Yu-Yen Ou, Kai-Lung Hua
Abstract:
Stock market prediction is still a challenging problem because there are many factors that affect the stock market price such as company news and performance, industry performance, investor sentiment, social media sentiment, and economic factors. This work explores the predictability in the stock market using deep convolutional network and candlestick charts. The outcome is utilized to design a decision support framework that can be used by traders to provide suggested indications of future stock price direction. We perform this work using various types of neural networks like convolutional neural network, residual network and visual geometry group network. From stock market historical data, we converted it to candlestick charts. Finally, these candlestick charts will be feed as input for training a convolutional neural network model. This convolutional neural network model will help us to analyze the patterns inside the candlestick chart and predict the future movements of the stock market. The effectiveness of our method is evaluated in stock market prediction with promising results; 92.2% and 92.1 % accuracy for Taiwan and Indonesian stock market dataset respectively.Keywords: candlestick chart, deep learning, neural network, stock market prediction
Procedia PDF Downloads 44710396 Continuous Differential Evolution Based Parameter Estimation Framework for Signal Models
Authors: Ammara Mehmood, Aneela Zameer, Muhammad Asif Zahoor Raja, Muhammad Faisal Fateh
Abstract:
In this work, the strength of bio-inspired computational intelligence based technique is exploited for parameter estimation for the periodic signals using Continuous Differential Evolution (CDE) by defining an error function in the mean square sense. Multidimensional and nonlinear nature of the problem emerging in sinusoidal signal models along with noise makes it a challenging optimization task, which is dealt with robustness and effectiveness of CDE to ensure convergence and avoid trapping in local minima. In the proposed scheme of Continuous Differential Evolution based Signal Parameter Estimation (CDESPE), unknown adjustable weights of the signal system identification model are optimized utilizing CDE algorithm. The performance of CDESPE model is validated through statistics based various performance indices on a sufficiently large number of runs in terms of estimation error, mean squared error and Thiel’s inequality coefficient. Efficacy of CDESPE is examined by comparison with the actual parameters of the system, Genetic Algorithm based outcomes and from various deterministic approaches at different signal-to-noise ratio (SNR) levels.Keywords: parameter estimation, bio-inspired computing, continuous differential evolution (CDE), periodic signals
Procedia PDF Downloads 30210395 Investigation of Mechanical Properties and Positron Annihilation Lifetime Spectroscopy of Acrylonitrile Butadiene Styrene/Polycarbonate Blends
Authors: Ayman M. M. Abdelhaleem, Mustafa Gamal Sadek, Kamal Reyad, Montasser M. Dewidar
Abstract:
The main objective of this research is to study the effect of adding polycarbonate (PC) to pure Acrylonitrile Butadiene Styrene (ABS) using the injection moulding process. The PC was mixed mechanically with ABS in 10%, 20%, 30%, 40%, and 50% by weight. The mechanical properties of pure ABS reinforced with PC were investigated using tensile, impact, hardness, and wear tests. The results showed that, by adding 10%, 20%, 30%, 40%, and 50% wt. of PC to the pure ABS, the ultimate tensile strength increased from 55 N/mm2 for neat ABS to 57 N/mm2 (i.e. 3.63%), 60 N/mm2 (i.e. 9.09%), 63 N/mm2 (i.e. 14.54%), 66 N/mm2 (i.e. 20%), 69 N/mm2 (i.e. 25.45%) respectively. Test results also revealed nearly 5.72% improvement in young's modulus by adding 10% of PC to ABS, 16.74% improvement by adding 20%, 23.34% improvement by adding 30%, 27.75% improvement by adding 40%, and no other increase in case of 50%. The impact test results showed that with the increase of the PC content, first, the impact strength decreased and then increased gradually. The impact strength decreased rapidly when the content of PC was 0% to 10% range. As well as, in the case of 20%, 30%, 40%, and 50% PC, the impact strength is increased. The hardness test results, using the Shore D tester, showed that, as the PC particles contents increased, the hardness increased from 76 for the ABS to 80 for 10% PC, and decreased to 79 for 20% PC, and then increased to 80 in case of 30%, 40%, and 50% PC. Wear test results showed that PC improves the wear resistance of ABS/PC blends. Positron annihilation lifetime spectroscopy showed that with an increase of PC in ABS/PC blends, a slight decrease in free volume size and an increase in the tensile strength due to good adhesion between PC and ABS matrix, which acted as an advantage in the polymer matrix.Keywords: ABS, PC, injection molding process, mechanical properties, lifetime spectroscopy
Procedia PDF Downloads 7310394 Numerical Simulation of Flexural Strength of Steel Fiber Reinforced High Volume Fly Ash Concrete by Finite Element Analysis
Authors: Mahzabin Afroz, Indubhushan Patnaikuni, Srikanth Venkatesan
Abstract:
It is well-known that fly ash can be used in high volume as a partial replacement of cement to get beneficial effects on concrete. High volume fly ash (HVFA) concrete is currently emerging as a popular option to strengthen by fiber. Although studies have supported the use of fibers with fly ash, a unified model along with the incorporation into finite element software package to estimate the maximum flexural loads need to be developed. In this study, nonlinear finite element analysis of steel fiber reinforced high strength HVFA concrete beam under static loadings was conducted to investigate their failure modes in terms of ultimate load. First of all, the experimental investigation of mechanical properties of high strength HVFA concrete was done and validates with developed numerical model with the appropriate modeling of element size and mesh by ANSYS 16.2. To model the fiber within the concrete, three-dimensional random fiber distribution was simulated by spherical coordinate system. Three types of high strength HVFA concrete beams were analyzed reinforced with 0.5, 1 and 1.5% volume fractions of steel fibers with specific mechanical and physical properties. The result reveals that the use of nonlinear finite element analysis technique and three-dimensional random fiber orientation exhibited fairly good agreement with the experimental results of flexural strength, load deflection and crack propagation mechanism. By utilizing this improved model, it is possible to determine the flexural behavior of different types and proportions of steel fiber reinforced HVFA concrete beam under static load. So, this paper has the originality to predict the flexural properties of steel fiber reinforced high strength HVFA concrete by numerical simulations.Keywords: finite element analysis, high volume fly ash, steel fibers, spherical coordinate system
Procedia PDF Downloads 13810393 Spatially Distributed Rainfall Prediction Based on Automated Kriging for Landslide Early Warning Systems
Authors: Ekrem Canli, Thomas Glade
Abstract:
The precise prediction of rainfall in space and time is a key element to most landslide early warning systems. Unfortunately, the spatial variability of rainfall in many early warning applications is often disregarded. A common simplification is to use uniformly distributed rainfall to characterize aerial rainfall intensity. With spatially differentiated rainfall information, real-time comparison with rainfall thresholds or the implementation in process-based approaches might form the basis for improved landslide warnings. This study suggests an automated workflow from the hourly, web-based collection of rain gauge data to the generation of spatially differentiated rainfall predictions based on kriging. Because the application of kriging is usually a labor intensive task, a simplified and consequently automated variogram modeling procedure was applied to up-to-date rainfall data. The entire workflow was carried out purely with open source technology. Validation results, albeit promising, pointed out the challenges that are involved in pure distance based, automated geostatistical interpolation techniques for ever-changing environmental phenomena over short temporal and spatial extent.Keywords: kriging, landslide early warning system, spatial rainfall prediction, variogram modelling, web scraping
Procedia PDF Downloads 28010392 Stability Analysis of Endemic State of Modelling the Effect of Vaccination and Novel Quarantine-Adjusted Incidence on the Spread of Newcastle Disease Virus
Authors: Nurudeen Oluwasola Lasisi, Abdulkareem Afolabi Ibrahim
Abstract:
Newcastle disease is an infection of domestic poultry and other bird species with virulent Newcastle disease virus (NDV). In this paper, we study the dynamics of modeling the Newcastle disease virus (NDV) using a novel quarantine-adjusted incidence. We do a comparison of Vaccination, linear incident rate, and novel quarantine adjusted incident rate in the models. The dynamics of the models yield disease free and endemic equilibrium states. The effective reproduction numbers of the models are computed in order to measure the relative impact for the individual bird or combined intervention for effective disease control. We showed the local and global stability of endemic equilibrium states of the models, and we found that stability of endemic equilibrium states of models are globally asymptotically stable if the effective reproduction numbers of the models equations are greater than a unit.Keywords: effective reproduction number, endemic state, mathematical model, Newcastle disease virus, novel quarantine-adjusted incidence, stability analysis
Procedia PDF Downloads 24410391 Reservoir Fluids: Occurrence, Classification, and Modeling
Authors: Ahmed El-Banbi
Abstract:
Several PVT models exist to represent how PVT properties are handled in sub-surface and surface engineering calculations for oil and gas production. The most commonly used models include black oil, modified black oil (MBO), and compositional models. These models are used in calculations that allow engineers to optimize and forecast well and reservoir performance (e.g., reservoir simulation calculations, material balance, nodal analysis, surface facilities, etc.). The choice of which model is dependent on fluid type and the production process (e.g., depletion, water injection, gas injection, etc.). Based on close to 2,000 reservoir fluid samples collected from different basins and locations, this paper presents some conclusions on the occurrence of reservoir fluids. It also reviews the common methods used to classify reservoir fluid types. Based on new criteria related to the production behavior of different fluids and economic considerations, an updated classification of reservoir fluid types is presented in the paper. Recommendations on the use of different PVT models to simulate the behavior of different reservoir fluid types are discussed. Each PVT model requirement is highlighted. Available methods for the calculation of PVT properties from each model are also discussed. Practical recommendations and tips on how to control the calculations to achieve the most accurate results are given.Keywords: PVT models, fluid types, PVT properties, fluids classification
Procedia PDF Downloads 7210390 Robust Design of a Ball Joint Considering Uncertainties
Authors: Bong-Su Sin, Jong-Kyu Kim, Se-Il Song, Kwon-Hee Lee
Abstract:
An automobile ball joint is a pivoting element used to allow rotational motion between the parts of the steering and suspension system. And it plays a role in smooth transmission of steering movement, also reduction in impact from the road surface. A ball joint is under various repeated loadings that may cause cracks and abrasion. This damages lead to safety problems of a car, as well as reducing the comfort of the driver's ride, and raise questions about the ball joint procedure and the whole durability of the suspension system. Accordingly, it is necessary to ensure the high durability and reliability of a ball joint. The structural responses of stiffness and pull-out strength were then calculated to check if the design satisfies the related requirements. The analysis was sequentially performed, following the caulking process. In this process, the deformation and stress results obtained from the analysis were saved. Sequential analysis has a strong advantage, in that it can be analyzed by considering the deformed shape and residual stress. The pull-out strength means the required force to pull the ball stud out from the ball joint assembly. The low pull-out strength can deteriorate the structural stability and safety performances. In this study, two design variables and two noise factors were set up. Two design variables were the diameter of a stud and the angle of a socket. And two noise factors were defined as the uncertainties of Young's modulus and yield stress of a seat. The DOE comprises 81 cases using these conditions. Robust design of a ball joint was performed using the DOE. The pull-out strength was generated from the uncertainties in the design variables and the design parameters. The purpose of robust design is to find the design with target response and smallest variation.Keywords: ball joint, pull-out strength, robust design, design of experiments
Procedia PDF Downloads 42210389 Modeling Curriculum for High School Students to Learn about Electric Circuits
Authors: Meng-Fei Cheng, Wei-Lun Chen, Han-Chang Ma, Chi-Che Tsai
Abstract:
Recent K–12 Taiwan Science Education Curriculum Guideline emphasize the essential role of modeling curriculum in science learning; however, few modeling curricula have been designed and adopted in current science teaching. Therefore, this study aims to develop modeling curriculum on electric circuits to investigate any learning difficulties students have with modeling curriculum and further enhance modeling teaching. This study was conducted with 44 10th-grade students in Central Taiwan. Data collection included a students’ understanding of models in science (SUMS) survey that explored the students' epistemology of scientific models and modeling and a complex circuit problem to investigate the students’ modeling abilities. Data analysis included the following: (1) Paired sample t-tests were used to examine the improvement of students’ modeling abilities and conceptual understanding before and after the curriculum was taught. (2) Paired sample t-tests were also utilized to determine the students’ modeling abilities before and after the modeling activities, and a Pearson correlation was used to understand the relationship between students’ modeling abilities during the activities and on the posttest. (3) ANOVA analysis was used during different stages of the modeling curriculum to investigate the differences between the students’ who developed microscopic models and macroscopic models after the modeling curriculum was taught. (4) Independent sample t-tests were employed to determine whether the students who changed their models had significantly different understandings of scientific models than the students who did not change their models. The results revealed the following: (1) After the modeling curriculum was taught, the students had made significant progress in both their understanding of the science concept and their modeling abilities. In terms of science concepts, this modeling curriculum helped the students overcome the misconception that electric currents reduce after flowing through light bulbs. In terms of modeling abilities, this modeling curriculum helped students employ macroscopic or microscopic models to explain their observed phenomena. (2) Encouraging the students to explain scientific phenomena in different context prompts during the modeling process allowed them to convert their models to microscopic models, but it did not help them continuously employ microscopic models throughout the whole curriculum. The students finally consistently employed microscopic models when they had help visualizing the microscopic models. (3) During the modeling process, the students who revised their own models better understood that models can be changed than the students who did not revise their own models. Also, the students who revised their models to explain different scientific phenomena tended to regard models as explanatory tools. In short, this study explored different strategies to facilitate students’ modeling processes as well as their difficulties with the modeling process. The findings can be used to design and teach modeling curricula and help students enhance their modeling abilities.Keywords: electric circuits, modeling curriculum, science learning, scientific model
Procedia PDF Downloads 46010388 Effect of Addition Rate of Expansive Additive on Autogenous Shrinkage and Delayed Expansion of Ultra-High Strength Mortar
Authors: Yulu Zhang, Atushi Teramoto, Taka-Aki Ohkubo
Abstract:
In this study, the effect of expansive additives on autogenous shrinkage and delayed expansion of ultra-high strength mortar was explored. The specimens made for the study were composed of ultra-high strength mortar, which was mixed with ettringite-lime composite type expansive additive. Two series of experiments were conducted with the specimens. The experimental results confirmed that the autogenous shrinkage of specimens was effectively decreased by increasing the proportion of the expansive additive. On the other hand, for the specimens, which had 7% expansive additive, and were cured for seven days at a constant temperature of 20°C, and then cured for a long time in either in an underwater, moist (Relative humidity: 100%) or dry air (Relative humidity: 60%) environment, excessively large expansion strain occurred. Specifically, typical turtle shell-like swelling expansion cracks were confirmed in the specimens that underwent long-term curing in an underwater and moist environment. According to the result of hydration analysis, the formation of expansive substances, calcium hydroxide and alumina, ferric oxide, tri-sulfate contribute to the occurrence of delayed expansion.Keywords: ultra-high strength mortar, expansive additive, autogenous shrinkage, delayed expansion
Procedia PDF Downloads 23910387 A Structuring and Classification Method for Assigning Application Areas to Suitable Digital Factory Models
Authors: R. Hellmuth
Abstract:
The method of factory planning has changed a lot, especially when it is about planning the factory building itself. Factory planning has the task of designing products, plants, processes, organization, areas, and the building of a factory. Regular restructuring is becoming more important in order to maintain the competitiveness of a factory. Restrictions in new areas, shorter life cycles of product and production technology as well as a VUCA world (Volatility, Uncertainty, Complexity and Ambiguity) lead to more frequent restructuring measures within a factory. A digital factory model is the planning basis for rebuilding measures and becomes an indispensable tool. Furthermore, digital building models are increasingly being used in factories to support facility management and manufacturing processes. The main research question of this paper is, therefore: What kind of digital factory model is suitable for the different areas of application during the operation of a factory? First, different types of digital factory models are investigated, and their properties and usabilities for use cases are analysed. Within the scope of investigation are point cloud models, building information models, photogrammetry models, and these enriched with sensor data are examined. It is investigated which digital models allow a simple integration of sensor data and where the differences are. Subsequently, possible application areas of digital factory models are determined by means of a survey and the respective digital factory models are assigned to the application areas. Finally, an application case from maintenance is selected and implemented with the help of the appropriate digital factory model. It is shown how a completely digitalized maintenance process can be supported by a digital factory model by providing information. Among other purposes, the digital factory model is used for indoor navigation, information provision, and display of sensor data. In summary, the paper shows a structuring of digital factory models that concentrates on the geometric representation of a factory building and its technical facilities. A practical application case is shown and implemented. Thus, the systematic selection of digital factory models with the corresponding application cases is evaluated.Keywords: building information modeling, digital factory model, factory planning, maintenance
Procedia PDF Downloads 11010386 An Intelligent Prediction Method for Annular Pressure Driven by Mechanism and Data
Authors: Zhaopeng Zhu, Xianzhi Song, Gensheng Li, Shuo Zhu, Shiming Duan, Xuezhe Yao
Abstract:
Accurate calculation of wellbore pressure is of great significance to prevent wellbore risk during drilling. The traditional mechanism model needs a lot of iterative solving procedures in the calculation process, which reduces the calculation efficiency and is difficult to meet the demand of dynamic control of wellbore pressure. In recent years, many scholars have introduced artificial intelligence algorithms into wellbore pressure calculation, which significantly improves the calculation efficiency and accuracy of wellbore pressure. However, due to the ‘black box’ property of intelligent algorithm, the existing intelligent calculation model of wellbore pressure is difficult to play a role outside the scope of training data and overreacts to data noise, often resulting in abnormal calculation results. In this study, the multi-phase flow mechanism is embedded into the objective function of the neural network model as a constraint condition, and an intelligent prediction model of wellbore pressure under the constraint condition is established based on more than 400,000 sets of pressure measurement while drilling (MPD) data. The constraint of the multi-phase flow mechanism makes the prediction results of the neural network model more consistent with the distribution law of wellbore pressure, which overcomes the black-box attribute of the neural network model to some extent. The main performance is that the accuracy of the independent test data set is further improved, and the abnormal calculation values basically disappear. This method is a prediction method driven by MPD data and multi-phase flow mechanism, and it is the main way to predict wellbore pressure accurately and efficiently in the future.Keywords: multiphase flow mechanism, pressure while drilling data, wellbore pressure, mechanism constraints, combined drive
Procedia PDF Downloads 17410385 Mediation Models in Triadic Relationships: Illness Narratives and Medical Education
Authors: Yoko Yamada, Chizumi Yamada
Abstract:
Narrative psychology is based on the dialogical relationship between self and other. The dialogue can consist of divided, competitive, or opposite communication between self and other. We constructed models of coexistent dialogue in which self and other were positioned side by side and communicated sympathetically. We propose new mediation models for narrative relationships. The mediation models are based on triadic relationships that incorporate a medium or a mediator along with self and other. We constructed three types of mediation model. In the first type, called the “Joint Attention Model”, self and other are positioned side by side and share attention with the medium. In the second type, the “Triangle Model”, an agent mediates between self and other. In the third type, the “Caring Model”, a caregiver stands beside the communication between self and other. We apply the three models to the illness narratives of medical professionals and patients. As these groups have different views and experiences of disease or illness, triadic mediation facilitates the ability to see things from the other person’s perspective and to bridge differences in people’s experiences and feelings. These models would be useful for medical education in various situations, such as in considering the relationships between senior and junior doctors and between old and young patients.Keywords: illness narrative, mediation, psychology, model, medical education
Procedia PDF Downloads 40910384 Bending Behaviour of Fiber Reinforced Polymer Composite Stiffened Panel Subjected to Transverse Loading
Authors: S. Kumar, Rajesh Kumar, S. Mandal
Abstract:
Fiber Reinforced Polymer (FRP) is gaining popularity in many branch of engineering and various applications due to their light weight, specific strength per unit weight and high stiffness in particular direction. As the strength of material is high it can be used in thin walled structure as industrial roof sheds satisfying the strength constraint with comparatively lesser thickness. Analysis of bending behavior of FRP panel has been done here with variation in oriented angle of stiffener panels, fiber orientation, aspect ratio and boundary conditions subjected to transverse loading by using Finite Element Method. The effect of fiber orientation and thickness of ply has also been studied to determine the minimum thickness of ply for optimized section of stiffened FRP panel.Keywords: bending behavior, fiber reinforced polymer, finite element method, orientation of stiffeners
Procedia PDF Downloads 392