Search results for: durability and sustainability
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2881

Search results for: durability and sustainability

1651 Fluorination Renders the Wood Surface Hydrophobic without Any Loos of Physical and Mechanical Properties

Authors: Martial Pouzet, Marc Dubois, Karine Charlet, Alexis Béakou

Abstract:

The availability, the ecologic and economic characteristics of wood are advantages which explain the very wide scope of applications of this material, in several domains such as paper industry, furniture, carpentry and building. However, wood is a hygroscopic material highly sensitive to ambient humidity and temperature. The swelling and the shrinking caused by water absorption and desorption cycles lead to crack and deformation in the wood volume, making it incompatible for such applications. In this study, dynamic fluorination using F2 gas was applied to wood samples (douglas and silver fir species) to decrease their hydrophilic character. The covalent grafting of fluorine atoms onto wood surface through a conversion of C-OH group into C-F was validated by Fourier-Transform infrared spectroscopy and 19F solid state Nuclear Magnetic Resonance. It revealed that the wood, which is initially hydrophilic, acquired a hydrophobic character comparable to that of the Teflon, thanks to fluorination. A good durability of this treatment was also determined by aging tests under ambient atmosphere and under UV irradiation. Moreover, this treatment allowed obtaining hydrophobic character without major structural (morphology, density and colour) or mechanical changes. The maintaining of these properties after fluorination, which requires neither toxic solvent nor heating, appears as a remarkable advantage over other more traditional physical and chemical wood treatments.

Keywords: cellulose, spectroscopy, surface treatment, water absorption

Procedia PDF Downloads 194
1650 Ecosystem Services and Human Well-Being: Case Study of Tiriya Village, Bastar India

Authors: S. Vaibhav Kant Sahu, Surabhi Bipin Seth

Abstract:

Human well-being has multiple constituents including the basic material for a good life, freedom and choice, health, good social relations, and security. Poverty is also multidimensional and has been defined as the pronounced deprivation of well-being. Dhurwa tribe of Bastar (India) have symbiotic relation with nature, it provisions ecosystem service such as food, fuel and fiber; regulating services such as climate regulation and non-material benefits such as spiritual or aesthetic benefits and they are managing their forest from ages. The demand for ecosystem services is now so great that trade-off among services become rule. Aim of study to explore evidences for linkages between ecosystem services and well-being of indigenous community, how much it helps them in poverty reduction and interaction between them. Objective of study was to find drivers of change and evidence concerning link between ecosystem, human development and sustainability, evidence in decision making does it opt for multi sectoral objectives. Which means human well-being as the central focus for assessment, while recognizing that biodiversity and ecosystems also have intrinsic value. Ecosystem changes that may have little impact on human well-being over days or weeks may have pronounced impacts over years or decades; so assessments needed to be conducted at spatial and temporal scales under social, political, economic scales to have high-resolution data. Researcher used framework developed by Millennium ecosystem assessment; since human action now directly or unknowingly virtually alter ecosystem. Researcher used ethnography study to get primary qualitative data, secondary data collected from panchayat office. The responses were transcribed and translated into English, as interview held in Hindi and local indigenous language. Focus group discussion were held with group of 10 women at Tiriya village. Researcher concluded with well-being is not just gap between ecosystem service supply but also increases vulnerability. Decision can have consequences external to the decision framework these consequences are called externalities because they are not part of the decision-making calculus.

Keywords: Bastar, Dhurwa tribe, ecosystem services, millennium ecosystem assessment, sustainability

Procedia PDF Downloads 294
1649 Machine Learning and Metaheuristic Algorithms in Short Femoral Stem Custom Design to Reduce Stress Shielding

Authors: Isabel Moscol, Carlos J. Díaz, Ciro Rodríguez

Abstract:

Hip replacement becomes necessary when a person suffers severe pain or considerable functional limitations and the best option to enhance their quality of life is through the replacement of the damaged joint. One of the main components in femoral prostheses is the stem which distributes the loads from the joint to the proximal femur. To preserve more bone stock and avoid weakening of the diaphysis, a short starting stem was selected, generated from the intramedullary morphology of the patient's femur. It ensures the implantability of the design and leads to geometric delimitation for personalized optimization with machine learning (ML) and metaheuristic algorithms. The present study attempts to design a cementless short stem to make the strain deviation before and after implantation close to zero, promoting its fixation and durability. Regression models developed to estimate the percentage change of maximum principal stresses were used as objective optimization functions by the metaheuristic algorithm. The latter evaluated different geometries of the short stem with the modification of certain parameters in oblique sections from the osteotomy plane. The optimized geometry reached a global stress shielding (SS) of 18.37% with a determination factor (R²) of 0.667. The predicted results favour implantability integration in the short stem optimization to effectively reduce SS in the proximal femur.

Keywords: machine learning techniques, metaheuristic algorithms, short-stem design, stress shielding, hip replacement

Procedia PDF Downloads 187
1648 Embedding Looping Concept into Corporate CSR Strategy for Sustainable Growth: An Exploratory Study

Authors: Vani Tanggamani, Azlan Amran

Abstract:

The issues of Corporate Social Responsibility (CSR) have been extended from developmental economics to corporate and business in recent years. Research in issues related to CSR is deemed to make higher impacts as CSR encourages long-term economy and business success without neglecting social, environmental risks, obligations and opportunities. Therefore, CSR is a key matter for any organisation aiming for long term sustainability since business incorporates principles of social responsibility into each of its business decisions. Thus, this paper presents a theoretical proposition based on stakeholder theory from the organisational perspective as a foundation for better CSR practices. The primary subject of this paper is to explore how looping concept can be effectively embedded into corporate CSR strategy to foster sustainable long term growth. In general, the concept of a loop is a structure or process, the end of which is connected to the beginning, whereas the narrow view of a loop in business field means plan, do, check, and improve. In this sense, looping concept is a blend of balance and agility with the awareness to know when to which. Organisations can introduce similar pull mechanisms by formulating CSR strategies in order to perform the best plan of actions in real time, then a chance to change those actions, pushing them toward well-organized planning and successful performance. Through the analysis of an exploratory study, this paper demonstrates that approaching looping concept in the context of corporate CSR strategy is an important source of new idea to propel CSR practices by deepening basic understanding through the looping concept which is increasingly necessary to attract and retain business stakeholders include people such as employees, customers, suppliers and other communities for long-term business survival. This paper contributes to the literature by providing a fundamental explanation of how the organisations will experience less financial and reputation risk if looping concept logic is integrated into core business CSR strategy.The value of the paper rests in the treatment of looping concept as a corporate CSR strategy which demonstrates "looping concept implementation framework for CSR" that could further foster business sustainability, and help organisations move along the path from laggards to leaders.

Keywords: corporate social responsibility, looping concept, stakeholder theory, sustainable growth

Procedia PDF Downloads 386
1647 A Critical Study of the Performance of Self Compacting Concrete (SCC) Using Locally Supplied Materials in Bahrain

Authors: A. Umar, A. Tamimi

Abstract:

Development of new types of concrete with improved performance is a very important issue for the whole building industry. The development is based on the optimization of the concrete mix design, with an emphasis not only on the workability and mechanical properties but also to the durability and the reliability of the concrete structure in general. Self-compacting concrete (SCC) is a high-performance material designed to flow into formwork under its own weight and without the aid of mechanical vibration. At the same time it is cohesive enough to fill spaces of almost any size and shape without segregation or bleeding. Construction time is shorter and production of SCC is environmentally friendly (no noise, no vibration). Furthermore, SCC produces a good surface finish. Despite these advantages, SCC has not gained much local acceptance though it has been promoted in the Middle East for the last ten to twelve years. The reluctance in utilizing the advantages of SCC, in Bahrain, may be due to lack of research or published data pertaining to locally produced SCC. Therefore, there is a need to conduct studies on SCC using locally available material supplies. From the literature, it has been observed that the use of viscosity modifying admixtures (VMA), micro silica and glass fibers have proved to be very effective in stabilizing the rheological properties and the strength of fresh and hardened properties of self-compacting concrete (SCC). Therefore, in the present study, it is proposed to carry out investigations of SCC with combinations of various dosages of VMAs with and without micro silica and glass fibers and to study their influence on the properties of fresh and hardened concrete.

Keywords: self-compacting concrete, viscosity modifying admixture, micro silica, glass fibers

Procedia PDF Downloads 644
1646 A Concept to Assess the Economic Importance of the On-Site Activities of ETICS

Authors: V. Sulakatko, F. U. Vogdt, I. Lill

Abstract:

Construction technology and on-site construction activities have a direct influence on the life cycle costs of energy efficiently renovated apartment buildings. The systematic inadequacies of the External Thermal Insulation Composite System (ETICS) which occur during the construction phase increase the risk for all stakeholders, reduce mechanical durability and increase the life cycle costs of the building. The economic effect of these shortcomings can be minimised if the risk of the most significant on-site activities is recognised. The objective of the presented ETICS economic assessment concept is to evaluate the economic influence of on-site shortcomings and reveal their significance to the foreseeable future repair costs. The model assembles repair techniques, discusses their direct cost calculation methods, argues over the proper usage of net present value over the life cycle of the building, and proposes a simulation tool to evaluate the risk of on-site activities. As the technique is dependent on the selected real interest rate, a sensitivity analysis is anticipated to determine the validity of the recommendations. After the verification of the model on the sample buildings by the industry, it is expected to increase economic rationality of resource allocation and reduce high-risk systematic shortcomings during the construction process of ETICS.

Keywords: activity-based cost estimating, cost estimation, ETICS, life cycle costing

Procedia PDF Downloads 284
1645 Women’s Colours in Digital Innovation

Authors: Daniel J. Patricio Jiménez

Abstract:

Digital reality demands new ways of thinking, flexibility in learning, acquisition of new competencies, visualizing reality under new approaches, generating open spaces, understanding dimensions in continuous change, etc. We need inclusive growth, where colors are not lacking, where lights do not give a distorted reality, where science is not half-truth. In carrying out this study, the documentary or bibliographic collection has been taken into account, providing a reflective and analytical analysis of current reality. In this context, deductive and inductive methods have been used on different multidisciplinary information sources. Women today and tomorrow are a strategic element in science and arts, which, under the umbrella of sustainability, implies ‘meeting current needs without detriment to future generations’. We must build new scenarios, which qualify ‘the feminine and the masculine’ as an inseparable whole, encouraging cooperative behavior; nothing is exclusive or excluding, and that is where true respect for diversity must be based. We are all part of an ecosystem, which we will make better as long as there is a real balance in terms of gender. It is the time of ‘the lifting of the veil’, in other words, it is the time to discover the pseudonyms, the women who painted, wrote, investigated, recorded advances, etc. However, the current reality demands much more; we must remove doors where they are not needed. Mass processing of data, big data, needs to incorporate algorithms under the perspective of ‘the feminine’. However, most STEM students (science, technology, engineering, and math) are men. Our way of doing science is biased, focused on honors and short-term results to the detriment of sustainability. Historically, the canons of beauty, the way of looking, of perceiving, of feeling, depended on the circumstances and interests of each moment, and women had no voice in this. Parallel to science, there is an under-representation of women in the arts, but not so much in the universities, but when we look at galleries, museums, art dealers, etc., colours impoverish the gaze and once again highlight the gender gap and the silence of the feminine. Art registers sensations by divining the future, science will turn them into reality. The uniqueness of the so-called new normality requires women to be protagonists both in new forms of emotion and thought, and in the experimentation and development of new models. This will result in women playing a decisive role in the so-called "5.0 society" or, in other words, in a more sustainable, more humane world.

Keywords: art, digitalization, gender, science

Procedia PDF Downloads 161
1644 Smart Mobility Planning Applications in Meeting the Needs of the Urbanization Growth

Authors: Caroline Atef Shoukry Tadros

Abstract:

Massive Urbanization growth threatens the sustainability of cities and the quality of city life. This raised the need for an alternate model of sustainability, so we need to plan the future cities in a smarter way with smarter mobility. Smart Mobility planning applications are solutions that use digital technologies and infrastructure advances to improve the efficiency, sustainability, and inclusiveness of urban transportation systems. They can contribute to meeting the needs of Urbanization growth by addressing the challenges of traffic congestion, pollution, accessibility, and safety in cities. Some example of a Smart Mobility planning application are Mobility-as-a-service: This is a service that integrates different transport modes, such as public transport, shared mobility, and active mobility, into a single platform that allows users to plan, book, and pay for their trips. This can reduce the reliance on private cars, optimize the use of existing infrastructure, and provide more choices and convenience for travelers. MaaS Global is a company that offers mobility-as-a-service solutions in several cities around the world. Traffic flow optimization: This is a solution that uses data analytics, artificial intelligence, and sensors to monitor and manage traffic conditions in real-time. This can reduce congestion, emissions, and travel time, as well as improve road safety and user satisfaction. Waycare is a platform that leverages data from various sources, such as connected vehicles, mobile applications, and road cameras, to provide traffic management agencies with insights and recommendations to optimize traffic flow. Logistics optimization: This is a solution that uses smart algorithms, blockchain, and IoT to improve the efficiency and transparency of the delivery of goods and services in urban areas. This can reduce the costs, emissions, and delays associated with logistics, as well as enhance the customer experience and trust. ShipChain is a blockchain-based platform that connects shippers, carriers, and customers and provides end-to-end visibility and traceability of the shipments. Autonomous vehicles: This is a solution that uses advanced sensors, software, and communication systems to enable vehicles to operate without human intervention. This can improve the safety, accessibility, and productivity of transportation, as well as reduce the need for parking space and infrastructure maintenance. Waymo is a company that develops and operates autonomous vehicles for various purposes, such as ride-hailing, delivery, and trucking. These are some of the ways that Smart Mobility planning applications can contribute to meeting the needs of the Urbanization growth. However, there are also various opportunities and challenges related to the implementation and adoption of these solutions, such as the regulatory, ethical, social, and technical aspects. Therefore, it is important to consider the specific context and needs of each city and its stakeholders when designing and deploying Smart Mobility planning applications.

Keywords: smart mobility planning, smart mobility applications, smart mobility techniques, smart mobility tools, smart transportation, smart cities, urbanization growth, future smart cities, intelligent cities, ICT information and communications technologies, IoT internet of things, sensors, lidar, digital twin, ai artificial intelligence, AR augmented reality, VR virtual reality, robotics, cps cyber physical systems, citizens design science

Procedia PDF Downloads 65
1643 Fabrication and Characterization of PPy/rGO|PPy/ZnO Composite with Varying Zno Concentration as Anode for Fuel Cell Applications

Authors: Bryan D. Llenarizas, Maria Carla F. Manzano

Abstract:

The rapid growth of electricity demand has led to a pursuit of alternative energy sources with high power output and not harmful to the environment. The fuel cell is a device that generates electricity via chemical reactions between the fuel and oxidant. Fuel cells have been known for decades, but the development of high-power output and durability was still one of the drawbacks of this energy source. This study investigates the potential of layer-by-layer composite for fuel cell applications. A two-electrode electrochemical cell was used for the galvanostatic electrochemical deposition method to fabricate a Polypyrrole/rGO|Polypyrrole/ZnO layer-by-layer composite material for fuel cell applications. In the synthesis, the first layer comprised 0.1M pyrrole monomer and 1mg of rGO, while the second layer had 0.1M pyrrole monomer and variations of ZnO concentration ranging from 0.08M up to 0.12M. A constant current density of 8mA/cm² was applied for 1 hour in fabricating each layer. Scanning electron microscopy (SEM) for the fabricated LBL material shows a globular surface with white spots. These white spots are the ZnO particles confirmed by energy-dispersive X-ray spectroscopy, indicating a successful deposition of the second layer onto the first layer. The observed surface morphology was consistent for each variation of ZnO concentrations. AC measurements were conducted to obtain the AC resistance of the fabricated film. Results show a decrease in AC resistance as the concentration of ZnO increases.

Keywords: anode, composite material, electropolymerization, fuel cell, galvanostatic, polypyrrole

Procedia PDF Downloads 64
1642 Tuning the Microstructure and Mechanical Properties of Fine Recycled Plastic Aggregates in Concrete Using Ethylene-Vinyl Acetate

Authors: Ahmed Al-Mansour, Qiang Zeng

Abstract:

Recycling waste plastics in the form of concrete components, i.e. fine aggregates, has been an attractive topic among the society of civil engineers. Not only does the recycling of plastics reduce the overall cost of concrete production, but it also takes part in solving environmental issues. Nevertheless, the incorporation of recycled plastics into concrete results in an increasing reduction in the mechanical properties of concrete as the percentage of replacement of natural aggregates increases. In order to overcome this reduction, Ethylene-vinyl acetate (EVA) was used as an additive in concrete with recycled plastic aggregates. The aim of this additive is to: 1) increase the interfacial interaction at the interfacial transition zone (ITZ) between plastic pellets and cement matrix, and 2) mitigate the loss in mechanical properties. Three different groups of samples (i.e. cubes and prisms) were tested according to the plastics substituting fine aggregates. 5, 10, and 15% of fine aggregates were substituted for recycled plastic pellets, and 2 – 4% of the cement was substituted for EVA that produces a flexible agent when mixed properly with water. Compressive and tensile strength tests were conducted for the mechanical properties, while SEM and X-CT scan were implemented for further investigation of calcium-silicate-hydrate (C–S–H) formation and ITZ analysis. The optimal amount of plastic particles with EVA is suggested to get the most compact and dense matrix structure according to the results of this study.

Keywords: the durability of concrete, ethylene-vinyl acetate (EVA), interfacial transition zone (ITZ), recycled plastics

Procedia PDF Downloads 176
1641 Sustainability with Health: A Daylighting Approach

Authors: Mohamed Boubekri

Abstract:

Daylight in general and sunlight in particular are vital to life on earth, and it is not difficult to believe that their absence fosters conditions that promote disease. Through photosynthesis and other processes, sunlight provides photochemical ingredients necessary for our lives. There are fundamental biological, hormonal, and physiological functions coordinated by cycles that are crucial to life for cells, plants, animals, and humans. Many plants and animals, including humans, develop abnormal behaviors when sunlight is absent because their diurnal cycle is disturbed. Building​ codes disregard this aspect of daylighting when promulgating windows for buildings. This paper discusses the health aspects of daylighting design.

Keywords: daylighting, health, sunlight, sleep, disorders, circadian rythm, cancer

Procedia PDF Downloads 329
1640 Green Building for Positive Energy Districts in European Cities

Authors: Paola Clerici Maestosi

Abstract:

Positive Energy District (PED) is a rather recent concept whose aim is to contribute to the main objectives of the Energy Union strategy. It is based on an integrated multi-sectoral approach in response to Europe's most complex challenges. PED integrates energy efficiency, renewable energy production, and energy flexibility in an integrated, multi-sectoral approach at the city level. The core idea behind Positive Energy Districts (PEDs) is to establish an urban area that can generate more energy than it consumes. Additionally, it should be flexible enough to adapt to changes in the energy market. This is crucial because a PED's goal is not just to achieve an annual surplus of net energy but also to help reduce the impact on the interconnected centralized energy networks. It achieves this by providing options to increase on-site load matching and self-consumption, employing technologies for short- and long-term energy storage, and offering energy flexibility through smart control. Thus, it seems that PEDs can encompass all types of buildings in the city environment. Given this which is the added value of having green buildings being constitutive part of PEDS? The paper will present a systematic literature review identifying the role of green building in Positive Energy District to provide answer to following questions: (RQ1) the state of the art of PEDs implementation; (RQ2) penetration of green building in Positive Energy District selected case studies. Methodological approach is based on a broad holistic study of bibliographic sources according to Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) further data will be analysed, mapped and text mining through VOSviewer. Main contribution of research is a cognitive framework on Positive Energy District in Europe and a selection of case studies where green building supported the transition to PED. The inclusion of green buildings within Positive Energy Districts (PEDs) adds significant value for several reasons. Firstly, green buildings are designed and constructed with a focus on environmental sustainability, incorporating energy-efficient technologies, materials, and design principles. As integral components of PEDs, these structures contribute directly to the district's overall ability to generate more energy than it consumes. Secondly, green buildings typically incorporate renewable energy sources, such as solar panels or wind turbines, further boosting the district's capacity for energy generation. This aligns with the PED objective of achieving a surplus of net energy. Moreover, green buildings often feature advanced systems for on-site energy management, load-matching, and self-consumption. This enhances the PED's capability to respond to variations in the energy market, making the district more agile and flexible in optimizing energy use. Additionally, the environmental considerations embedded in green buildings align with the broader sustainability goals of PEDs. By reducing the ecological footprint of individual structures, PEDs with green buildings contribute to minimizing the overall impact on centralized energy networks and promote a more sustainable urban environment. In summary, the incorporation of green buildings within PEDs not only aligns with the district's energy objectives but also enhances environmental sustainability, energy efficiency, and the overall resilience of the urban environment.

Keywords: positive energy district, renewables energy production, energy flexibility, energy efficiency

Procedia PDF Downloads 34
1639 Traditional and New Residential Architecture in the Approach of Sustainability in the Countryside after the Earthquake

Authors: Zeynep Tanriverdi̇

Abstract:

Sustainable architecture is a design approach that provides healthy, comfortable, safe, clean space production as well as utilizes minimum resources for efficient and economical use of natural resources and energy. Traditional houses located in rural areas are sustainable structures built at the design and implementation stage in accordance with the climatic environmental data of the region and also effectively using natural energy resources. The fact that these structures are located in an earthquake geography like Türkiye brings their earthquake resistance to the agenda. Since the construction of these structures, which contain the architectural and technological cultural knowledge of the past, is shaped according to the characteristics of the regions where they are located, their resistance to earthquakes also differs. Analyses in rural areas after the earthquake show that there are light-damaged structures that can survive, severely damaged structures, and completely destroyed structures. In this regard, experts can implement repair, consolidation, and reconstruction applications, respectively. While simple repair interventions are carried out in accordance with the original data in traditional houses that have shown great resistance to earthquakes, reinforcement work blended with new technologies can be applied in damaged structures. In reconstruction work, a wide variety of applications can be seen with the possibilities of modern technologies. In rural areas experiencing earthquakes around the world, there are experimental new housing applications that are renewable, environmentally friendly, and sustainable with modern construction techniques in the light of scientific data. With these new residences, it is aimed to create earthquake-resistant, economical, healthy, and pain-relieving therapy spaces for people whose daily lives have been interrupted by disasters. In this study, the preservation of high earthquake-prone rural areas will be discussed through the knowledge transfer of traditional architecture and also permanent housing practices using new sustainable technologies to improve the area. In this way, it will be possible to keep losses to a minimum with sustainable, reliable applications prepared for the worst aspects of the disaster situation and to establish a link between the knowledge of the past and the new technologies of the future.

Keywords: sustainability, conservation, traditional construction systems and materials, new technologies, earthquake resistance

Procedia PDF Downloads 55
1638 The Protection and Enhancement of the Roman Roads in Algeria

Authors: Tarek Ninouh, Ahmed Rouili

Abstract:

The Roman paths or roads offer a very interesting archaeological material, because they allow us to understand the history of human settlement and are also factors that increase territorial identity. Roman roads are one of the hallmarks of the Roman empire, which extends to North Africa. The objective of this investigation is to attract the attention of researchers to the importance of Roman roads and paths, which are found in Algeria, according to the quality of the materials and techniques used in this period of our history, and to encourage other decision makers to protect and enhance these routes because the current urbanization, intensive agricultural practices, or simply forgotten, decreases the sustainability of this important historical heritage.

Keywords: Roman paths, quality of materials, property, valuation

Procedia PDF Downloads 421
1637 The Sociocultural, Economic, and Environmental Contestations of Agbogbloshie: A Critical Review

Authors: Khiddir Iddris, Martin Oteng – Ababio, Andreas Bürkert, Christoph Scherrer, Katharina Hemmler

Abstract:

Agbogbloshie, as an informal settlement and economy where the e-waste sector thrives, has become a global hub of complex urban contestations involving sociocultural, economic, and environmental dimensions due to the implication that e-waste and informal economic patterns have on livelihoods, urbanisation, development and sustainability. Multi-author collaborations have produced an ever-growing body of literature on Agbogbloshie and the informal e-waste economy. There is, however, a dearth of an assessment of Agbogbloshie as an urban informal settlement's intricate nexus of socioecological contestations. We address this gap by systematising, from literature, the context knowledge, navigating the complex terrain of Agbogbloshie's challenges, and employing a multidimensional lens to unravel the sociocultural intricacies, economic dynamics, and environmental complexities shaping its identity. A systematic critical review approach was espoused, with a pragmatic consolidation of content analysis and controversy mapping, grounded on the concept of ‘sustainable rurbanism,’ highlighted core themes and identified contrasting viewpoints. An analytical framework is presented. Five categories – geohistorical, sociocultural, economic, environmental and future trends - are proposed as an approach to systematising the literature. The review finds that the sociocultural dimension unveils a mosaic of cultural amalgamation, communal identity, and tensions impacting community cohesion. The analysis of economic intricacies reveals the prevalence of informal economies sustaining livelihoods yet entrenching economic disparities and marginalisation. Environmental scrutiny exposes the grim realities of e-waste disposal, pollution, and land use conflicts. The findings suggest that there is a high resilience within the community and the potential for sustainable trajectories. Theoretical and conceptual synergy is limited. This review provides a comprehensive exploration, offering insights and directions for future research, policy formulation, and community-driven interventions aimed at fostering sustainable transformations in Agbogbloshie and analogous urban contexts.

Keywords: Agbogbloshie, economic complexities, environmental challenges, resilience, sociocultural dynamics, sustainability, urban informal settlement

Procedia PDF Downloads 59
1636 The Effect of Chemical Degradation of a Nonwoven Filter Media Membrane in Polyester

Authors: Rachid El Aidani, Phuong Nguyen-Tri, Toan Vu-Khanh

Abstract:

The filter media in synthetic fibre is the most geotextile materials used in aerosol and drainage filtration, particularly for buildings soil reinforcement in civil engineering due to its appropriated properties and its low cost. However, the current understanding of the durability and stability of this material in real service conditions, especially under severe long-term conditions are completely limited. This study has examined the effects of the chemical aging of a filter media in polyester non-woven under different temperatures (50, 70 and 80˚C) and pH (2. 7 and 12). The effect of aging conditions on mechanical properties, morphology, permeability, thermal stability and molar weigh changes is investigated. The results showed a significant reduction of mechanical properties in term of tensile strength, puncture force and tearing forces of the filter media after chemical aging due to the chemical degradation. The molar mass and mechanical properties changes in different temperature and pH showed a complex dependence of material properties on environmental conditions. The SEM and AFM characterizations showed a significant impact of the thermal aging on the morphological properties of the fibers. Based on the obtained results, the lifetime of the material in different temperatures was determined by the use of the Arrhenius model. These results provide useful information to better understand phenomena occurring during chemical aging of the filter media and may help to predict the service lifetime of this material in real used conditions.

Keywords: nonwoven membrane, chemical aging, mechanical properties, lifetime, filter media

Procedia PDF Downloads 311
1635 Innovative Housing Construction Technologies in Slum Upgrading

Authors: Edmund M. Muthigani

Abstract:

Innovation in the construction industry has been characterized by new products and processes especially in slum upgrading. The need for low cost housing has motivated stakeholders to think outside the box in coming up with solutions. This paper explored innovative construction technologies that have been used in slum upgrading. The main objectives of the paper was to examine innovations in the construction housing sector and to show how incremental derived demand for decent housing has led to adoption of innovative technologies and materials. Systematic literature review was used to review studies on innovative construction technologies in slum upgrading. The review revealed slow process of innovations in the construction industry due to risk aversion by firms and the hesitance to adopt by firms and individuals. Low profit margins in low cost housing and lack of sufficient political support remain the major hurdles to innovative techniques adoption that can actualize right to decent housing. Conventional construction materials have remained unaffordable to many people and this has negated them decent housing. This has necessitated exploration of innovative materials to realize low cost housing. Stabilized soil blocks and sisal-cement roofing blocks are some of the innovative construction materials that have been utilized in slum upgrading. These innovative materials have not only lowered the cost of production of building elements but also eased costs of transport as the raw materials to produce them are readily available in or within the slum sites. Despite their shortcomings in durability and compressive strength, they have proved worthwhile in slum upgrading. Production of innovative construction materials and use of innovative techniques in slum upgrading also provided employment to the locals.

Keywords: construction, housing, innovation, slum, technology

Procedia PDF Downloads 194
1634 Influence of AAR-Induced Expansion Level on Confinement Efficiency of CFRP Wrapping Applied to Damaged Circular Concrete Columns

Authors: Thamer Kubat, Riadh Al Mahiadi, Ahmad Shayan

Abstract:

The alkali-aggregate reaction (AAR) in concrete has a negative influence on the mechanical properties and durability of concrete. Confinement by carbon fiber reinforced polymer (CFRP) is an effective method of treatment for some AAR-affected elements. Eighteen reinforced columns affected by different levels of expansion due to AAR were confined using CFRP to evaluate the effect of expansion level on confinement efficiency. Strength and strain capacities (axial and circumferential) were measured using photogrammetry under uniaxial compressive loading to evaluate the efficiency of CFRP wrapping for the rehabilitation of affected columns. In relation to uniaxial compression capacity, the results indicated that the confinement of AAR-affected columns by one layer of CFRP is sufficient to reach and exceed the load capacity of unaffected sound columns. Parallel to the experimental study, finite element (FE) modeling using ATENA software was employed to predict the behavior of CFRP-confined damaged concrete and determine the possibility of using the model in a parametric study by simulating the number of CFRP layers. A comparison of the experimental results with the results of the theoretical models showed that FE modeling could be used for the prediction of the behavior of confined AAR-damaged concrete.

Keywords: ATENA, carbon fiber reinforced polymer (CFRP), confinement efficiency, finite element (FE)

Procedia PDF Downloads 64
1633 Noise Barrier Technique as a Way to Improve the Sonic Urban Environment along Existing Roadways Assessment: El-Gish Road Street, Alexandria, Egypt

Authors: Nihal Atif Salim

Abstract:

To improve the quality of life in cities, a variety of interventions are used. Noise is a substantial and important sort of pollution that has a negative impact on the urban environment and human health. According to the complaint survey, it ranks second among environmental contamination complaints (conducted by EEAA in 2019). The most significant source of noise in the city is traffic noise. In order to improve the sound urban environment, many physical techniques are applied. In the local area, noise barriers are considered as one of the most appropriate physical techniques along existing traffic routes. Alexandria is Egypt's second-largest city after Cairo. It is located along the Mediterranean Sea, and El- Gish Road is one of the city's main arteries. It impacts the waterfront promenade that extends along with the city by a high level of traffic noise. The purpose of this paper is to clarify the design considerations for the most appropriate noise barrier type along with the promenade, with the goal of improving the Quality of Life (QOL) and the sonic urban environment specifically. The proposed methodology focuses on how noise affects human perception and the environment. Then it delves into the various physical noise control approaches. After that, the paper discusses sustainable design decisions making. Finally, look into the importance of incorporating sustainability into design decisions making. Three stages will be followed in the case study. The first stage involves doing a site inspection and using specific sound measurement equipment (a noise level meter) to measure the noise level along the promenade at many sites, and the findings will be shown on a noise map. The second step is to inquire about the site's user experience. The third step is to investigate the various types of noise barriers and their effects on QOL along existing routes in order to select the most appropriate type. The goal of this research is to evaluate the suitable design of noise barriers that fulfill environmental and social perceptions while maintaining a balanced approach to the noise issue in order to improve QOL along existing roadways in the local area.

Keywords: noise pollution, sonic urban environment, traffic noise, noise barrier, acoustic sustainability, noise reduction techniques

Procedia PDF Downloads 132
1632 Laboratory Investigation of Fly Ash Based Geopolymer Stabilized Recycled Asphalt Pavement as a Base Material

Authors: Menglim Hoy, Suksun Horpibulsuk, Arul Arulrajah

Abstract:

The results of laboratory investigation of recycled asphalt pavement (RAP) – fly ash (FA) based geopolymer as a base material is presented in this paper. An alkaline activator, the mixture of NaOH and Na₂SiO₃, is used to synthesis RAP-FA based geopolymer. RAP-FA with water (RAP-FA blend) prepared as a control material. The strength develops and the strength against wet-dry was determined by the unconfined compression strength (UCS) test, then the microstructural properties were examined by scanning electron microscopy (SEM) and X-ray Diffraction (XRD) analysis. The toxicity characteristic leaching procedure (TCLP) test is conducted to measure its leachability of heavy metal. The results show both the RAP-FA blend and geopolymer can be used as a base course as its UCS values meet the minimum strength requirement specified by the Department of Highway, Thailand. The durability test results show the UCS of these materials increases with increasing the number of wet-dry cycles, reaching its peak at six wet-dry cycles. The XRD and SEM analyses indicate strength development of the RAP-FA blend occurs due to chemical reaction between a high Calcium in RAP with a high Silica and Alumina in FA led to producing calcium aluminate hydrate formation. The strength development of the RAP-FA geopolymer occurred resulted from the polymerization reaction. The TCLP results demonstrate there is no environmental risk of these stabilized materials. Furthermore, FA based geopolymer can reduce the leachability of heavy metal in the RAP-FA blend.

Keywords: recycled asphalt pavement, geopolymer, heavy metal, microstructure

Procedia PDF Downloads 91
1631 An Assessment of the Impacts of Agro-Ecological Practices towards the Improvement of Crop Health and Yield Capacity: A Case of Mopani District, Limpopo, South Africa

Authors: Tshilidzi C. Manyanya, Nthaduleni S. Nethengwe, Edmore Kori

Abstract:

The UNFCCC, FAO, GCF, IPCC and other global structures advocate for agro-ecology do address food security and sovereignty. However, most of the expected outcomes concerning agro-ecological were not empirically tested for universal application. Agro-ecology is theorised to increase crop health over ago-ecological farms and decrease over conventional farms. Increased crop health means increased carbon sequestration and thus less CO2 in the atmosphere. This is in line with the view that global warming is anthropogenically enhanced through GHG emissions. Agro-ecology mainly affects crop health, soil carbon content and yield on the cultivated land. Economic sustainability is directly related to yield capacity, which is theorized to increase by 3-10% in a space of 3 - 10 years as a result of agro-ecological implementation. This study aimed to empirically assess the practicality and validity of these assumptions. The study utilized mainly GIS and RS techniques to assess the effectiveness of agro-ecology in crop health improvement from satellite images. The assessment involved a longitudinal study (2013 – 2015) assessing the changes that occur after a farm retrofits from conventional agriculture to agro-ecology. The assumptions guided the objectives of the study. For each objective, an agro-ecological farm was compared with a conventional farm in the same climatic conditional occupying the same general location. Crop health was assessed using satellite images analysed through ArcGIS and Erdas. This entailed the production of NDVI and Re-classified outputs of the farm area. The NDVI ranges of the entire period of study were thus compared in a stacked histogram for each farm to assess for trends. Yield capacity was calculated based on the production records acquired from the farmers and plotted in a stacked bar graph as percentages of a total for each farm. The results of the study showed decreasing crop health trends over 80% of the conventional farms and an increase over 80% of the organic farms. Yield capacity showed similar patterns to those of crop health. The study thus showed that agro-ecology is an effective strategy for crop-health improvement and yield increase.

Keywords: agro-ecosystem, conventional farm, dialectical, sustainability

Procedia PDF Downloads 205
1630 Mix Design Curves for High Volume Fly Ash Concrete

Authors: S. S. Awanti, Aravindakumar B. Harwalkar

Abstract:

Concrete construction in future has to be environmental friendly apart from being safe so that society at large is benefited by the huge investments made in the infrastructure projects. To achieve this, component materials of the concrete system have to be optimized with reference to sustainability. This paper presents a study on development of mix proportions of high volume fly ash concrete (HFC). A series of HFC mixtures with cement replacement levels varying between 50% and 65% were prepared with water/binder ratios of 0.3 and 0.35. Compressive strength values were obtained at different ages. From the experimental results, pozzolanic efficiency ratios and mix design curves for HFC were established.

Keywords: age factor, compressive strength, high volume fly ash concrete, pozolanic efficiency ratio

Procedia PDF Downloads 309
1629 Optimal Wheat Straw to Bioethanol Supply Chain Models

Authors: Abdul Halim Abdul Razik, Ali Elkamel, Leonardo Simon

Abstract:

Wheat straw is one of the alternative feedstocks that may be utilized for bioethanol production especially when sustainability criteria are the major concerns. To increase market competitiveness, optimal supply chain plays an important role since wheat straw is a seasonal agricultural residue. In designing the supply chain optimization model, economic profitability of the thermochemical and biochemical conversion routes options were considered. It was found that torrefied pelletization with gasification route to be the most profitable option to produce bioethanol from the lignocellulosic source of wheat straw.

Keywords: bio-ethanol, optimization, supply chain, wheat straw

Procedia PDF Downloads 727
1628 Social Licence to Operate Methodology to Secure Commercial, Community and Regulatory Approval for Small and Large Scale Fisheries

Authors: Kelly S. Parkinson, Katherine Y. Teh-White

Abstract:

Futureye has a bespoke social licence to operate methodology which has successfully secured community approval and commercial return for fisheries which have faced regulatory and financial risk. This unique approach to fisheries management focuses on delivering improved social and environmental outcomes to support the fishing industry make steps towards achieving the United Nations SDGs. An SLO is the community’s implicit consent for a business or project to exist. An SLO must be earned and maintained alongside regulatory licences. In current and new operations, it helps you to anticipate and measure community concerns around your operations – leading to more predictable and sensible policy outcomes that will not jeopardise your commercial returns. Rising societal expectations and increasing activist sophistication mean the international fishing industry needs to resolve community concerns at each stage their supply chain. Futureye applied our tested social licence to operate (SLO) methodology to help Austral Fisheries who was being attacked by activists concerned about the sustainability of Patagonian Toothfish. Austral was Marine Stewardship Council certified, but pirates were making the overall catch unsustainable. Austral wanted to be carbon neutral. SLO provides a lens on the risk that helps industries and companies act before regulatory and political risk escalates. To do this assessment, we have a methodology that assesses the risk that we can then translate into a process to create a strategy. 1) Audience: we understand the drivers of change and the transmission of those drivers across all audience segments. 2) Expectation: we understand the level of social norming of changing expectations. 3) Outrage: we understand the technical and perceptual aspects of risk and the opportunities to mitigate these. 4) Inter-relationships: we understand the political, regulatory, and reputation system so that we can understand the levers of change. 5) Strategy: we understand whether the strategy will achieve a social licence through bringing the internal and external stakeholders on the journey. Futureye’s SLO methodologies helped Austral to understand risks and opportunities to enhance its resilience. Futureye reviewed the issues, assessed outrage and materiality and mapped SLO threats to the company. Austral was introduced to a new way that it could manage activism, climate action, and responsible consumption. As a result of Futureye’s work, Austral worked closely with Sea Shepherd who was campaigning against pirates illegally fishing Patagonian Toothfish as well as international governments. In 2016 Austral launched the world’s first carbon neutral fish which won Austral a thirteen percent premium for tender on the open market. In 2017, Austral received the prestigious Banksia Foundation Sustainability Leadership Award for seafood that is sustainable, healthy and carbon neutral. Austral’s position as a leader in sustainable development has opened doors for retailers all over the world. Futureye’s SLO methodology can identify the societal, political and regulatory risks facing fisheries and position them to proactively address the issues and become an industry leader in sustainability.

Keywords: carbon neutral, fisheries management, risk communication, social licence to operate, sustainable development

Procedia PDF Downloads 115
1627 Design, Research and Culture Change in the Age of Transformation

Authors: Maya Jaber

Abstract:

Climate change is one of the biggest challenges that require immediate attention and mitigation for the continued prosperity of human existence. The transformation will need to occur that is top-down and bottom-up on holistic scales. A new way of thinking will need to be adopted that is innovative, human-centric, and global. Designers and researchers are vital leaders in this movement that can help guide other practitioners in the strategy development, critical thinking process, and alignment of transformative solutions. Holistic critical thinking strategies will be essential to change behaviors and cultures for future generations' survival. This paper will discuss these topics associated with Dr. Jaber's research.

Keywords: environmental social governance (ESG), integral design thinking (IDT), organizational transformation, sustainability management

Procedia PDF Downloads 167
1626 Review on Low Actuation Voltage RF Mems Switches

Authors: Hassan Saffari;, Reza Askari Moghadam

Abstract:

In modern communication systems, it is highly demanded to achieve high performance with minimal power consumption. Low actuation voltage RF MEMS (Micro-Electro-Mechanical Systems) switches represent a significant advancement in this regard. These switches, with their ability to operate at lower voltages, offer promising solutions for enhancing connectivity while minimizing energy consumption. Microelectromechanical switches are good alternatives for electronic and mechanical switches due to their low insertion loss, high isolation, and fast switching speeds. They have attracted more attention in recent years. Most of the presented RF MEMS switches use electrostatic actuators due to their low power consumption. Low actuation voltage RF MEMS switches are among the important issues that have been investigated in research articles. The actuation voltage can be reduced by different methods. One usually implemented method is low spring constant structures. However, despite their numerous benefits, challenges remain in the widespread adoption of low-actuation voltage RF MEMS switches. Issues related to reliability, durability, and manufacturing scalability need to be addressed to realize their full potential in commercial applications. While overcoming certain challenges, their exceptional performance characteristics and compatibility with miniaturized electronic systems make them a promising choice for next-generation wireless communication and RF applications. In this paper, some previous works that proposed low-voltage actuation RF MEMS switches are investigated and analyzed.

Keywords: RF MEMS switches, low actuation voltage, small spring constant structures, electrostatic actuation

Procedia PDF Downloads 36
1625 Chemical Degradation of a Polyester Nonwoven Membrane Used in Aerosol and Drainage Filter

Authors: Rachid El Aidani, Phuong Nguyen-Tri, Toan Vu-Khanh

Abstract:

The filter media in synthetic fibre is the most geotextile materials used in aerosol and drainage filtration, particularly for buildings soil reinforcement in civil engineering due to its appropriated properties and its low cost. However, the current understanding of the durability and stability of this material in real service conditions, especially under severe long-term conditions are completely limited. This study has examined the effects of the chemical aging of a filter media in polyester nonwoven under different temperatures (50, 70 and 80˚C) and pH (2. 7 and 12). The effect of aging conditions on mechanical properties, morphology, permeability, thermal stability and molar weigh changes is investigated. The results showed a significant reduction of mechanical properties in term of tensile strength, puncture force and tearing forces of the filter media after chemical aging due to the chemical degradation. The molar mass and mechanical properties changes in different temperature and pH showed a complex dependence of material properties on environmental conditions. The SEM and AFM characterizations showed a significant impact of the thermal aging on the morphological properties of the fibres. Based on the obtained results, the lifetime of the material in different temperatures was determined by the use of the Arrhenius model. These results provide useful information to better understand phenomena occurring during chemical aging of the filter media and may help to predict the service lifetime of this material in real used conditions.

Keywords: nonwoven membrane, chemical aging, mechanical properties, lifetime, filter media

Procedia PDF Downloads 342
1624 Green Building Risks: Limits on Environmental and Health Quality Metrics for Contractors

Authors: Erica Cochran Hameen, Bobuchi Ken-Opurum, Mounica Guturu

Abstract:

The United Stated (U.S.) populous spends the majority of their time indoors in spaces where building codes and voluntary sustainability standards provide clear Indoor Environmental Quality (IEQ) metrics. The existing sustainable building standards and codes are aimed towards improving IEQ, health of occupants, and reducing the negative impacts of buildings on the environment. While they address the post-occupancy stage of buildings, there are fewer standards on the pre-occupancy stage thereby placing a large labor population in environments much less regulated. Construction personnel are often exposed to a variety of uncomfortable and unhealthy elements while on construction sites, primarily thermal, visual, acoustic, and air quality related. Construction site power generators, equipment, and machinery generate on average 9 decibels (dBA) above the U.S. OSHA regulations, creating uncomfortable noise levels. Research has shown that frequent exposure to high noise levels leads to chronic physiological issues and increases noise induced stress, yet beyond OSHA no other metric focuses directly on the impacts of noise on contractors’ well-being. Research has also associated natural light with higher productivity and attention span, and lower cases of fatigue in construction workers. However, daylight is not always available as construction workers often perform tasks in cramped spaces, dark areas, or at nighttime. In these instances, the use of artificial light is necessary, yet lighting standards for use during lengthy tasks and arduous activities is not specified. Additionally, ambient air, contaminants, and material off-gassing expelled at construction sites are one of the causes of serious health effects in construction workers. Coupled with extreme hot and cold temperatures for different climate zones, health and productivity can be seriously compromised. This research evaluates the impact of existing green building metrics on construction and risk management, by analyzing two codes and nine standards including LEED, WELL, and BREAM. These metrics were chosen based on the relevance to the U.S. construction industry. This research determined that less than 20% of the sustainability context within the standards and codes (texts) are related to the pre-occupancy building sector. The research also investigated the impact of construction personnel’s health and well-being on construction management through two surveys of project managers and on-site contractors’ perception of their work environment on productivity. To fully understand the risks of limited Environmental and Health Quality metrics for contractors (EHQ) this research evaluated the connection between EHQ factors such as inefficient lighting, on construction workers and investigated the correlation between various site coping strategies for comfort and productivity. Outcomes from this research are three-pronged. The first includes fostering a discussion about the existing conditions of EQH elements, i.e. thermal, lighting, ergonomic, acoustic, and air quality on the construction labor force. The second identifies gaps in sustainability standards and codes during the pre-occupancy stage of building construction from ground-breaking to substantial completion. The third identifies opportunities for improvements and mitigation strategies to improve EQH such as increased monitoring of effects on productivity and health of contractors and increased inclusion of the pre-occupancy stage in green building standards.

Keywords: construction contractors, health and well-being, environmental quality, risk management

Procedia PDF Downloads 127
1623 Torsional Behavior of Reinforced Concrete (RC) Beams Strengthened by Fiber Reinforced Cementitious Materials– a Review

Authors: Sifatullah Bahij, Safiullah Omary, Francoise Feugeas, Amanullah Faqiri

Abstract:

Reinforced concrete (RC) is commonly used material in the construction sector, due to its low-cost and durability, and allowed the architectures and designers to construct structural members with different shapes and finishing. Usually, RC members are designed to sustain service loads efficiently without any destruction. However, because of the faults in the design phase, overloading, materials deficiencies, and environmental effects, most of the structural elements will require maintenance and repairing over their lifetime. Therefore, strengthening and repair of the deteriorated and/or existing RC structures are much important to extend their life cycle. Various techniques are existing to retrofit and strengthen RC structural elements such as steel plate bonding, external pre-stressing, section enlargement, fiber reinforced polymer (FRP) wrapping, etc. Although these configurations can successfully improve the load bearing capacity of the beams, they are still prone to corrosion damage which results in failure of the strengthened elements. Therefore, many researchers used fiber reinforced cementitious materials due to its low-cost, corrosion resistance, and result in improvement of the tensile and fatigue behaviors. Various types of cementitious materials have been used to strengthen or repair structural elements. This paper has summarized to accumulate data regarding on previously published research papers concerning the torsional behaviors of RC beams strengthened by various types of cementitious materials.

Keywords: reinforced concrete beams, strengthening techniques, cementitious materials, torsional strength, twisting angle

Procedia PDF Downloads 113
1622 Functions and Challenges of New County-Based Regional Plan in Taiwan

Authors: Yu-Hsin Tsai

Abstract:

A new, mandated county regional plan system has been initiated since 2010 nationwide in Taiwan, with its role situated in-between the policy-led cross-county regional plan and the blueprint-led city plan. This new regional plan contain both urban and rural areas in one single plan, which provides a more complete planning territory, i.e., city region within the county’s jurisdiction, and to be executed and managed effectively by the county government. However, the full picture of its functions and characteristics seems still not totally clear, compared with other levels of plans; either are planning goals and issues that can be most appropriately dealt with at this spatial scale. In addition, the extent to which the inclusion of sustainability ideal and measures to cope with climate change are unclear. Based on the above issues, this study aims to clarify the roles of county regional plan, to analyze the extent to which the measures cope with sustainability, climate change, and forecasted declining population, and the success factors and issues faced in the planning process. The methodology applied includes literature review, plan quality evaluation, and interview with officials of the central and local governments and urban planners involved for all the 23 counties in Taiwan. The preliminary research results show, first, growth management related policies have been widely implemented and expected to have effective impact, including incorporating resources capacity to determine maximum population for the city region as a whole, developing overall vision of urban growth boundary for all the whole city region, prioritizing infill development, and use of architectural land within urbanized area over rural area to cope with urban growth. Secondly, planning-oriented zoning is adopted in urban areas, while demand-oriented planning permission is applied in the rural areas with designated plans. Then, public participation has been evolved to the next level to oversee all of government’s planning and review processes due to the decreasing trust in the government, and development of public forum on the internet etc. Next, fertile agricultural land is preserved to maintain food self-supplied goal for national security concern. More adoption-based methods than mitigation-based methods have been applied to cope with global climate change. Finally, better land use and transportation planning in terms of avoiding developing rail transit stations and corridor in rural area is promoted. Even though many promising, prompt measures have been adopted, however, challenges exist to surround: first, overall urban density, likely affecting success of UGB, or use of rural agricultural land, has not been incorporated, possibly due to implementation difficulties. Second, land-use related measures to mitigating climate change seem less clear and hence less employed. Smart decline has not drawn enough attention to cope with predicted population decrease in the next decade. Then, some reluctance from county’s government to implement county regional plan can be observed vaguely possibly since limits have be set on further development on agricultural land and sensitive areas. Finally, resolving issue on existing illegal factories on agricultural land remains the most challenging dilemma.

Keywords: city region plan, sustainability, global climate change, growth management

Procedia PDF Downloads 341