Search results for: aerial imaging and detection
3670 Label Free Detection of Small Molecules Using Surface-Enhanced Raman Spectroscopy with Gold Nanoparticles Synthesized with Various Capping Agents
Authors: Zahra Khan
Abstract:
Surface-Enhanced Raman Spectroscopy (SERS) has received increased attention in recent years, focusing on biological and medical applications due to its great sensitivity as well as molecular specificity. In the context of biological samples, there are generally two methodologies for SERS based applications: label-free detection and the use of SERS tags. The necessity of tagging can make the process slower and limits the use for real life. Label-free detection offers the advantage that it reports direct spectroscopic evidence associated with the target molecule rather than the label. Reproducible, highly monodisperse gold nanoparticles (Au NPs) were synthesized using a relatively facile seed-mediated growth method. Different capping agents (TRIS, citrate, and CTAB) were used during synthesis, and characterization was performed. They were then mixed with different analyte solutions before drop-casting onto a glass slide prior to Raman measurements to see which NPs displayed the highest SERS activity as well as their stability. A host of different analytes were tested, both non-biomolecules and biomolecules, which were all successfully detected using this method at concentrations as low as 10-3M with salicylic acid reaching a detection limit in the nanomolar range. SERS was also performed on samples with a mixture of analytes present, whereby peaks from both target molecules were distinctly observed. This is a fast and effective rapid way of testing samples and offers potential applications in the biomedical field as a tool for diagnostic and treatment purposes.Keywords: gold nanoparticles, label free, seed-mediated growth, SERS
Procedia PDF Downloads 1253669 Performance of the Aptima® HIV-1 Quant Dx Assay on the Panther System
Authors: Siobhan O’Shea, Sangeetha Vijaysri Nair, Hee Cheol Kim, Charles Thomas Nugent, Cheuk Yan William Tong, Sam Douthwaite, Andrew Worlock
Abstract:
The Aptima® HIV-1 Quant Dx Assay is a fully automated assay on the Panther system. It is based on Transcription-Mediated Amplification and real time detection technologies. This assay is intended for monitoring HIV-1 viral load in plasma specimens and for the detection of HIV-1 in plasma and serum specimens. Nine-hundred and seventy nine specimens selected at random from routine testing at St Thomas’ Hospital, London were anonymised and used to compare the performance of the Aptima HIV-1 Quant Dx assay and Roche COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0. Two-hundred and thirty four specimens gave quantitative HIV-1 viral load results in both assays. The quantitative results reported by the Aptima Assay were comparable those reported by the Roche COBAS AmpliPrep/COBAS TaqMan HIV-1 Test, v2.0 with a linear regression slope of 1.04 and an intercept on -0.097. The Aptima assay detected HIV-1 in more samples than the Roche assay. This was not due to lack of specificity of the Aptima assay because this assay gave 99.83% specificity on testing plasma specimens from 600 HIV-1 negative individuals. To understand the reason for this higher detection rate a side-by-side comparison of low level panels made from the HIV-1 3rd international standard (NIBSC10/152) and clinical samples of various subtypes were tested in both assays. The Aptima assay was more sensitive than the Roche assay. The good sensitivity, specificity and agreement with other commercial assays make the HIV-1 Quant Dx Assay appropriate for both viral load monitoring and detection of HIV-1 infections.Keywords: HIV viral load, Aptima, Roche, Panther system
Procedia PDF Downloads 3753668 Relationship Between Pain Intensity at the Time of the Hamstring Muscle Injury and Hamstring Muscle Lesion Volume Measured by Magnetic Resonance Imaging
Authors: Grange Sylvain, Plancher Ronan, Reurink Guustav, Croisille Pierre, Edouard Pascal
Abstract:
The primary objective of this study was to analyze the potential correlation between the pain experienced at the time of a hamstring muscle injury and the volume of the lesion measured on MRI. The secondary objectives were to analyze a correlation between this pain and the lesion grade as well as the affected hamstring muscle. We performed a retrospective analysis of the data collected in a prospective, multicenter, non-interventional cohort study (HAMMER). Patients with suspected hamstring muscle injury had an MRI after the injury and at the same time were evaluated for their pain intensity experienced at the time of the injury with a Numerical Pain Rating Scale (NPRS) from 0 to 10. A total of 61 patients were included in the present analysis. MRIs were performed in an average of less than 8 days. There was a significant correlation between pain and the injury volume (r=0.287; p=0.025). There was no significant correlation between the pain and the lesion grade (p>0.05), nor between the pain and affected hamstring muscle (p>0.05). Pain at the time of injury appeared to be correlated with the volume of muscle affected. These results confirm the value of a clinical approach in the initial evaluation of hamstring injuries to better select patients eligible for further imaging.Keywords: hamstring muscle injury, MRI, volume lesion, pain
Procedia PDF Downloads 983667 Carbon-Based Electrodes for Parabens Detection
Authors: Aniela Pop, Ianina Birsan, Corina Orha, Rodica Pode, Florica Manea
Abstract:
Carbon nanofiber-epoxy composite electrode has been investigated through voltammetric and amperometric techniques in order to detect parabens from aqueous solutions. The occurrence into environment as emerging pollutants of these preservative compounds has been extensively studied in the last decades, and consequently, a rapid and reliable method for their quantitative quantification is required. In this study, methylparaben (MP) and propylparaben (PP) were chosen as representatives for paraben class. The individual electrochemical detection of each paraben has been successfully performed. Their electrochemical oxidation occurred at the same potential value. Their simultaneous quantification should be assessed electrochemically only as general index of paraben class as a cumulative signal corresponding to both MP and PP from solution. The influence of pH on the electrochemical signal was studied. pH ranged between 1.3 and 9.0 allowed shifting the detection potential value to smaller value, which is very desired for the electroanalysis. Also, the signal is better-defined and higher sensitivity is achieved. Differential-pulsed voltammetry and square-wave voltammetry were exploited under the optimum pH conditions to improve the electroanalytical performance for the paraben detection. Also, the operation conditions were selected, i.e., the step potential, modulation amplitude and the frequency. Chronomaprometry application as the easiest electrochemical detection method led to worse sensitivity, probably due to a possible fouling effect of the electrode surface. The best electroanalytical performance was achieved by pulsed voltammetric technique but the selection of the electrochemical technique is related to the concrete practical application. A good reproducibility of the voltammetric-based method using carbon nanofiber-epoxy composite electrode was determined and no interference effect was found for the cation and anion species that are common in the water matrix. Besides these characteristics, the long life-time of the electrode give to carbon nanofiber-epoxy composite electrode a great potential for practical applications.Keywords: carbon nanofiber-epoxy composite electrode, electroanalysis, methylparaben, propylparaben
Procedia PDF Downloads 2253666 Exo-III Assisted Amplification Strategy through Target Recycling of Hg²⁺ Detection in Water: A GNP Based Label-Free Colorimetry Employing T-Rich Hairpin-Loop Metallobase
Authors: Abdul Ghaffar Memon, Xiao Hong Zhou, Yunpeng Xing, Ruoyu Wang, Miao He
Abstract:
Due to deleterious environmental and health effects of the Hg²⁺ ions, various online, detection methods apart from the traditional analytical tools have been developed by researchers. Biosensors especially, label, label-free, colorimetric and optical sensors have advanced with sensitive detection. However, there remains a gap of ultrasensitive quantification as noise interact significantly especially in the AuNP based label-free colorimetry. This study reported an amplification strategy using Exo-III enzyme for target recycling of Hg²⁺ ions in a T-rich hairpin loop metallobase label-free colorimetric nanosensor with an improved sensitivity using unmodified gold nanoparticles (uGNPs) as an indicator. The two T-rich metallobase hairpin loop structures as 5’- CTT TCA TAC ATA GAA AAT GTA TGT TTG -3 (HgS1), and 5’- GGC TTT GAG CGC TAA GAA A TA GCG CTC TTT G -3’ (HgS2) were tested in the study. The thermodynamic properties of HgS1 and HgS2 were calculated using online tools (http://biophysics.idtdna.com/cgi-bin/meltCalculator.cgi). The lab scale synthesized uGNPs were utilized in the analysis. The DNA sequence had T-rich bases on both tails end, which in the presence of Hg²⁺ forms a T-Hg²⁺-T mismatch, promoting the formation of dsDNA. Later, the Exo-III incubation enable the enzyme to cleave stepwise mononucleotides from the 3’ end until the structure become single-stranded. These ssDNA fragments then adsorb on the surface of AuNPs in their presence and protect AuNPs from the induced salt aggregation. The visible change in color from blue (aggregation stage in the absence of Hg²⁺) and pink (dispersion state in the presence of Hg²⁺ and adsorption of ssDNA fragments) can be observed and analyzed through UV spectrometry. An ultrasensitive quantitative nanosensor employing Exo-III assisted target recycling of mercury ions through label-free colorimetry with nanomolar detection using uGNPs have been achieved and is further under the optimization to achieve picomolar range by avoiding the influence of the environmental matrix. The proposed strategy will supplement in the direction of uGNP based ultrasensitive, rapid, onsite, label-free colorimetric detection.Keywords: colorimetric, Exo-III, gold nanoparticles, Hg²⁺ detection, label-free, signal amplification
Procedia PDF Downloads 3113665 Similarity Based Retrieval in Case Based Reasoning for Analysis of Medical Images
Authors: M. Dasgupta, S. Banerjee
Abstract:
Content Based Image Retrieval (CBIR) coupled with Case Based Reasoning (CBR) is a paradigm that is becoming increasingly popular in the diagnosis and therapy planning of medical ailments utilizing the digital content of medical images. This paper presents a survey of some of the promising approaches used in the detection of abnormalities in retina images as well in mammographic screening and detection of regions of interest in MRI scans of the brain. We also describe our proposed algorithm to detect hard exudates in fundus images of the retina of Diabetic Retinopathy patients.Keywords: case based reasoning, exudates, retina image, similarity based retrieval
Procedia PDF Downloads 3483664 Phytochemical Investigation of Butanol Extract from Launeae Arborescens
Authors: Khaled Sekoum, Nasser Belboukhari, Abelkrim Cheriti
Abstract:
Launeae arborescens (L. arborescens) is a medicinal plant having capacities of important propagation. Following its biotope, associate to different species, it is frequently notably in the whole region of Algerian southwest of Wadi– Namous until the region of Karzaz. According to our ethnopharmacological survey, L. arborescens is used for treatment of the illnesses gastric. Following our phytochemical works achieved on the polyphenols of the methanolic extract of aerial part of L. arborescens, we are also interested to investigate the butanol fraction of the water/acetone extract and isolate of the new flavonoids from this plant.Keywords: Launeae arborescens, asteraceae, flavanone, isoflavanone, glycosid flavanone
Procedia PDF Downloads 4693663 Fuzzy Logic in Detecting Children with Behavioral Disorders
Authors: David G. Maxinez, Andrés Ferreyra Ramírez, Liliana Castillo Sánchez, Nancy Adán Mendoza, Carlos Aviles Cruz
Abstract:
This research describes the use of fuzzy logic in detection, assessment, analysis and evaluation of children with behavioral disorders. It shows how to acquire and analyze ambiguous, vague and full of uncertainty data coming from the input variables to get an accurate assessment result for each of the typologies presented by children with behavior problems. Behavior disorders analyzed in this paper are: hyperactivity (H), attention deficit with hyperactivity (DAH), conduct disorder (TD) and attention deficit (AD).Keywords: alteration, behavior, centroid, detection, disorders, economic, fuzzy logic, hyperactivity, impulsivity, social
Procedia PDF Downloads 5633662 Heat-Induced Uncertainty of Industrial Computed Tomography Measuring a Stainless Steel Cylinder
Authors: Verena M. Moock, Darien E. Arce Chávez, Mariana M. Espejel González, Leopoldo Ruíz-Huerta, Crescencio García-Segundo
Abstract:
Uncertainty analysis in industrial computed tomography is commonly related to metrological trace tools, which offer precision measurements of external part features. Unfortunately, there is no such reference tool for internal measurements to profit from the unique imaging potential of X-rays. Uncertainty approximations for computed tomography are still based on general aspects of the industrial machine and do not adapt to acquisition parameters or part characteristics. The present study investigates the impact of the acquisition time on the dimensional uncertainty measuring a stainless steel cylinder with a circular tomography scan. The authors develop the figure difference method for X-ray radiography to evaluate the volumetric differences introduced within the projected absorption maps of the metal workpiece. The dimensional uncertainty is dominantly influenced by photon energy dissipated as heat causing the thermal expansion of the metal, as monitored by an infrared camera within the industrial tomograph. With the proposed methodology, we are able to show evolving temperature differences throughout the tomography acquisition. This is an early study showing that the number of projections in computer tomography induces dimensional error due to energy absorption. The error magnitude would depend on the thermal properties of the sample and the acquisition parameters by placing apparent non-uniform unwanted volumetric expansion. We introduce infrared imaging for the experimental display of metrological uncertainty in a particular metal part of symmetric geometry. We assess that the current results are of fundamental value to reach the balance between the number of projections and uncertainty tolerance when performing analysis with X-ray dimensional exploration in precision measurements with industrial tomography.Keywords: computed tomography, digital metrology, infrared imaging, thermal expansion
Procedia PDF Downloads 1213661 Electrochemical Detection of the Chemotherapy Agent Methotrexate in vitro from Physiological Fluids Using Functionalized Carbon Nanotube past Electrodes
Authors: Shekher Kummari, V. Sunil Kumar, K. Vengatajalabathy Gobi
Abstract:
A simple, cost-effective, reusable and reagent-free electrochemical biosensor is developed with functionalized multiwall carbon nanotube paste electrode (f-CNTPE) for the sensitive and selective determination of the important chemotherapeutic drug methotrexate (MTX), which is widely used for the treatment of various cancer and autoimmune diseases. The electrochemical response of the fabricated electrode towards the detection of MTX is examined by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and square wave voltammetry (SWV). CV studies have shown that f-CNTPE electrode system exhibited an excellent electrocatalytic activity towards the oxidation of MTX in phosphate buffer (0.2 M) compared with a conventional carbon paste electrode (CPE). The oxidation peak current is enhanced by nearly two times in magnitude. Applying the DPV method under optimized conditions, a linear calibration plot is achieved over a wide range of concentration from 4.0×10⁻⁷ M to 5.5×10⁻⁶ M with the detection limit 1.6×10⁻⁷ M. further, by applying the SWV method a parabolic calibration plot was achieved starting from a very low concentration of 1.0×10⁻⁸ M, and the sensor could detect as low as 2.9×10⁻⁹ M MTX in 10 s and 10 nM were detected in steady state current-time analysis. The f-CNTPE shows very good selectivity towards the specific recognition of MTX in the presence of important biological interference. The electrochemical biosensor detects MTX in-vitro directly from pharmaceutical sample, undiluted urine and human blood serum samples at a concentration range 5.0×10⁻⁷ M with good recovery limits.Keywords: amperometry, electrochemical detection, human blood serum, methotrexate, MWCNT, SWV
Procedia PDF Downloads 3093660 The Strategy for Detection of Catecholamines in Body Fluids: Optical Sensor
Authors: Joanna Cabaj, Sylwia Baluta, Karol Malecha, Kamila Drzozga
Abstract:
Catecholamines are the principal neurotransmitters that mediate a variety of the central nervous system functions, such as motor control, cognition, emotion, memory processing, and endocrine modulation. Dysfunctions in catecholamine neurotransmission are induced in some neurologic and neuropsychiatric diseases. Changeable neurotransmitters level in biological fluids can be a marker of several neurological disorders. Because of its significance in analytical techniques and diagnostics, sensitive and selective detection of neurotransmitters is increasingly attracting a lot of attention in different areas of bio-analysis or biomedical research. Recently, fluorescent techniques for detection of catecholamines have attracted interests due to their reasonable cost, convenient control, as well as maneuverability in biological environments. Nevertheless, with the observed need for a sensitive and selective catecholamines sensor, the development of a convenient method for this neurotransmitter is still at its basic level. The manipulation of nanostructured materials in conjunction with biological molecules has led to the development of a new class of hybrid modified biosensors in which both enhancement of charge transport and biological activity preservation may be obtained. Immobilization of biomaterials on electrode surfaces is the crucial step in fabricating electrochemical as well as optical biosensors and bioelectronic devices. Continuing systematic investigation in the manufacturing of enzyme–conducting sensitive systems, here is presented a convenient fluorescence sensing strategy for catecholamines detection based on FRET (fluorescence resonance energy transfer) phenomena observed for, i.e., complexes of Fe²⁺ and epinephrine. The biosensor was constructed using low temperature co-fired ceramics technology (LTCC). This sensing system used the catalytical oxidation of catecholamines and quench of the strong luminescence of obtained complexes due to FRET. The detection process was based on the oxidation of substrate in the presence of the enzyme–laccase/tyrosinase.Keywords: biosensor, conducting polymer, enzyme, FRET, LTCC
Procedia PDF Downloads 2573659 Unveiling the Detailed Turn Off-On Mechanism of Carbon Dots to Different Sized MnO₂ Nanosensor for Selective Detection of Glutathione
Authors: Neeraj Neeraj, Soumen Basu, Banibrata Maity
Abstract:
Glutathione (GSH) is one of the most important biomolecules having small molecular weight, which helps in various cellular functions like regulation of gene, xenobiotic metabolism, preservation of intracellular redox activities, signal transduction, etc. Therefore, the detection of GSH requires huge attention by using extremely selective and sensitive techniques. Herein, a rapid fluorometric nanosensor is designed by combining carbon dots (Cdots) and MnO₂ nanoparticles of different sizes for the detection of GSH. The bottom-up approach, i.e., microwave method, was used for the preparation of the water soluble and greatly fluorescent Cdots by using ascorbic acid as a precursor. MnO₂ nanospheres of different sizes (large, medium, and small) were prepared by varying the ratio of concentration of methionine and KMnO₄ at room temperature, which was confirmed by HRTEM analysis. The successive addition of MnO₂ nanospheres in Cdots results fluorescence quenching. From the fluorescence intensity data, Stern-Volmer quenching constant values (KS-V) were evaluated. From the fluorescence intensity and lifetime analysis, it was found that the degree of fluorescence quenching of Cdots followed the order: large > medium > small. Moreover, fluorescence recovery studies were also performed in the presence of GSH. Fluorescence restoration studies also show the order of turn on follows the same order, i.e., large > medium > small, which was also confirmed by quantum yield and lifetime studies. The limits of detection (LOD) of GSH in presence of Cdots@different sized MnO₂ nanospheres were also evaluated. It was observed thatLOD values were in μM region and lowest in case of large MnO₂ nanospheres. The separation distance (d) between Cdots and the surface of different MnO₂ nanospheres was determined. The d values increase with increase in the size of the MnO₂ nanospheres. In summary, the synthesized Cdots@MnO₂ nanocomposites acted as a rapid, simple, economical as well as environmental-friendly nanosensor for the detection of GSH.Keywords: carbon dots, fluorescence, glutathione, MnO₂ nanospheres, turn off-on
Procedia PDF Downloads 1523658 Comprehensive Validation of High-Performance Liquid Chromatography-Diode Array Detection (HPLC-DAD) for Quantitative Assessment of Caffeic Acid in Phenolic Extracts from Olive Mill Wastewater
Authors: Layla El Gaini, Majdouline Belaqziz, Meriem Outaki, Mariam Minhaj
Abstract:
In this study, it introduce and validate a high-performance liquid chromatography method with diode-array detection (HPLC-DAD) specifically designed for the accurate quantification of caffeic acid in phenolic extracts obtained from olive mill wastewater. The separation process of caffeic acid was effectively achieved through the use of an Acclaim Polar Advantage column (5µm, 250x4.6mm). A meticulous multi-step gradient mobile phase was employed, comprising water acidified with phosphoric acid (pH 2.3) and acetonitrile, to ensure optimal separation. The diode-array detection was adeptly conducted within the UV–VIS spectrum, spanning a range of 200–800 nm, which facilitated precise analytical results. The method underwent comprehensive validation, addressing several essential analytical parameters, including specificity, repeatability, linearity, as well as the limits of detection and quantification, alongside measurement uncertainty. The generated linear standard curves displayed high correlation coefficients, underscoring the method's efficacy and consistency. This validated approach is not only robust but also demonstrates exceptional reliability for the focused analysis of caffeic acid within the intricate matrices of wastewater, thus offering significant potential for applications in environmental and analytical chemistry.Keywords: high-performance liquid chromatography (HPLC-DAD), caffeic acid analysis, olive mill wastewater phenolics, analytical method validation
Procedia PDF Downloads 703657 Reliability of Diffusion Tensor Imaging in Differentiation of Salivary Gland Tumors
Authors: Sally Salah El Menshawy, Ghada M. Ahmed GabAllah, Doaa Khedr M. Khedr
Abstract:
Background: Our study aims to detect the diagnostic role of DTI in the differentiation of salivary glands benign and malignant lesions. Results: Our study included 50 patients (25males and 25 females) divided into 4 groups (benign lesions n=20, malignant tumors n=13, post-operative changes n=10 and normal n=7). 28 patients were with parotid gland lesions, 4 patients were with submandibular gland lesions and only 1 case with sublingual gland affection. The mean fractional anisotropy (FA) and apparent diffusion coefficient (ADC) of malignant salivary gland tumors (n = 13) (0.380±0.082 and 0.877±0.234× 10⁻³ mm² s⁻¹) were significantly different (P<0.001) than that of benign tumors (n = 20) (0.147±0.03 and 1.47±0.605 × 10⁻³ mm² s⁻¹), respectively. The mean FA and ADC of post-operative changes (n = 10) were (0.211±0.069 and 1.63±0.20× 10⁻³ mm² s⁻¹) while that of normal glands (n =7) was (0.251±0.034and 1.54±0.29× 10⁻³ mm² s⁻¹), respectively. Using ADC to differentiate malignant lesions from benign lesions has an (AUC) of 0.810, with an accuracy of 69.7%. ADC used to differentiate malignant lesions from post-operative changes has (AUC) of 1.0, and an accuracy of 95.7%. FA used to discriminate malignant from benign lesions has (AUC) of 1.0, and an accuracy of 93.9%. FA used to differentiate malignant from post-operative changes has (AUC) of 0.923, and an accuracy of 95.7%. Combined FA and ADC used to differentiate malignant from benign lesions has (AUC) of 1.0, and an accuracy of 100%. Combined FA and ADC used to differentiate malignant from post-operative changes has (AUC) of 1.0, and an accuracy of 100%. Conclusion: Combined FA and ADC can differentiate malignant tumors from benign salivary gland lesions.Keywords: diffusion tensor imaging, MRI, salivary gland, tumors
Procedia PDF Downloads 1113656 Capacity Optimization in Cooperative Cognitive Radio Networks
Authors: Mahdi Pirmoradian, Olayinka Adigun, Christos Politis
Abstract:
Cooperative spectrum sensing is a crucial challenge in cognitive radio networks. Cooperative sensing can increase the reliability of spectrum hole detection, optimize sensing time and reduce delay in cooperative networks. In this paper, an efficient central capacity optimization algorithm is proposed to minimize cooperative sensing time in a homogenous sensor network using OR decision rule subject to the detection and false alarm probabilities constraints. The evaluation results reveal significant improvement in the sensing time and normalized capacity of the cognitive sensors.Keywords: cooperative networks, normalized capacity, sensing time
Procedia PDF Downloads 6333655 Rapid Classification of Soft Rot Enterobacteriaceae Phyto-Pathogens Pectobacterium and Dickeya Spp. Using Infrared Spectroscopy and Machine Learning
Authors: George Abu-Aqil, Leah Tsror, Elad Shufan, Shaul Mordechai, Mahmoud Huleihel, Ahmad Salman
Abstract:
Pectobacterium and Dickeya spp which negatively affect a wide range of crops are the main causes of the aggressive diseases of agricultural crops. These aggressive diseases are responsible for a huge economic loss in agriculture including a severe decrease in the quality of the stored vegetables and fruits. Therefore, it is important to detect these pathogenic bacteria at their early stages of infection to control their spread and consequently reduce the economic losses. In addition, early detection is vital for producing non-infected propagative material for future generations. The currently used molecular techniques for the identification of these bacteria at the strain level are expensive and laborious. Other techniques require a long time of ~48 h for detection. Thus, there is a clear need for rapid, non-expensive, accurate and reliable techniques for early detection of these bacteria. In this study, infrared spectroscopy, which is a well-known technique with all its features, was used for rapid detection of Pectobacterium and Dickeya spp. at the strain level. The bacteria were isolated from potato plants and tubers with soft rot symptoms and measured by infrared spectroscopy. The obtained spectra were analyzed using different machine learning algorithms. The performances of our approach for taxonomic classification among the bacterial samples were evaluated in terms of success rates. The success rates for the correct classification of the genus, species and strain levels were ~100%, 95.2% and 92.6% respectively.Keywords: soft rot enterobacteriaceae (SRE), pectobacterium, dickeya, plant infections, potato, solanum tuberosum, infrared spectroscopy, machine learning
Procedia PDF Downloads 1013654 Magnetic Single-Walled Carbon Nanotubes (SWCNTs) as Novel Theranostic Nanocarriers: Enhanced Targeting and Noninvasive MRI Tracking
Authors: Achraf Al Faraj, Asma Sultana Shaik, Baraa Al Sayed
Abstract:
Specific and effective targeting of drug delivery systems (DDS) to cancerous sites remains a major challenge for a better diagnostic and therapy. Recently, SWCNTs with their unique physicochemical properties and the ability to cross the cell membrane show promising in the biomedical field. The purpose of this study was first to develop a biocompatible iron oxide tagged SWCNTs as diagnostic nanoprobes to allow their noninvasive detection using MRI and their preferential targeting in a breast cancer murine model by placing an optimized flexible magnet over the tumor site. Magnetic targeting was associated to specific antibody-conjugated SWCNTs active targeting. The therapeutic efficacy of doxorubicin-conjugated SWCNTs was assessed, and the superiority of diffusion-weighted (DW-) MRI as sensitive imaging biomarker was investigated. Short Polyvinylpyrrolidone (PVP) stabilized water soluble SWCNTs were first developed, tagged with iron oxide nanoparticles and conjugated with Endoglin/CD105 monoclonal antibodies. They were then conjugated with doxorubicin drugs. SWCNTs conjugates were extensively characterized using TEM, UV-Vis spectrophotometer, dynamic light scattering (DLS) zeta potential analysis and electron spin resonance (ESR) spectroscopy. Their MR relaxivities (i.e. r1 and r2*) were measured at 4.7T and their iron content and metal impurities quantified using ICP-MS. SWCNTs biocompatibility and drug efficacy were then evaluated both in vitro and in vivo using a set of immunological assays. Luciferase enhanced bioluminescence 4T1 mouse mammary tumor cells (4T1-Luc2) were injected into the right inguinal mammary fat pad of Balb/c mice. Tumor bearing mice received either free doxorubicin (DOX) drug or SWCNTs with or without either DOX or iron oxide nanoparticles. A multi-pole 10x10mm high-energy flexible magnet was maintained over the tumor site during 2 hours post-injections and their properties and polarity were optimized to allow enhanced magnetic targeting of SWCNTs toward the primary tumor site. Tumor volume was quantified during the follow-up investigation study using a fast spin echo MRI sequence. In order to detect the homing of SWCNTs to the main tumor site, susceptibility-weighted multi-gradient echo (MGE) sequence was used to generate T2* maps. Apparent diffusion coefficient (ADC) measurements were also performed as a sensitive imaging biomarker providing early and better assessment of disease treatment. At several times post-SWCNT injection, histological analysis were performed on tumor extracts and iron-loaded SWCNT were quantified using ICP-MS in tumor sites, liver, spleen, kidneys, and lung. The optimized multi-poles magnet revealed an enhanced targeting of magnetic SWCNTs to the primary tumor site, which was found to be much higher than the active targeting achieved using antibody-conjugated SWCNTs. Iron-loading allowed their sensitive noninvasive tracking after intravenous administration using MRI. The active targeting of doxorubicin through magnetic antibody-conjugated SWCNTs nanoprobes was found to considerably decrease the primary tumor site and may have inhibited the development of metastasis in the tumor-bearing mice lung. ADC measurements in DW-MRI were found to significantly increase in a time-dependent manner after the injection of DOX-conjugated SWCNTs complexes.Keywords: single-walled carbon nanotubes, nanomedicine, magnetic resonance imaging, cancer diagnosis and therapy
Procedia PDF Downloads 3293653 The Spatial Pattern of Economic Rents of an Airport Development Area: Lessons Learned from the Suvarnabhumi International Airport, Thailand
Authors: C. Bejrananda, Y. Lee, T. Khamkaew
Abstract:
With the rise of the importance of air transportation in the 21st century, the role of economics in airport planning and decision-making has become more important to the urban structure and land value around it. Therefore, this research aims to examine the relationship between an airport and its impacts on the distribution of urban land uses and land values by applying the Alonso’s bid rent model. The New Bangkok International Airport (Suvarnabhumi International Airport) was taken as a case study. The analysis was made over three different time periods of airport development (after the airport site was proposed, during airport construction, and after the opening of the airport). The statistical results confirm that Alonso’s model can be used to explain the impacts of the new airport only for the northeast quadrant of the airport, while proximity to the airport showed the inverse relationship with the land value of all six types of land use activities through three periods of time. It indicates that the land value for commercial land use is the most sensitive to the location of the airport or has the strongest requirement for accessibility to the airport compared to the residential and manufacturing land use. Also, the bid-rent gradients of the six types of land use activities have declined dramatically through the three time periods because of the Asian Financial Crisis in 1997. Therefore, the lesson learned from this research concerns about the reliability of the data used. The major concern involves the use of different areal units for assessing land value for different time periods between zone block (1995) and grid block (2002, 2009). As a result, this affect the investigation of the overall trends of land value assessment, which are not readily apparent. In addition, the next concern is the availability of the historical data. With the lack of collecting historical data for land value assessment by the government, some of data of land values and aerial photos are not available to cover the entire study area. Finally, the different formats of using aerial photos between hard-copy (1995) and digital photo (2002, 2009) made difficult for measuring distances. Therefore, these problems also affect the accuracy of the results of the statistical analyses.Keywords: airport development area, economic rents, spatial pattern, suvarnabhumi international airport
Procedia PDF Downloads 2743652 Detecting Manipulated Media Using Deep Capsule Network
Authors: Joseph Uzuazomaro Oju
Abstract:
The ease at which manipulated media can be created, and the increasing difficulty in identifying fake media makes it a great threat. Most of the applications used for the creation of these high-quality fake videos and images are built with deep learning. Hence, the use of deep learning in creating a detection mechanism cannot be overemphasized. Any successful fake media that is being detected before it reached the populace will save people from the self-doubt of either a content is genuine or fake and will ensure the credibility of videos and images. The methodology introduced in this paper approaches the manipulated media detection challenge using a combo of VGG-19 and a deep capsule network. In the case of videos, they are converted into frames, which, in turn, are resized and cropped to the face region. These preprocessed images/videos are fed to the VGG-19 network to extract the latent features. The extracted latent features are inputted into a deep capsule network enhanced with a 3D -convolution dynamic routing agreement. The 3D –convolution dynamic routing agreement algorithm helps to reduce the linkages between capsules networks. Thereby limiting the poor learning shortcoming of multiple capsule network layers. The resultant output from the deep capsule network will indicate a media to be either genuine or fake.Keywords: deep capsule network, dynamic routing, fake media detection, manipulated media
Procedia PDF Downloads 1323651 An Automated System for the Detection of Citrus Greening Disease Based on Visual Descriptors
Authors: Sidra Naeem, Ayesha Naeem, Sahar Rahim, Nadia Nawaz Qadri
Abstract:
Citrus greening is a bacterial disease that causes considerable damage to citrus fruits worldwide. Efficient method for this disease detection must be carried out to minimize the production loss. This paper presents a pattern recognition system that comprises three stages for the detection of citrus greening from Orange leaves: segmentation, feature extraction and classification. Image segmentation is accomplished by adaptive thresholding. The feature extraction stage comprises of three visual descriptors i.e. shape, color and texture. From shape feature we have used asymmetry index, from color feature we have used histogram of Cb component from YCbCr domain and from texture feature we have used local binary pattern. Classification was done using support vector machines and k nearest neighbors. The best performances of the system is Accuracy = 88.02% and AUROC = 90.1% was achieved by automatic segmented images. Our experiments validate that: (1). Segmentation is an imperative preprocessing step for computer assisted diagnosis of citrus greening, and (2). The combination of shape, color and texture features form a complementary set towards the identification of citrus greening disease.Keywords: citrus greening, pattern recognition, feature extraction, classification
Procedia PDF Downloads 1843650 A Review of Security Attacks and Intrusion Detection Schemes in Wireless Sensor Networks: A Survey
Authors: Maleh Yassine, Ezzati Abdellah
Abstract:
Wireless Sensor Networks (WSNs) are currently used in different industrial and consumer applications, such as earth monitoring, health related applications, natural disaster prevention, and many other areas. Security is one of the major aspects of wireless sensor networks due to the resource limitations of sensor nodes. However, these networks are facing several threats that affect their functioning and their life. In this paper we present security attacks in wireless sensor networks, and we focus on a review and analysis of the recent Intrusion Detection schemes in WSNs.Keywords: wireless sensor networks, security attack, denial of service, IDS, cluster-based model, signature based IDS, hybrid IDS
Procedia PDF Downloads 3853649 A Survey of Skin Cancer Detection and Classification from Skin Lesion Images Using Deep Learning
Authors: Joseph George, Anne Kotteswara Roa
Abstract:
Skin disease is one of the most common and popular kinds of health issues faced by people nowadays. Skin cancer (SC) is one among them, and its detection relies on the skin biopsy outputs and the expertise of the doctors, but it consumes more time and some inaccurate results. At the early stage, skin cancer detection is a challenging task, and it easily spreads to the whole body and leads to an increase in the mortality rate. Skin cancer is curable when it is detected at an early stage. In order to classify correct and accurate skin cancer, the critical task is skin cancer identification and classification, and it is more based on the cancer disease features such as shape, size, color, symmetry and etc. More similar characteristics are present in many skin diseases; hence it makes it a challenging issue to select important features from a skin cancer dataset images. Hence, the skin cancer diagnostic accuracy is improved by requiring an automated skin cancer detection and classification framework; thereby, the human expert’s scarcity is handled. Recently, the deep learning techniques like Convolutional neural network (CNN), Deep belief neural network (DBN), Artificial neural network (ANN), Recurrent neural network (RNN), and Long and short term memory (LSTM) have been widely used for the identification and classification of skin cancers. This survey reviews different DL techniques for skin cancer identification and classification. The performance metrics such as precision, recall, accuracy, sensitivity, specificity, and F-measures are used to evaluate the effectiveness of SC identification using DL techniques. By using these DL techniques, the classification accuracy increases along with the mitigation of computational complexities and time consumption.Keywords: skin cancer, deep learning, performance measures, accuracy, datasets
Procedia PDF Downloads 1293648 Iron-Metal-Organic Frameworks: Potential Application as Theranostics for Inhalable Therapy of Tuberculosis
Authors: Gabriela Wyszogrodzka, Przemyslaw Dorozynski, Barbara Gil, Maciej Strzempek, Bartosz Marszalek, Piotr Kulinowski, Wladyslaw Piotr Weglarz, Elzbieta Menaszek
Abstract:
MOFs (Metal-Organic Frameworks) belong to a new group of porous materials with a hybrid organic-inorganic construction. Their structure is a network consisting of metal cations or clusters (acting as metallic centers, nodes) and the organic linkers between nodes. The interest in MOFs is primarily associated with the use of their well-developed surface and large porous. Possibility to build MOFs of biocompatible components let to use them as potential drug carriers. Furthermore, forming MOFs structure from cations possessing paramagnetic properties (e.g. iron cations) allows to use them as MRI (Magnetic Resonance Imaging) contrast agents. The concept of formation of particles that combine the ability to transfer active substance with imaging properties has been called theranostic (from words combination therapy and diagnostics). By building MOF structure from iron cations it is possible to use them as theranostic agents and monitoring the distribution of the active substance after administration in real time. In the study iron-MOF: Fe-MIL-101-NH2 was chosen, consisting of iron cluster in nodes of the structure and amino-terephthalic acid as a linker. The aim of the study was to investigate the possibility of applying Fe-MIL-101-NH2 as inhalable theranostic particulate system for the first-line anti-tuberculosis antibiotic – isoniazid. The drug content incorporated into Fe-MIL-101-NH2 was evaluated by dissolution study using spectrophotometric method. Results showed isoniazid encapsulation efficiency – ca. 12.5% wt. Possibility of Fe-MIL-101-NH2 application as the MRI contrast agent was demonstrated by magnetic resonance tomography. FeMIL-101-NH2 effectively shortening T1 and T2 relaxation times (increasing R1 and R2 relaxation rates) linearly with the concentrations of suspended material. Images obtained using multi-echo magnetic resonance imaging sequence revealed possibility to use FeMIL-101-NH2 as positive and negative contrasts depending on applied repetition time. MOFs micronization via ultrasound was evaluated by XRD, nitrogen adsorption, FTIR, SEM imaging and did not influence their crystal shape and size. Ultrasonication let to break the aggregates and achieve very homogeneously looking SEM images. MOFs cytotoxicity was evaluated in in vitro test with a highly sensitive resazurin based reagent PrestoBlue™ on L929 fibroblast cell line. After 24h no inhibition of cell proliferation was observed. All results proved potential possibility of application of ironMOFs as an isoniazid carrier and as MRI contrast agent in inhalatory treatment of tuberculosis. Acknowledgments: Authors gratefully acknowledge the National Science Center Poland for providing financial support, grant no 2014/15/B/ST5/04498.Keywords: imaging agents, metal-organic frameworks, theranostics, tuberculosis
Procedia PDF Downloads 2513647 GPU Accelerated Fractal Image Compression for Medical Imaging in Parallel Computing Platform
Authors: Md. Enamul Haque, Abdullah Al Kaisan, Mahmudur R. Saniat, Aminur Rahman
Abstract:
In this paper, we have implemented both sequential and parallel version of fractal image compression algorithms using CUDA (Compute Unified Device Architecture) programming model for parallelizing the program in Graphics Processing Unit for medical images, as they are highly similar within the image itself. There is several improvements in the implementation of the algorithm as well. Fractal image compression is based on the self similarity of an image, meaning an image having similarity in majority of the regions. We take this opportunity to implement the compression algorithm and monitor the effect of it using both parallel and sequential implementation. Fractal compression has the property of high compression rate and the dimensionless scheme. Compression scheme for fractal image is of two kinds, one is encoding and another is decoding. Encoding is very much computational expensive. On the other hand decoding is less computational. The application of fractal compression to medical images would allow obtaining much higher compression ratios. While the fractal magnification an inseparable feature of the fractal compression would be very useful in presenting the reconstructed image in a highly readable form. However, like all irreversible methods, the fractal compression is connected with the problem of information loss, which is especially troublesome in the medical imaging. A very time consuming encoding process, which can last even several hours, is another bothersome drawback of the fractal compression.Keywords: accelerated GPU, CUDA, parallel computing, fractal image compression
Procedia PDF Downloads 3353646 A Combined Fiber-Optic Surface Plasmon Resonance and Ta2O5: rGO Nanocomposite Synergistic Scheme for Trace Detection of Insecticide Fenitrothion
Authors: Ravi Kant, Banshi D. Gupta
Abstract:
The unbridled application of insecticides to enhance agricultural yield has become a matter of grave concern to both the environment and the human health and, thus pose a potential threat to sustainable development. Fenitrothion is an extensively used organophosphate insecticide whose residues are reported to be extremely toxic for birds, humans and aquatic life. A sensitive, swift and accurate detection protocol for fenitrothion is, thus, highly demanded. In this work, we report an SPR based fiber optic sensor for the detection of fenitrothion, where a nanocomposite arrangement of Ta2O5 and reduced graphene oxide (rGO) (Ta₂O₅: rGO) decorated on silver coated unclad core region of an optical fiber forms the sensing channel. A nanocomposite arrangement synergistically integrates the properties of involved components and consequently furnishes a conducive framework for sensing applications. The modification of the dielectric function of the sensing layer on exposure to fenitrothion solutions of diverse concentration forms the sensing mechanism. This modification is reflected in terms of the shift in resonance wavelength. Experimental variables such as the concentration of rGO in the nanocomposite configuration, dip time of silver coated fiber optic probe for deposition of sensing layer and influence of pH on the performance of the sensor have been optimized to extract the best performance of the sensor. SPR studies on the optimized sensing probe reveal the high sensitivity, wide operating range and good reproducibility of the fabricated sensor, which unveil the promising utility of Ta₂O₅: rGO nanocomposite framework for developing an efficient detection methodology for fenitrothion. FOSPR approach in cooperation with nanomaterials projects the present work as a beneficial approach for fenitrothion detection by imparting numerous useful advantages such as sensitivity, selectivity, compactness and cost-effectiveness.Keywords: surface plasmon resonance, optical fiber, sensor, fenitrothion
Procedia PDF Downloads 2083645 Unsupervised Echocardiogram View Detection via Autoencoder-Based Representation Learning
Authors: Andrea Treviño Gavito, Diego Klabjan, Sanjiv J. Shah
Abstract:
Echocardiograms serve as pivotal resources for clinicians in diagnosing cardiac conditions, offering non-invasive insights into a heart’s structure and function. When echocardiographic studies are conducted, no standardized labeling of the acquired views is performed. Employing machine learning algorithms for automated echocardiogram view detection has emerged as a promising solution to enhance efficiency in echocardiogram use for diagnosis. However, existing approaches predominantly rely on supervised learning, necessitating labor-intensive expert labeling. In this paper, we introduce a fully unsupervised echocardiographic view detection framework that leverages convolutional autoencoders to obtain lower dimensional representations and the K-means algorithm for clustering them into view-related groups. Our approach focuses on discriminative patches from echocardiographic frames. Additionally, we propose a trainable inverse average layer to optimize decoding of average operations. By integrating both public and proprietary datasets, we obtain a marked improvement in model performance when compared to utilizing a proprietary dataset alone. Our experiments show boosts of 15.5% in accuracy and 9.0% in the F-1 score for frame-based clustering, and 25.9% in accuracy and 19.8% in the F-1 score for view-based clustering. Our research highlights the potential of unsupervised learning methodologies and the utilization of open-sourced data in addressing the complexities of echocardiogram interpretation, paving the way for more accurate and efficient cardiac diagnoses.Keywords: artificial intelligence, echocardiographic view detection, echocardiography, machine learning, self-supervised representation learning, unsupervised learning
Procedia PDF Downloads 323644 Endometriosis, Bladder Endometriosis (BE), Urinary Tract Endometriosis (UTE), Robotic-Assisted Surgery
Authors: Farida Eid, Hala Nasseif, Hana Mokhtar, Labib Riachi, Mudhar Hasan
Abstract:
Bladder Endometriosis is a rare form of endometriosis and is defined as the presence of endometriotic tissue in the detrusor muscle of the bladder, either in full or partial thickness. Women typically present with dysuria, urinary frequency, hematuria, and recurrent urinary tract infections. Bladder endometriosis is typically found at the bladder base and bladder dome. Transvaginal ultrasound is considered first-line imaging, and the condition is typically managed with laparoscopic partial cystectomy. A 33-year-old nulliparous woman presented with chronic pelvic pain, severe dysmenorrhea, and metrorrhagia. The patient was previously diagnosed with bladder endometriomas two years ago with multiple recurrences. MRI revealed urinary bladder endometriosis measuring 3 x 2 x 1.5 cm. Accordingly, the patient underwent a cystoscopy-guided robotic-assisted excision of the endometriotic implant in the bladder with cystotomy and repair of the bladder mucosa. The operation was tolerated well, and the postoperative period was uneventful. Bladder Endometriosis (BE) typically presents with urinary symptoms and can be mistaken for a bladder tumor upon further imaging. The case was successfully managed with cystoscopy-guided, robotic-assisted excision and fulguration of the endometriotic implant in the bladder.Keywords: endometriosis, bladder endometriosis (BE), urinary tract endometriosis (UTE), robotic-assisted surgery
Procedia PDF Downloads 293643 Integrating Knowledge Distillation of Multiple Strategies
Authors: Min Jindong, Wang Mingxia
Abstract:
With the widespread use of artificial intelligence in life, computer vision, especially deep convolutional neural network models, has developed rapidly. With the increase of the complexity of the real visual target detection task and the improvement of the recognition accuracy, the target detection network model is also very large. The huge deep neural network model is not conducive to deployment on edge devices with limited resources, and the timeliness of network model inference is poor. In this paper, knowledge distillation is used to compress the huge and complex deep neural network model, and the knowledge contained in the complex network model is comprehensively transferred to another lightweight network model. Different from traditional knowledge distillation methods, we propose a novel knowledge distillation that incorporates multi-faceted features, called M-KD. In this paper, when training and optimizing the deep neural network model for target detection, the knowledge of the soft target output of the teacher network in knowledge distillation, the relationship between the layers of the teacher network and the feature attention map of the hidden layer of the teacher network are transferred to the student network as all knowledge. in the model. At the same time, we also introduce an intermediate transition layer, that is, an intermediate guidance layer, between the teacher network and the student network to make up for the huge difference between the teacher network and the student network. Finally, this paper adds an exploration module to the traditional knowledge distillation teacher-student network model. The student network model not only inherits the knowledge of the teacher network but also explores some new knowledge and characteristics. Comprehensive experiments in this paper using different distillation parameter configurations across multiple datasets and convolutional neural network models demonstrate that our proposed new network model achieves substantial improvements in speed and accuracy performance.Keywords: object detection, knowledge distillation, convolutional network, model compression
Procedia PDF Downloads 2783642 Evaluation of Ensemble Classifiers for Intrusion Detection
Authors: M. Govindarajan
Abstract:
One of the major developments in machine learning in the past decade is the ensemble method, which finds highly accurate classifier by combining many moderately accurate component classifiers. In this research work, new ensemble classification methods are proposed with homogeneous ensemble classifier using bagging and heterogeneous ensemble classifier using arcing and their performances are analyzed in terms of accuracy. A Classifier ensemble is designed using Radial Basis Function (RBF) and Support Vector Machine (SVM) as base classifiers. The feasibility and the benefits of the proposed approaches are demonstrated by the means of standard datasets of intrusion detection. The main originality of the proposed approach is based on three main parts: preprocessing phase, classification phase, and combining phase. A wide range of comparative experiments is conducted for standard datasets of intrusion detection. The performance of the proposed homogeneous and heterogeneous ensemble classifiers are compared to the performance of other standard homogeneous and heterogeneous ensemble methods. The standard homogeneous ensemble methods include Error correcting output codes, Dagging and heterogeneous ensemble methods include majority voting, stacking. The proposed ensemble methods provide significant improvement of accuracy compared to individual classifiers and the proposed bagged RBF and SVM performs significantly better than ECOC and Dagging and the proposed hybrid RBF-SVM performs significantly better than voting and stacking. Also heterogeneous models exhibit better results than homogeneous models for standard datasets of intrusion detection.Keywords: data mining, ensemble, radial basis function, support vector machine, accuracy
Procedia PDF Downloads 2483641 Supervised/Unsupervised Mahalanobis Algorithm for Improving Performance for Cyberattack Detection over Communications Networks
Authors: Radhika Ranjan Roy
Abstract:
Deployment of machine learning (ML)/deep learning (DL) algorithms for cyberattack detection in operational communications networks (wireless and/or wire-line) is being delayed because of low-performance parameters (e.g., recall, precision, and f₁-score). If datasets become imbalanced, which is the usual case for communications networks, the performance tends to become worse. Complexities in handling reducing dimensions of the feature sets for increasing performance are also a huge problem. Mahalanobis algorithms have been widely applied in scientific research because Mahalanobis distance metric learning is a successful framework. In this paper, we have investigated the Mahalanobis binary classifier algorithm for increasing cyberattack detection performance over communications networks as a proof of concept. We have also found that high-dimensional information in intermediate features that are not utilized as much for classification tasks in ML/DL algorithms are the main contributor to the state-of-the-art of improved performance of the Mahalanobis method, even for imbalanced and sparse datasets. With no feature reduction, MD offers uniform results for precision, recall, and f₁-score for unbalanced and sparse NSL-KDD datasets.Keywords: Mahalanobis distance, machine learning, deep learning, NS-KDD, local intrinsic dimensionality, chi-square, positive semi-definite, area under the curve
Procedia PDF Downloads 78