Search results for: reactive-dividing wall column
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1945

Search results for: reactive-dividing wall column

715 On the Thermal Behavior of the Slab in a Reheating Furnace with Radiation

Authors: Gyo Woo Lee, Man Young Kim

Abstract:

A mathematical heat transfer model for the prediction of transient heating of the slab in a direct-fired walking beam type reheating furnace has been developed by considering the nongray thermal radiation with given furnace environments. The furnace is modeled as radiating nongray medium with carbon dioxide and water with five-zoned gas temperature and the furnace wall is considered as a constant temperature lower than furnace gas one. The slabs are moving with constant velocity depending on the residence time through the non-firing, charging, preheating, heating, and final soaking zones. Radiative heat flux obtained by considering the radiative heat exchange inside the furnace as well as convective one from the surrounding hot gases are introduced as boundary condition of the transient heat conduction within the slab. After validating thermal radiation model adopted in this work, thermal fields in both model and real reheating furnace are investigated in terms of radiative heat flux in the furnace and temperature inside the slab. The results show that the slab in the furnace can be more heated with higher slab emissivity and residence time.

Keywords: reheating furnace, steel slab, radiative heat transfer, WSGGM, emissivity, residence time

Procedia PDF Downloads 278
714 Sinusoidal Roughness Elements in a Square Cavity

Authors: Muhammad Yousaf, Shoaib Usman

Abstract:

Numerical studies were conducted using Lattice Boltzmann Method (LBM) to study the natural convection in a square cavity in the presence of roughness. An algorithm basedon a single relaxation time Bhatnagar-Gross-Krook (BGK) model of Lattice Boltzmann Method (LBM) was developed. Roughness was introduced on both the hot and cold walls in the form of sinusoidal roughness elements. The study was conducted for a Newtonian fluid of Prandtl number (Pr) 1.0. The range of Ra number was explored from 103 to 106 in a laminar region. Thermal and hydrodynamic behavior of fluid was analyzed using a differentially heated square cavity with roughness elements present on both the hot and cold wall. Neumann boundary conditions were introduced on horizontal walls with vertical walls as isothermal. The roughness elements were at the same boundary condition as corresponding walls. Computational algorithm was validated against previous benchmark studies performed with different numerical methods, and a good agreement was found to exist. Results indicate that the maximum reduction in the average heat transfer was16.66 percent at Ra number 105.

Keywords: Lattice Boltzmann method, natural convection, nusselt number, rayleigh number, roughness

Procedia PDF Downloads 523
713 Accuracy of Autonomy Navigation of Unmanned Aircraft Systems through Imagery

Authors: Sidney A. Lima, Hermann J. H. Kux, Elcio H. Shiguemori

Abstract:

The Unmanned Aircraft Systems (UAS) usually navigate through the Global Navigation Satellite System (GNSS) associated with an Inertial Navigation System (INS). However, GNSS can have its accuracy degraded at any time or even turn off the signal of GNSS. In addition, there is the possibility of malicious interferences, known as jamming. Therefore, the image navigation system can solve the autonomy problem, because if the GNSS is disabled or degraded, the image navigation system would continue to provide coordinate information for the INS, allowing the autonomy of the system. This work aims to evaluate the accuracy of the positioning though photogrammetry concepts. The methodology uses orthophotos and Digital Surface Models (DSM) as a reference to represent the object space and photograph obtained during the flight to represent the image space. For the calculation of the coordinates of the perspective center and camera attitudes, it is necessary to know the coordinates of homologous points in the object space (orthophoto coordinates and DSM altitude) and image space (column and line of the photograph). So if it is possible to automatically identify in real time the homologous points the coordinates and attitudes can be calculated whit their respective accuracies. With the methodology applied in this work, it is possible to verify maximum errors in the order of 0.5 m in the positioning and 0.6º in the attitude of the camera, so the navigation through the image can reach values equal to or higher than the GNSS receivers without differential correction. Therefore, navigating through the image is a good alternative to enable autonomous navigation.

Keywords: autonomy, navigation, security, photogrammetry, remote sensing, spatial resection, UAS

Procedia PDF Downloads 180
712 Identifying Dynamic Structural Parameters of Soil-Structure System Based on Data Recorded during Strong Earthquakes

Authors: Vahidreza Mahmoudabadi, Omid Bahar, Mohammad Kazem Jafari

Abstract:

In many applied engineering problems, structural analysis is usually conducted by assuming a rigid bed, while imposing the effect of structure bed flexibility can affect significantly on the structure response. This article focuses on investigation and evaluation of the effects arising from considering a soil-structure system in evaluation of dynamic characteristics of a steel structure with respect to elastic and inelastic behaviors. The recorded structure acceleration during Taiwan’s strong Chi-Chi earthquake on different floors of the structure was our evaluation criteria. The respective structure is an eight-story steel bending frame structure designed using a displacement-based direct method assuring weak beam - strong column function. The results indicated that different identification methods i.e. reverse Fourier transform or transfer functions, is capable to determine some of the dynamic parameters of the structure precisely, rather than evaluating all of them at once (mode frequencies, mode shapes, structure damping, structure rigidity, etc.). Response evaluation based on the input and output data elucidated that the structure first mode is not significantly affected, even considering the soil-structure interaction effect, but the upper modes have been changed. Also, it was found that the response transfer function of the different stories, in which plastic hinges have occurred in the structure components, provides similar results.

Keywords: bending steel frame structure, dynamic characteristics, displacement-based design, soil-structure system, system identification

Procedia PDF Downloads 493
711 Numerical Investigation of Wave Interaction with Double Vertical Slotted Walls

Authors: H. Ahmed, A. Schlenkhoff

Abstract:

Recently, permeable breakwaters have been suggested to overcome the disadvantages of fully protection breakwaters. These protection structures have minor impacts on the coastal environment and neighboring beaches where they provide a more economical protection from waves and currents. For regular waves, a numerical model is used (FLOW-3D, VOF) to investigate the hydraulic performance of a permeable breakwater. The model of permeable breakwater consists of a pair of identical vertical slotted walls with an impermeable upper and lower part, where the draft is a decimal multiple of the total depth. The middle part is permeable with a porosity of 50%. The second barrier is located at distant of 0.5 and 1.5 of the water depth from the first one. The numerical model is validated by comparisons with previous laboratory data and semi-analytical results of the same model. A good agreement between the numerical results and both laboratory data and semi-analytical results has been shown and the results indicate the applicability of the numerical model to reproduce most of the important features of the interaction. Through the numerical investigation, the friction factor of the model is carefully discussed.

Keywords: coastal structures, permeable breakwater, slotted wall, numerical model, energy dissipation coefficient

Procedia PDF Downloads 385
710 Chiral Carbon Quantum Dots for Paper-Based Photoluminescent Sensing Platforms

Authors: Erhan Zor, Funda Copur, Asli I. Dogan, Haluk Bingol

Abstract:

Current trends in the wide-scale sensing technologies rely on the development of miniaturized, rapid and easy-to-use sensing platforms. Quantum dots (QDs) with strong and easily tunable luminescence and high emission quantum yields have become a well-established photoluminescent nanomaterials for sensor applications. Although the majority of the reports focused on the cadmium-based QDs which have toxic effect on biological systems and eventually would cause serious environmental problems, carbon-based quantum dots (CQDs) that do not contain any toxic class elements have attracted substantial research interest in recent years. CQDs are small carbon nanostructures (less than 10 nm in size) with various unique properties and are widely-used in different fields during the last few years. In this respect, chiral nanostructures have become a promising class of materials in various areas such as pharmacology, catalysis, bioanalysis and (bio)sensor technology due to the vital importance of chirality in living systems. We herein report the synthesis of chiral CQDs with D- or L-tartaric acid as precursor materials. The optimum experimental conditions were examined and the purification procedure was performed using ethanol/water by column chromatography. The purified chiral CQDs were characterized by UV-Vis, FT-IR, XPS, PL and TEM techniques. The resultants display different photoluminescent characteristics due to the size and conformational difference. Considering the results, it can be concluded that chiral CQDs is expected to be used as optical chiral sensor in different platforms.

Keywords: carbon quantum dots, chirality, sensor, tartaric acid

Procedia PDF Downloads 235
709 Simulation Study of Multiple-Thick Gas Electron Multiplier-Based Microdosimeters for Fast Neutron Measurements

Authors: Amir Moslehi, Gholamreza Raisali

Abstract:

Microdosimetric detectors based on multiple-thick gas electron multiplier (multiple-THGEM) configurations are being used in various fields of radiation protection and dosimetry. In the present work, microdosimetric response of these detectors to fast neutrons has been investigated by Monte Carlo method. Three similar microdosimeters made of A-150 and rexolite as the wall materials are designed; the first based on single-THGEM, the second based on double-THGEM and the third is based on triple-THGEM. Sensitive volume of the three microdosimeters is a right cylinder of 5 mm height and diameter which is filled with the propane-based tissue-equivalent (TE) gas. The TE gas with 0.11 atm pressure at the room temperature simulates 1 µm of tissue. Lineal energy distributions for several neutron energies from 10 keV to 14 MeV including 241Am-Be neutrons are calculated by the Geant4 simulation toolkit. Also, mean quality factor and dose-equivalent value for any neutron energy has been determined by these distributions. Obtained data derived from the three microdosimeters are in agreement. Therefore, we conclude that the multiple-THGEM structures present similar microdosimetric responses to fast neutrons.

Keywords: fast neutrons, geant4, multiple-thick gas electron multiplier, microdosimeter

Procedia PDF Downloads 344
708 Simplified Equations for Rigidity and Lateral Deflection for Reinforced Concrete Cantilever Shear Walls

Authors: Anas M. Fares

Abstract:

Reinforced concrete shear walls are the most frequently used forms of lateral resisting structural elements. These walls may take many forms due to their functions and locations in the building. In Palestine, the most lateral resisting forces construction forms is the cantilever shear walls system. It is thus of prime importance to study the rigidity of these walls. The virtual work theorem is used to derive the total lateral deflection of cantilever shear walls due to flexural and shear deformation. The case of neglecting the shear deformation in the walls is also studied, and it is found that the wall height to length aspect ratio (H/B) plays a major role in calculating the lateral deflection and the rigidity of such walls. When the H/B is more than or equal to 3.7, the shear deformation may be neglected from the calculation of the lateral deflection. Moreover, the walls with the same material properties, same lateral load value, and same aspect ratio, shall have the same of both the lateral deflection and the rigidity. Finally, an equation to calculate the total rigidity and total deflection of such walls is derived by using the virtual work theorem for a cantilever beam.

Keywords: cantilever shear walls, flexural deformation, lateral deflection, lateral loads, reinforced concrete shear walls, rigidity, shear deformation, virtual work theorem

Procedia PDF Downloads 213
707 The Effect of Addition of White Mulberry Fruit on the Polyphenol Content in the New Developed Bioactive Bread

Authors: Kobus-Cisowska Joanna, Flaczyk Ewa, Gramza-Michalowska Anna, Kmiecik Dominik, Przeor Monika, Marcinkowska Agata

Abstract:

In recent years, proceed to the attractiveness of typical bakery products. Expanding the education and nutrition knowledge society will develop the production of functional foods, which has a positive impact on human health. Therefore, the aim of the present study was to evaluate the effect of the addition of white mulberry fruit on the content of biologically active compounds in the new designed functional bread premixes designed for selected disease: anemia, diabetes, obesity and cardiovascular disease. For flavonols and phenolic acids content UPLC was conducted, using an NovaPack C18 column and a gradient elution system. It was found that all attempts bread characterized by a high content of biologically active compounds: polyphenols, phenolic acids, and flavonoids. The highest total content of polyphenolic compounds found in the samples of bread for anemia, diabetes and cardiovascular disease both before and after storage. The analyzed sample differed in content of phenolic acids. The highest content of these compounds were found in samples of bread for anemia and diabetes. It was found that the analyzed sample contained phenolic acids that are derivatives of hydroxybenzoic and hydroxycinnamic acid. The new designed bread contained significant amounts of flavonols, of which the dominant was routine.

Keywords: mulberry, antioxidant, polyphenols, phenolic acids, flavonols

Procedia PDF Downloads 411
706 Experimental Study of Heat Transfer in Pulsation Mist Flow in Rectanglar Duct Partially Filled with a Porous Medium

Authors: Hosein Shokoohmand, Mohamad Esmaeil Jomeh

Abstract:

The present thesis studies the effect of different factors such as frequency of oscillatory flow, change in constant wall heat flux and two-phase current state, on heat transfer in a pipe in presence of porous medium. In this experimental study is conducted for Reynolds numbers in a range of Re=850 to Re=10000 and oscillatory frequencies of 5, 20, 10, 30 and 40 Hz with constant heat flux of 585 w/m2 and 819 w/m2. The results indicate that increase in oscillation frequency in higher frequencies for heat flux of 585 w/m2 leads to an increase in heat transfer; however, in the rest of tests it results in a heat transfer decrease. Increasing Reynolds number in a pulsation mist flow causes an increase in average Nusselt number values. The effect of oscillation frequencies in a pulsation mist flow for different Reynolds numbers has revealed different results, in a way that for some Reynolds numbers an increase of frequency has led to a heat transfer decrease.

Keywords: Reynolds numbers, frequency of oscillatory flow, constant heat flux, mist flow

Procedia PDF Downloads 489
705 Structure of Turbulence Flow in the Wire-Wrappes Fuel Assemblies of BREST-OD-300

Authors: Dmitry V. Fomichev, Vladimir I. Solonin

Abstract:

In this paper, experimental and numerical study of hydrodynamic characteristics of the air coolant flow in the test wire-wrapped assembly is presented. The test assembly has 37 rods, which are similar to the real fuel pins of the BREST-OD-300 fuel assemblies geometrically. Air open loop test facility installed at the “Nuclear Power Plants and Installations” department of BMSTU was used to obtain the experimental data. The obtaining altitudinal distribution of static pressure in the near-wall test assembly as well as velocity and temperature distribution of coolant flow in the test sections can give us some new knowledge about the mechanism of formation of the turbulence flow structure in the wire wrapped fuel assemblies. Numerical simulations of the turbulence flow has been accomplished using ANSYS Fluent 14.5. Different non-local turbulence models have been considered, such as standard and RNG k-e models and k-w SST model. Results of numerical simulations of the flow based on the considered turbulence models give the best agreement with the experimental data and help us to carry out strong analysis of flow characteristics.

Keywords: wire-spaces fuel assembly, turbulent flow structure, computation fluid dynamics

Procedia PDF Downloads 450
704 Growth of SWNTs from Alloy Catalyst Nanoparticles

Authors: S. Forel, F. Bouanis, L. Catala, I. Florea, V. Huc, F. Fossard, A. Loiseau, C. Cojocaru

Abstract:

Single wall carbon nanotubes are seen as excellent candidate for application on nanoelectronic devices because of their remarkable electronic and mechanical properties. These unique properties are highly dependent on their chiral structures and the diameter. Therefore, structure controlled growth of SWNTs, especially directly on final device’s substrate surface, are highly desired for the fabrication of SWNT-based electronics. In this work, we present a new approach to control the diameter of SWNTs and eventually their chirality. Because of their potential to control the SWNT’s chirality, bi-metalics nanoparticles are used to prepare alloy nanoclusters with specific structure. The catalyst nanoparticles are pre-formed following a previously described process. Briefly, the oxide surface is first covered with a SAM (self-assembled monolayer) of a pyridine-functionalized silane. Then, bi-metallic (Fe-Ru, Co-Ru and Ni-Ru) complexes are assembled by coordination bonds on the pre-formed organic SAM. The resultant alloy nanoclusters were then used to catalyze SWNTs growth on SiO2/Si substrates via CH4/H2 double hot-filament chemical vapor deposition (d-HFCVD). The microscopy and spectroscopy analysis demonstrate the high quality of SWNTs that were furthermore integrated into high-quality SWNT-FET.

Keywords: nanotube, CVD, device, transistor

Procedia PDF Downloads 312
703 Evaluate the Kinetic Parameters and Characterize for Waste Prosopis juliflora Pods

Authors: Jean C. G. Silva, Kaline N. Ferreira, Rennio F. Sena, Flavio L. H. Silva

Abstract:

The Prosopis juliflora (called algaroba in Northeastern Region of Brazil) is a species of medium to large size that can reach 18 meters high, being typical of arid and semi-arid regions by to requirement less water to survive; this is a fundamental attribute from its adaptation. It's considered of multiple uses, because the trunk, the fruit, and the algaroba pods are utilized for several purposes, among them, the production of wood from lumber mill, charcoal, alcohol, animal and human consumption, being hence, a culture of economic and social value. The use of waste Prosopis juliflora can be carried out for like pyrolysis and gasification processes, in order to energy production in those regions where it is grown. Thus this study aims to characterize the residue of the algaroba pods and evaluate the kinetic parameters, activation energy (Ea) and pre-exponential factor (k0), the devolatilization process through the data obtained from TG/DTG curves with different levels of heating rates. At work was used the heating rates of 5 K.min-1, 10 K.min-1, 15 K.min-1, 20 K.min-1 and 30 K.min-1, in inert nitrogen atmosphere (99.997%) under a flow of 40 ml.min-1. The kinetic parameters were obtained using the methods of Friedman and Ozawa-Flynn-Wall.

Keywords: activation energy, devolatilization, kinetic parameters, waste

Procedia PDF Downloads 381
702 Prevalence of Sarcocystosis in Slaughtered Sheep and Goats

Authors: Shivan N. Hussein, Ihsan K. Zangana

Abstract:

A total of 2358 sheep and 532 goats were examined for the presence of macrocystis of Sarcocystis. For microcysts, different muscle tissues were randomly taken from 118 sheep and 110 goats. Macrocystis were examined through naked eye inspection, while microcysts were examined microscopically by using histopathology, pepsin digestion, mincing & squeezing, and muscle squash method. Overall prevalence of macrocystis was 1.2% in sheep and 2.6% in goats. The intensity rate of the cysts was 4 cysts/ gram in sheep & 3 cysts/ gram in goats, respectively, while the overall prevalence of microcysts in sheep and goats was 96.5%. The infection rate in sheep was 96.6% and in goats was 96.4%. The total intensity rate of microcysts was 32.4 cysts/ field in sheep and 16.8 cysts/ field in goats, respectively. Histopathological examination found different shapes, size, wall thickness, and intensity rates of microcysts in muscle tissues of sheep & goats. The pathological reaction showed mild to moderate granulocytosis, and mononuclear cells infiltrated surrounding the microcysts with necrotizing and degeneration of myofibrils. The largest average size of spindle and round shaped cysts (290 ± 89.7 x 76.1 ± 10 µm and 88.8 ± 10.3 µm) in goats and (127.2 ± 18.9 x 53.3 ± 5.4 µm and 74.4 ± 7.5 µm) in sheep, was detected in the esophageal muscle. Statistically, there was a significant difference (p < 0.05) in the prevalence of macrocystis in sheep and goats, while no significant difference (p > 0.05) was observed in the prevalence of microcysts between both animal species.

Keywords: macrocystis, microcysts, intensity rate, measurement size

Procedia PDF Downloads 139
701 New Highly-Scalable Carbon Nanotube-Reinforced Glasses and Ceramics

Authors: Konstantinos G. Dassios, Guillaume Bonnefont, Gilbert Fantozzi, Theodore E. Matikas, Costas Galiotis

Abstract:

We report herein the development and preliminary mechanical characterization of fully-dense multi-wall carbon nanotube (MWCNT)-reinforced ceramics and glasses based on a completely new methodology termed High Shear Compaction (HSC). The tubes are introduced and bound to the matrix grains by aid of polymeric binders to form flexible green bodies which are sintered and densified by spark plasma sintering to unprecedentedly high densities of 100% of the pure-matrix value. The strategy was validated across a PyrexTM glass / MWCNT composite while no identifiable factors limit application to other types of matrices. Non-destructive evaluation, based on ultrasonics, of the dynamic mechanical properties of the materials including elastic, shear and bulk modulus as well as Poisson’s ratio showed optimum property improvement at 0.5 %wt tube loading while evidence of nanoscale-specific energy dissipative characteristics acting complementary to nanotube bridging and pull-out indicate a high potential in a wide range of reinforcing and multifunctional applications.

Keywords: ceramic matrix composites, carbon nanotubes, toughening, ultrasonics

Procedia PDF Downloads 368
700 Cantilever Secant Pile Constructed in Sand: Capping Beam Analysis and Design - Part I

Authors: Khaled R. Khater

Abstract:

The paper theme is soil retaining structures. Cantilever secant-pile wall is triggering scientific point of curiosity. Specially the capping beams structural analysis and its interaction with secant piles as one integrated matrix. It is believed that straining actions of this integrated matrix are most probably induced due to a combination of induced line load and non-uniform horizontal pile tips displacement. The strategy that followed throughout this study starts by converting the pile head horizontal displacements generated by Plaxis-2D model to a system of concentrated line load acting per meter run along the capping beam. Then, those line loads are the input data of Staad-Pro 3D-model. Those models tailored to allow the capping beam and the secant piles interacting as one matrix, i.e. a unit. It is believed that the suggested strategy presents close to real structural simulation. The above is the paper thought and methodology. Three sand densities, one pile rigidity and one excavation depth, “h = 4.0-m,” are completely sufficient to achieve the paper’s objective.

Keywords: secant piles, capping beam, analysis, design, plaxis 2D, staad pro 3D

Procedia PDF Downloads 96
699 Behavior of Square Reinforced-Concrete Columns Strengthened with Carbon Fiber Reinforced Polymers under Eccentric Loading

Authors: Dana J. Abed, Mu'tasim S. Abdel-Jaber, Nasim K. Shatarat

Abstract:

In this paper, an experimental study on twelve square columns was conducted to investigate the influence of cross-sectional size on axial compressive capacity of carbon fiber reinforced polymers (CFRP) wrapped square reinforced concrete (RC) short columns subjected to eccentric loadings. The columns were divided into three groups with three cross sections (200×200×1200, 250×250×1500 and 300×300×1800 mm). Each group was tested under two different eccentricities: 10% and 20% of the width of samples measured from the center of the column cross section. Four columns were developed in each arrangement. Two columns in each category were left unwrapped as control samples, and two were wrapped with one layer CFRP perpendicular to the specimen surface. In general; CFRP sheets has enhanced the performance of the strengthened columns compared to the control columns. It was noticed that the percentage of compressive capacity enhancement was decreased by increasing the cross-sectional size, and increasing loading eccentricity generally leads to reduced load bearing capacity in columns. In the same group specimens, when the eccentricity increased the percentage of enhancement in load carrying capacity was increased. The study concludes that the optimum use of the CFRP sheets for axial strength enhancement is for smaller cross-section columns under higher eccentricities.

Keywords: CFRP, columns, eccentric loading, cross-sectional

Procedia PDF Downloads 168
698 Analyzing of Arch Steel Beams with Pre-Stressed Cables

Authors: Erkan Polat, Barlas Ozden Caglayan

Abstract:

By day-to-day developed techniques, it is possible to pass through larger openings by using smaller beam-column sections. Parallel to this trend, it is aimed to produce not only smaller but also economical and architecturally more attractive beams. This study aims to explain the structural behavior of arch steel beam reinforced by using post-tension cable. Due to the effect of post-stressed cable, the arch beam load carrying capacity increases and an optimized section in a smaller size can be obtained with a better architectural view. It also allows better mechanical and applicational solutions for buildings. For better understanding the behavior of the reinforced beam, steel beam and arch steel beam with post-tensioned cable are all modeled and analyzed by using SAP2000 Finite element computer program and compared with each other. Also, full scale test specimens were prepared to test for figuring out the structural behavior and compare the results with the computer model results. Test results are very promising. The similarity of the results between the test and computer analysis shows us that there are no extra knowledge and effort of engineer is needed to calculate such beams. The predicted (and proved by tests) beam carrying capacity is 35% higher than the unreinforced beam carrying capacity. Even just three full scale tests were completed, it is seen that the ratio (%35) may be increased ahead by adjusting the cable post-tension force of beams in much smaller sizes.

Keywords: arch steel beams, pre-stressed cables, finite element, specimen Test

Procedia PDF Downloads 157
697 Development of a Suitable Model for Energy Storage in Residential Buildings in Ahvaz Using Energy Plus Software

Authors: Farideh Azimi, Sam Vahedi Tafreshi

Abstract:

This research tries to study the residential buildings in Ahvaz, the common materials used, and the impact of passive methods of energy storage (as one of the most effective ways to reduce energy consumption in residential complexes) in order to achieve patterns for construction of residential buildings in Ahvaz conditions to reduce energy consumption. In this research, after studying Ahvaz conditions, the components of an existing building were simulated in Energy Plus software, and the climatic data of Ahvaz station was introduced to software. Then to achieve the most optimal conditions of energy consumption in Ahvaz conditions, each of the residential building elements was optimized. The results of simulation showed that using inactive materials and design including double glass, outside wall insulation, inverted roof, etc. in the buildings can reduce energy consumption in the hot and dry climate of Ahvaz. Among the parameters investigated, the inverted roof was the most effective energy saving pattern. According to the results of simulation of the entire building with the most optimal parameters, energy consumption can be saved by a mean of 12.51% in buildings of Ahvaz, and the obtained pattern can also be used in similar climates.

Keywords: residential buildings, thermal comfort, energy storage, Energy Plus software, Ahvaz

Procedia PDF Downloads 350
696 Driving in a Short Arm Plaster Cast Steer a Patient off Course: A Randomised, Controlled, Crossover Study

Authors: B. W. Kenny, D.Mansour, K. G. Mansour, J. Attia, B. Meads

Abstract:

There is currently insufficient evidence to make a conclusive statement about safety while immobilized in a short arm cast. There is a paucity of published literature on this topic. The purpose of this study is to specifically evaluate short arm casts and their effect on driving abilities, particularly steering and avoidance of obstacles. The ability to drive safely is extrapolated from this data. In this study, a randomised, controlled, crossover design was used to assess 30 subjects randomised into 2 groups. A Logitech force feedback steering column and simulated driving program with a standardised road course was used. Objective outcome measures were the number of times subjects drove off the track, the number of crashes, time to lap completion and subjective assessment on whether wearing a short arm plaster cast impeded their steering. Recruited subjects had no upper limb pathology. The side of the applied plaster cast was randomised. The mean lap completion time reduced with repetition, the difference being statistically significant. There was no significant difference in mean number of times subjects in casts drove off the track (3 with vs. 3.07 without casts), average number of crashes (1.27 vs 0.97). Steering ability was not reduced whilst a subject was immobilised in a short arm Plaster of Paris cast, despite subject’s own impressions that their steering was impeded. This may help guide doctors in their advice to patients regarding driving in these casts.

Keywords: upper limb, arm injury, plaster cast, splint, driving, automobile, bone fracture

Procedia PDF Downloads 237
695 Buckling Performance of Irregular Section Cold-Formed Steel Columns under Axially Concentric Loading

Authors: Chayanon Hansapinyo

Abstract:

This paper presents experimental investigation and finite element analysis on buckling behavior of irregular section cold-formed steel columns under axially concentric loading. For the experimental study, four different sections of columns were tested to investigate effect of stiffening and width-to-thickness ratio on buckling behavior. For each of the section, three lengths of 230, 950 and 1900 mm. were studied representing short, intermediate long and long columns, respectively. Then, nonlinear finite element analyses of the tested columns were performed. The comparisons in terms of load-deformation response and buckling mode show good agreement and hence the FEM models were validated. Parametric study of stiffening element and thickness of 1.0, 1.15, 1.2, 1.5, 1.6 and 2.0 mm. were analyzed. The test results showed that stiffening effect pays a large contribution to prevent distortional mode. The increase in wall thickness enhanced buckling stress beyond the yielding strength in short and intermediate columns, but not for the long columns.

Keywords: buckling behavior, irregular section, cold-formed steel, concentric loading

Procedia PDF Downloads 271
694 Thermodynamic Analysis of Ventilated Façades under Operating Conditions in Southern Spain

Authors: Carlos A. Domínguez Torres, Antonio Domínguez Delgado

Abstract:

In this work we study the thermodynamic behavior of some ventilated facades under summer operating conditions in Southern Spain. Under these climatic conditions, indoor comfort implies a high energetic demand due to high temperatures that usually are reached in this season in the considered geographical area. The aim of this work is to determine if during summer operating conditions in Southern Spain, ventilated façades provide some energy saving compared to the non-ventilated façades and to deduce their behavior patterns in terms of energy efficiency. The modeling of the air flow in the channel has been performed by using Navier-Stokes equations for thermodynamic flows. Numerical simulations have been carried out with a 2D Finite Element approach. This way, we analyze the behavior of ventilated façades under different weather conditions as variable wind, variable temperature and different levels of solar irradiation. CFD computations show that the combined effect of the shading of the external wall and the ventilation by the natural convection into the air gap achieve a reduction of the heat load during the summer period. This reduction has been evaluated by comparing the thermodynamic performances of two ventilated and two unventilated façades with the same geometry and thermophysical characteristics.

Keywords: passive cooling, ventilated façades, energy-efficient building, CFD, FEM

Procedia PDF Downloads 348
693 The Effect of Development of Two-Phase Flow Regimes on the Stability of Gas Lift Systems

Authors: Khalid. M. O. Elmabrok, M. L. Burby, G. G. Nasr

Abstract:

Flow instability during gas lift operation is caused by three major phenomena – the density wave oscillation, the casing heading pressure and the flow perturbation within the two-phase flow region. This paper focuses on the causes and the effect of flow instability during gas lift operation and suggests ways to control it in order to maximise productivity during gas lift operations. A laboratory-scale two-phase flow system to study the effects of flow perturbation was designed and built. The apparatus is comprised of a 2 m long by 66 mm ID transparent PVC pipe with air injection point situated at 0.1 m above the base of the pipe. This is the point where stabilised bubbles were visibly clear after injection. Air is injected into the water filled transparent pipe at different flow rates and pressures. The behavior of the different sizes of the bubbles generated within the two-phase region was captured using a digital camera and the images were analysed using the advanced image processing package. It was observed that the average maximum bubbles sizes increased with the increase in the length of the vertical pipe column from 29.72 to 47 mm. The increase in air injection pressure from 0.5 to 3 bars increased the bubble sizes from 29.72 mm to 44.17 mm and then decreasing when the pressure reaches 4 bars. It was observed that at higher bubble velocity of 6.7 m/s, larger diameter bubbles coalesce and burst due to high agitation and collision with each other. This collapse of the bubbles causes pressure drop and reverse flow within two phase flow and is the main cause of the flow instability phenomena.

Keywords: gas lift instability, bubbles forming, bubbles collapsing, image processing

Procedia PDF Downloads 414
692 Two Antiplasmodial Compounds from Lauraceae: Actinodaphne macrophylla and Nectandra angustifolia

Authors: Tiah Rachmatiah, Subaryanti

Abstract:

Plants of Lauraceae family are known to contain many chemical compounds which have potential bioactivity such as alkaloids, flavonoids, lactones, terpenes, etc. Actinodaphne macrophylla and Nectandra angustifolia are two species from Lauraceae. A previous study on the crude alkaloidal extract from the bark of Act. macrophylla and n-hexane extract from the bark of N. angustifolia showed antiplasmodial activity against Plasmodium falciparum. The study was continued to find antiplasmodial active compounds from the two extracts. The materials were obtained from Bogor Botanical Garden, West Java, Indonesia. Crude alkaloidal extract of Act. macrophylla was prepared by maceration in dichloromethane after moistened with NH4OH 25% and n-hexane extract of N. angustifolia was prepared by maceration in n-hexane. A major compound was isolated by column chromatography using silica gel and a mixture of CH2Cl2 and methanol as a gradient solvent system for the alkaloidal extract and mixture of n-hexane and ethyl acetate for n-hexane extract. Fine white needle crystals were obtained from the alkaloidal extract and rod crystals from n-hexane extract. Molecular structure of the compounds was determined by analysis of spectra of NMR, IR, MS and compared by references. In vitro bioactivity test of the compound was performed against Plasmodium falciparum. The results showed that the bark of Act. macrophylla contained an aporphine alkaloid, actinodaphnine, that had activity against P. falciparum with IC50 value of 0.095 µg/mL and the bark of N. angustifolia contained a lignan compound, sesamine, with IC50 of 0.122 µg/mL.

Keywords: actinodaphne macrophylla, alkaloid, antiplasmodial, lauraceae, lignan, nectandra angustifolia

Procedia PDF Downloads 420
691 Assessment for the Backfill Using the Run of the Mine Tailings and Portland Cement

Authors: Javad Someehneshin, Weizhou Quan, Abdelsalam Abugharara, Stephen Butt

Abstract:

Narrow vein mining (NVM) is exploiting very thin but valuable ore bodies that are uneconomical to extract by conventional mining methods. NVM applies the technique of Sustainable Mining by Drilling (SMD). The SMD method is used to mine stranded, steeply dipping ore veins, which are too small or isolated to mine economically using conventional methods since the dilution is minimized. This novel mining technique uses drilling rigs to extract the ore through directional drilling surgically. This paper is focusing on utilizing the run of the mine tailings and Portland cement as backfill material to support the hanging wall for providing safe mine operation. Cemented paste backfill (CPB) is designed by mixing waste tailings, water, and cement of the precise percentage for optimal outcomes. It is a non-homogenous material that contains 70-85% solids. Usually, a hydraulic binder is added to the mixture to increase the strength of the CPB. The binder fraction mostly accounts for 2–10% of the total weight. In the mining industry, CPB has been improved and expanded gradually because it provides safety and support for the mines. Furthermore, CPB helps manage the waste tailings in an economical method and plays a significant role in environmental protection.

Keywords: backfilling, cement backfill, tailings, Portland cement

Procedia PDF Downloads 131
690 Adsorption and Transformation of Lead in Coimbatore Urban Soils

Authors: K. Sivasubramanin, S. Mahimairaja, S. Pavithrapriya

Abstract:

Heavy metal pollution originating from industrial wastes is becoming a serious problem in many urban environments. These heavy metals, if not properly managed, could enter into the food chain and cause a serious health hazards in animals and humans. Industrial wastes, sewage sludge, and automobile emissions also contribute to heavy metal like Pb pollution in the urban environment. However, information is scarce on the heavy metal pollution in Coimbatore urban environment. Therefore, the current study was carried out to examine the extent of lead pollution in Coimbatore urban environment the maximum Pb concentration in Coimbatore urban environment was found in ukkadam, whose concentration in soils 352 mg kg-1. In many places, the Pb concentration was found exceeded the permissible limit of 100 mg kg-1. In laboratory, closed incubation experiment showed that the concentration of different species of Pb viz., water soluble Pb(H2O-Pb), exchangeable Pb(KNO3-Pb), organic-Pb(NaOH-Pb), and organic plus metal (Fe & Al) oxides bound-Pb(Na2 EDTA-Pb) was found significantly increased during the 15 days incubation, mainly due to biotransformation processes. Both the moisture content of soil and ambient temperature exerted a profound influence on the transformation of Pb. The results of a batch experiment has shown that the sorption data was adequately described by the Freundlich equation as indicated by the high correlation coefficients (R2= 0.64) than the Langmuir equation (R2 = 0.33). A maximum of 86 mg of Pb was found adsorbed per kilogram of soil. Consistently, a soil column experiment result had shown that only a small amount of Pb( < 1.0 µg g-1 soil) alone was found leached from the soil. This might be due to greater potential of the soil towards Pb adsorption.

Keywords: lead pollution, adsorption, transformation, heavy metal pollution

Procedia PDF Downloads 319
689 Simulation and Assessment of Carbon Dioxide Separation by Piperazine Blended Solutions Using E-NRTL and Peng-Robinson Models: Study of Regeneration Heat Duty

Authors: Arash Esmaeili, Zhibang Liu, Yang Xiang, Jimmy Yun, Lei Shao

Abstract:

A high-pressure carbon dioxide (CO₂) absorption from a specific off-gas in a conventional column has been evaluated for the environmental concerns by the Aspen HYSYS simulator using a wide range of single absorbents and piperazine (PZ) blended solutions to estimate the outlet CO₂ concentration, CO₂ loading, reboiler power supply, and regeneration heat duty to choose the most efficient solution in terms of CO₂ removal and required heat duty. The property package, which is compatible with all applied solutions for the simulation in this study, estimates the properties based on the electrolyte non-random two-liquid (E-NRTL) model for electrolyte thermodynamics and Peng-Robinson equation of state for vapor phase and liquid hydrocarbon phase properties. The results of the simulation indicate that piperazine, in addition to the mixture of piperazine and monoethanolamine (MEA), demands the highest regeneration heat duty compared with other studied single and blended amine solutions, respectively. The blended amine solutions with the lowest PZ concentrations (5wt% and 10wt%) were considered and compared to reduce the cost of the process, among which the blended solution of 10wt%PZ+35wt%MDEA (methyldiethanolamine) was found as the most appropriate solution in terms of CO₂ content in the outlet gas, rich-CO₂ loading, and regeneration heat duty.

Keywords: absorption, amine solutions, aspen HYSYS, CO₂ loading, piperazine, regeneration heat duty

Procedia PDF Downloads 179
688 Determination of MDA by HPLC in Blood of Levofloxacin Treated Rats

Authors: D. S. Mohale, A. P. Dewani, A. S.tripathi, A. V. Chandewar

Abstract:

Present work demonstrates the applicability of high-performance liquid chromatography (HPLC) with UV-Vis detection for the quantification of malondialdehyde as malondialdehyde-thiobarbituric acid complex (MDA-TBA) in-vivo in rats. The HPLC method for MDA-TBA was achieved by isocratic mode on a reverse-phase C18 column (250mm×4.6mm) at a flow rate of 1.0mLmin−1 followed by detection at 532 nm. The chromatographic conditions were optimized by varying the concentration and pH of water followed by changes in percentage of organic phase optimal mobile phase consisted of mixture of water (0.2% triethylamine pH adjusted to 2.3 by ortho-phosphoric acid) and acetonitrile in ratio (80:20v/v). The retention time of MDA-TBA complex was 3.7 min. The developed method was sensitive as limit of detection and quantification (LOD and LOQ) for MDA-TBA complex were (standard deviation and slope of calibration curve) 110 ng/ml and 363 ng/ml respectively. Calibration studies were done by spiking MDA into rat plasma at concentrations ranging from 500 to 1000 ng/ml. The precision of developed method measured in terms of relative standard deviations for intra-day and inter-day studies was 1.6–5.0% and 1.9–3.6% respectively. The HPLC method was applied for monitoring MDA levels in rats subjected to chronic treatment of levofloxacin (LEV) (5mg/kg/day) for 21 days. Results were compared by findings in control group rats. Mean peak areas of both study groups was subjected for statistical treatment to unpaired student t-test to find p-values. The p value was <0.001 indicating significant results and suggesting increased MDA levels in rats subjected to chronic treatment of LEV of 21 days.

Keywords: malondialdehyde-thiobarbituric acid complex, levofloxacin, HPLC, oxidative stress

Procedia PDF Downloads 327
687 Isolation, Characterization and Quantitation of Anticancer Constituent from Chloroform Extract of N. arbortristis L. Leaves

Authors: Parul Grover, K. A. Suri, Raj Kumar, Gulshan Bansal

Abstract:

Background: Nyctanthes arbortristis Linn is traditionally used as anticancer herb in Indian system of medicine, but its introduction into modern system of medicine is still awaited due to lack of systematic scientific studies. Objective: The objective of the present study was to isolate and characterize anticancer phytoconstituents from N. arbortristis L. leaves based on bioactivity guided fractionation. Method: Different extracts of the leaves of the plant were prepared by Soxhlet extractor. Each extract was evaluated for anticancer activity against HL-60 cell lines. Chloroform and HA extract showed potent anticancer activity and hence were selected for fractionation. Fraction C1 from chloroform extract was found to be most potent amongst all when tested against three cell lines (HL-60, A-549, and HCT-116) and thus was selected for further fractionation and a pure compound CP-01 was isolated. RP-HPLC method has been developed for quantification of isolated compound by using Kinetex C-18 column with gradient elution at 0.7 mL/min using mobile phase containing potassium dihydrogen phosphate (0.01 M, pH 3.0) with acetonitrile. The wavelength of maximum absorption (λₘₐₓ) selected was 210 nm. Results: The structure of potent anticancer CP-01 was determined on the basis spectroscopic methods like IR, 1H-NMR, ¹³C-NMR and Mass Spectrometry and it was characterized as 1,1,2-tris(2’,4’-di-tert-butylbenzene)-4,4-dimethyl-pent-1-ene. The content of CP-01 was found to be 0.88 %w/w of chloroform extract and 0.08 %w/w of N.arbortristis leaves. Conclusion: The study supports the traditional use of N. arbortristis as anticancer herb & the identified compound CP-01 can serve as an excellent lead to develop potent and safe anticancer drugs.

Keywords: anticancer, HL-60 cell lines, Nyctanthes arbor-tristis, RP-HPLC

Procedia PDF Downloads 140
686 Evaluation of Strategies to Mitigate the Carbon Emissions from MSW: A Case Study

Authors: N. Anusree, P. Sughosh, G. L. Sivakumar Babu

Abstract:

Municipalities throughout the world are marred with serious issues related to the Municipal Solid Waste (MSW) collection, treatment, and safe disposal. While the Waste Management sector contributes around 3-9 % of the overall anthropogenic methane emission, measures towards mitigating these emissions are rarely given attention in developing countries. In the case of Bangalore, India, around 5680 tons of MSW is generated in a day, and its collection and treatment efficiency are around 90-95 % and 26.4 %, respectively. About 33.4 % of the waste collected is directly landfilled without any treatment, further aggravating the situation. The potential of reducing the emissions emanating from the MSW of Bangalore city without any severe consequences on the current MSW management practices is evaluated in this study. Three emission scenarios consisting of the baseline condition (current practices – Case-1), the application of biocovers for methane oxidation in the dumpsites (case-2), and the diversion of Organic Fraction of MSW (OFMSW) along with the application of biocovers (case-3) are evaluated and compared with each other. The emissions are calculated based on the aerobic and anaerobic stochiometric relations for the three scenarios. Laboratory scale column studies are carried out to determine the methane oxidation potential of three different biocover material (digested MBT (mechanically biologically treated) waste, Fresh MBT waste, and charcoal amended with fresh MBT waste). The results shown that around 40 % and 83 % reduction in carbon emissions can be achieved in case 3 and 2 in comparison to the baseline condition. The study clearly shows that with minor changes in the waste management practices, substantial reductions in the carbon emissions can be attained in Bangalore City.

Keywords: MSW, biocover, composting, carbon emission

Procedia PDF Downloads 123