Search results for: accuracy improvement
6647 The Classification Accuracy of Finance Data through Holder Functions
Authors: Yeliz Karaca, Carlo Cattani
Abstract:
This study focuses on the local Holder exponent as a measure of the function regularity for time series related to finance data. In this study, the attributes of the finance dataset belonging to 13 countries (India, China, Japan, Sweden, France, Germany, Italy, Australia, Mexico, United Kingdom, Argentina, Brazil, USA) located in 5 different continents (Asia, Europe, Australia, North America and South America) have been examined.These countries are the ones mostly affected by the attributes with regard to financial development, covering a period from 2012 to 2017. Our study is concerned with the most important attributes that have impact on the development of finance for the countries identified. Our method is comprised of the following stages: (a) among the multi fractal methods and Brownian motion Holder regularity functions (polynomial, exponential), significant and self-similar attributes have been identified (b) The significant and self-similar attributes have been applied to the Artificial Neuronal Network (ANN) algorithms (Feed Forward Back Propagation (FFBP) and Cascade Forward Back Propagation (CFBP)) (c) the outcomes of classification accuracy have been compared concerning the attributes that have impact on the attributes which affect the countries’ financial development. This study has enabled to reveal, through the application of ANN algorithms, how the most significant attributes are identified within the relevant dataset via the Holder functions (polynomial and exponential function).Keywords: artificial neural networks, finance data, Holder regularity, multifractals
Procedia PDF Downloads 2476646 Ultrasonic Micro Injection Molding: Manufacturing of Micro Plates of Biomaterials
Authors: Ariadna Manresa, Ines Ferrer
Abstract:
Introduction: Ultrasonic moulding process (USM) is a recent injection technology used to manufacture micro components. It is able to melt small amounts of material so the waste of material is certainly reduced comparing to microinjection molding. This is an important advantage when the materials are expensive like medical biopolymers. Micro-scaled components are involved in a variety of uses, such as biomedical applications. It is required replication fidelity so it is important to stabilize the process and minimize the variability of the responses. The aim of this research is to investigate the influence of the main process parameters on the filling behaviour, the dimensional accuracy and the cavity pressure when a micro-plate is manufactured by biomaterials such as PLA and PCL. Methodology or Experimental Procedure: The specimens are manufactured using a Sonorus 1G Ultrasound Micro Molding Machine. The used geometry is a rectangular micro-plate of 15x5mm and 1mm of thickness. The materials used for the investigation are PLA and PCL due to biocompatible and degradation properties. The experimentation is divided into two phases. Firstly, the influence of process parameters (vibration amplitude, sonotrodo velocity, ultrasound time and compaction force) on filling behavior is analysed, in Phase 1. Next, when filling cavity is assured, the influence of both cooling time and force compaction on the cavity pressure, part temperature and dimensional accuracy is instigated, which is done in Phase. Results and Discussion: Filling behavior depends on sonotrodo velocity and vibration amplitude. When the ultrasonic time is higher, more ultrasonic energy is applied and the polymer temperature increases. Depending on the cooling time, it is possible that when mold is opened, the micro-plate temperature is too warm. Consequently, the polymer relieve its stored internal energy (ultrasonic and thermal) expanding through the easier direction. This fact is reflected on dimensional accuracy, causing micro-plates thicker than the mold. It has also been observed the most important fact that affects cavity pressure is the compaction configuration during the manufacturing cycle. Conclusions: This research demonstrated the influence of process parameters on the final micro-plated manufactured. Future works will be focused in manufacturing other geometries and analysing the mechanical properties of the specimens.Keywords: biomaterial, biopolymer, micro injection molding, ultrasound
Procedia PDF Downloads 2856645 Effects of Additional Pelvic Floor Exercise on Sexual Function, Quality of Life and Pain Intensity in Subjects with Chronic Low Back Pain
Authors: Emel Sonmezer, Hayri Baran Yosmaoglu
Abstract:
The negative impact of chronic pain syndromes on sexual function has been reported in several studies; however, the influences of treatment strategies on sexual dysfunction have not been evaluated widely. The aim of this study was to determine the effects of pelvic floor exercise on sexual dysfunction in female patients with chronic low back pain. Forty-two patient with chronic low back pain were enrolled this study. Subjects were divided into two groups. Group 1 received conventional physiotherapy consist of heat therapy, ergonomic education, William flexion exercise during 6 weeks. Group 2 received pelvic floor exercises in addition to conventional physiotherapy. Female Sexual Function Index (FSFI) was used for the assessment of sexual function. Pain intensity was assessed with Visual Analogue Scale. Quality of life was assessed with World Health Organization Quality of Life Scale. All measurements were taken before and after treatment. In conventional physiotherapy group; there were significant improvement in pain intensity (p= 0,003), physical health (p=0,011), psychological health (p=0,042) subscales of quality of life scale, arousal (p=0,042), lubrication (p=0,028) and pain (p= 0,034) subscales of FSFI. In additional pelvic floor exercise group; there were significant improvement in pain intensity (p= 0,005), physical health (p=0,012) psychological health (p=0,039) subscales of quality of life scale, arousal (p=0,024), lubrication (p=0,011), orgasm (p=0,035) and pain (p= 0,015) subscales and total score (p=0,016) of FSFI. Total FSFI score (p=0,025) and orgasm (p=0,017) subscale of FSFI were significantly higher for the additional pelvic floor exercise group than the conventional physiotherapy group.The outcome of this study suggested that conventional physiotherapy may contribute to improve pain, quality of life and some parameters of the sexual function in patients with low back pain. Although additional pelvic floor exercise did not reveal more treatment effect in terms of quality of life and pain intensity, it caused significant improvement in sexual function. It is recommended that pelvic floor exercise should be added to treatment programs in order to manage sexual dysfunction more effectively in patients with chronic low back pain.Keywords: physiotherapy, chronic pain, sexual dysfunction, pelvic floor
Procedia PDF Downloads 2686644 Numerical Analysis of the Aging Effects of RC Shear Walls Repaired by CFRP Sheets: Application of CEB-FIP MC 90 Model
Authors: Yeghnem Redha, Guerroudj Hicham Zakaria, Hanifi Hachemi Amar Lemiya, Meftah Sid Ahmed, Tounsi Abdelouahed, Adda Bedia El Abbas
Abstract:
Creep deformation of concrete is often responsible for excessive deflection at service loads which can compromise the performance of elements within a structure. Although laboratory test may be undertaken to determine the deformation properties of concrete, these are time-consuming, often expensive and generally not a practical option. Therefore, relatively simple empirically design code models are relied to predict the creep strain. This paper reviews the accuracy of creep and shrinkage predictions of reinforced concrete (RC) shear walls structures strengthened with carbon fibre reinforced polymer (CFRP) sheets, which is characterized by a widthwise varying fibre volume fraction. This review is yielded by CEB-FIB MC90 model. The time-dependent behavior was investigated to analyze their static behavior. In the numerical formulation, the adherents and the adhesives are all modelled as shear wall elements, using the mixed finite element method. Several tests were used to dem¬onstrate the accuracy and effectiveness of the proposed method. Numerical results from the present analysis are presented to illustrate the significance of the time-dependency of the lateral displacements.Keywords: RC shear walls strengthened, CFRP sheets, creep and shrinkage, CEB-FIP MC90 model, finite element method, static behavior
Procedia PDF Downloads 3116643 Preliminary Results of Psychiatric Morbidity for Oncology Outpatients
Authors: Camille Plant, Katherine McGill, Pek Ang
Abstract:
Oncology patients face a host of unique challenges, which are physical, psychological and philosophical in nature. This preliminary study aimed to explore the psychiatric morbidity of oncology patients in an outpatient setting at a major public hospital in Australia. The study found that 33 patients were referred to a Psychiatrist by a Clinical Psychologist or treating Oncologist. These patients attended an outpatient Psychiatry appointment at the Calvary Mater Hospital, Newcastle, over a 7 month period (June 2017-January 2018). Of these, 45% went on to have a follow-up appointment. The Clinical Global Impressions Scale (CGI) was used to gather symptom severity scores at baseline and at follow-up. The CGI is a clinician determined instrument that provides an assessment of global functioning. It is comprised of two companion one-item measures: the CGI-Severity (CGI-S) rates mental illness severity, and the CGI-Improvement (CGI-I) rates change in condition or improvement from initiation of treatment. Patients referred to a Psychiatrist were observed to be on average in the Markedly ill approaching Severely ill range (CGI-S average of 5.5). However, those patients who attended a follow-up appointment were on average only Moderately Ill at baseline (CGI-S average of 3.9). Despite these follow patients not being severely mentally ill initially, the contact was helpful, as their CGI-S scores improved on average to the Mildly Ill range (CGI-S average of 2.8). A Mixed ANOVA revealed that there was a significant improvement in mental illness severity post-follow-up appointment (Greenhouse-Geisser .000). There was a near even proportion of males and females attending appointments (58% female), and slightly more females attended a follow-up (60% female). Males were on average more mentally ill at baseline compared to females at baseline (male average M=3.86, female average M=3.56), and males had a greater reduction in mental illness severity on average compared to females (male average M=2.71, female average 3.00). This was approaching significance (.073) and would be important to explore with a larger sample size. Change in clinical condition for follow-up patients was also recorded. It was found that more than half of patients (53%) were observed to experience Minimal improvement in attending at least one follow-up appointment. There was no change for 27% of patients, and there were no patients who were worse at follow up. As this was a preliminary study with small sample size, future research conducted could explore whether there are any significant gender differences, such as whether males experience the significantly greater reduction in symptoms of mental illness compared to females, as well as any effects of cancer stage or type on psychiatric outcomes. Future research could also investigate outcomes for those patients who concurrently access a Clinical Psychologist alongside the Psychiatrist. A limitation of the study is that the outcome measure is a brief item rating completed by the clinician.Keywords: clinical global impressions scale, psychiatry, morbidity, oncology, outcomes, psychiatry
Procedia PDF Downloads 1496642 Utilization of Waste Glass Powder in Mortar
Authors: Suhaib Salahuddin Alzubair Suliman
Abstract:
This paper examines the mechanical strength of different binders including pure ordinary Portland cement (OPC) and others having OPC supplemented by two maximum sizes of waste glass powder (GP) of 75-μm and 150μm. Chemical analysis of the GPs using PCEDX test analysis has revealed it silica (SiO2 ) content % is 86.883 and Calcium oxide (CaO) is 12.203%while there are traces of other impurities . Furthermore, the specific gravity of GP was measured. The experiments have been conducted on 63 specimens mortar made with standard sand with 20%,25%, and 30% of GP levels of substituting OPC. The specimens are tested at 3, 7 and 28 days for compressive strength and flexural strength. The specimens made with maximum GP size of 75-μm have outperformed the control OPC mortar at 28 days test age than size 150-μm at various replacement levels. In addition to that, the mechanical strengths were evaluated compressive strength and flexural strength tests were conducted for GPs. The findings from this study indicated that the mortars modified with GP 75μm and replacement ratio of 20% showed an improvement in compressive strength and flexural strength compared to the control mortar at the 28 days of curing with significant development between 7 and 28 days. Mortar with GP size 75-μm containing 30% & 20% replacement of cement have exhibited the highest flexural strength among all mortar mixtures. The improvement in the mechanical strength of the mortars modified with GP can be attributed to the pozzolanic property of GPs, which leads to a more densified microstructure and improved interfacial bonding between sand and cement paste matrix in mortars.Keywords: glass powder, pozzolana, compressive strength, flexural strength, mortar
Procedia PDF Downloads 716641 Rank-Based Chain-Mode Ensemble for Binary Classification
Authors: Chongya Song, Kang Yen, Alexander Pons, Jin Liu
Abstract:
In the field of machine learning, the ensemble has been employed as a common methodology to improve the performance upon multiple base classifiers. However, the true predictions are often canceled out by the false ones during consensus due to a phenomenon called “curse of correlation” which is represented as the strong interferences among the predictions produced by the base classifiers. In addition, the existing practices are still not able to effectively mitigate the problem of imbalanced classification. Based on the analysis on our experiment results, we conclude that the two problems are caused by some inherent deficiencies in the approach of consensus. Therefore, we create an enhanced ensemble algorithm which adopts a designed rank-based chain-mode consensus to overcome the two problems. In order to evaluate the proposed ensemble algorithm, we employ a well-known benchmark data set NSL-KDD (the improved version of dataset KDDCup99 produced by University of New Brunswick) to make comparisons between the proposed and 8 common ensemble algorithms. Particularly, each compared ensemble classifier uses the same 22 base classifiers, so that the differences in terms of the improvements toward the accuracy and reliability upon the base classifiers can be truly revealed. As a result, the proposed rank-based chain-mode consensus is proved to be a more effective ensemble solution than the traditional consensus approach, which outperforms the 8 ensemble algorithms by 20% on almost all compared metrices which include accuracy, precision, recall, F1-score and area under receiver operating characteristic curve.Keywords: consensus, curse of correlation, imbalance classification, rank-based chain-mode ensemble
Procedia PDF Downloads 1396640 Cracks Detection and Measurement Using VLP-16 LiDAR and Intel Depth Camera D435 in Real-Time
Authors: Xinwen Zhu, Xingguang Li, Sun Yi
Abstract:
Crack is one of the most common damages in buildings, bridges, roads and so on, which may pose safety hazards. However, cracks frequently happen in structures of various materials. Traditional methods of manual detection and measurement, which are known as subjective, time-consuming, and labor-intensive, are gradually unable to meet the needs of modern development. In addition, crack detection and measurement need be safe considering space limitations and danger. Intelligent crack detection has become necessary research. In this paper, an efficient method for crack detection and quantification using a 3D sensor, LiDAR, and depth camera is proposed. This method works even in a dark environment, which is usual in real-world applications. The LiDAR rapidly spins to scan the surrounding environment and discover cracks through lasers thousands of times per second, providing a rich, 3D point cloud in real-time. The LiDAR provides quite accurate depth information. The precision of the distance of each point can be determined within around ±3 cm accuracy, and not only it is good for getting a precise distance, but it also allows us to see far of over 100m going with the top range models. But the accuracy is still large for some high precision structures of material. To make the depth of crack is much more accurate, the depth camera is in need. The cracks are scanned by the depth camera at the same time. Finally, all data from LiDAR and Depth cameras are analyzed, and the size of the cracks can be quantified successfully. The comparison shows that the minimum and mean absolute percentage error between measured and calculated width are about 2.22% and 6.27%, respectively. The experiments and results are presented in this paper.Keywords: LiDAR, depth camera, real-time, detection and measurement
Procedia PDF Downloads 2336639 Thermal and Hydraulic Design of Shell and Tube Heat Exchangers
Authors: Ahmed R. Ballil
Abstract:
Heat exchangers are devices used to transfer heat between two fluids. These devices are utilized in many engineering and industrial applications such as heating, cooling, condensation and boiling processes. The fluids might be in direct contact (mixed), or they separated by a solid wall to avoid mixing. In the present paper, interactive computer-aided design of shell and tube heat exchangers is developed using Visual Basic computer code as a framework. This design is based on the Bell-Delaware method, which is one of the very well known methods reported in the literature for the design of shell and tube heat exchangers. Physical properties for either the tube or the shell side fluids are internally evaluated by calling on an enormous data bank composed of more than a hundred fluid compounds. This contributes to increase the accuracy of the present design. The international system of units is considered in the developed computer program. The present design has an added feature of being capable of performing modification based upon a preset design criterion, such that an optimum design is obtained at satisfying constraints set either by the user or by the method itself. Also, the present code is capable of giving an estimate of the approximate cost of the heat exchanger based on the predicted surface area of the exchanger evaluated by the program. Finally, the present thermal and hydraulic design code is tested for accuracy and consistency against some of existed and approved designs of shell and tube heat exchangers.Keywords: bell-delaware method, heat exchangers, shell and tube, thermal and hydraulic design
Procedia PDF Downloads 1506638 An Assessment of the Impacts of Agro-Ecological Practices towards the Improvement of Crop Health and Yield Capacity: A Case of Mopani District, Limpopo, South Africa
Authors: Tshilidzi C. Manyanya, Nthaduleni S. Nethengwe, Edmore Kori
Abstract:
The UNFCCC, FAO, GCF, IPCC and other global structures advocate for agro-ecology do address food security and sovereignty. However, most of the expected outcomes concerning agro-ecological were not empirically tested for universal application. Agro-ecology is theorised to increase crop health over ago-ecological farms and decrease over conventional farms. Increased crop health means increased carbon sequestration and thus less CO2 in the atmosphere. This is in line with the view that global warming is anthropogenically enhanced through GHG emissions. Agro-ecology mainly affects crop health, soil carbon content and yield on the cultivated land. Economic sustainability is directly related to yield capacity, which is theorized to increase by 3-10% in a space of 3 - 10 years as a result of agro-ecological implementation. This study aimed to empirically assess the practicality and validity of these assumptions. The study utilized mainly GIS and RS techniques to assess the effectiveness of agro-ecology in crop health improvement from satellite images. The assessment involved a longitudinal study (2013 – 2015) assessing the changes that occur after a farm retrofits from conventional agriculture to agro-ecology. The assumptions guided the objectives of the study. For each objective, an agro-ecological farm was compared with a conventional farm in the same climatic conditional occupying the same general location. Crop health was assessed using satellite images analysed through ArcGIS and Erdas. This entailed the production of NDVI and Re-classified outputs of the farm area. The NDVI ranges of the entire period of study were thus compared in a stacked histogram for each farm to assess for trends. Yield capacity was calculated based on the production records acquired from the farmers and plotted in a stacked bar graph as percentages of a total for each farm. The results of the study showed decreasing crop health trends over 80% of the conventional farms and an increase over 80% of the organic farms. Yield capacity showed similar patterns to those of crop health. The study thus showed that agro-ecology is an effective strategy for crop-health improvement and yield increase.Keywords: agro-ecosystem, conventional farm, dialectical, sustainability
Procedia PDF Downloads 2176637 Analytical Determination of Electromechanical Coupling Effects on Interlaminar Stresses of Generally Laminated Piezoelectric Plates
Authors: Atieh Andakhshideh, S. Maleki, Sayed Sadegh Marashi
Abstract:
In this paper, the interlaminar stresses of generally laminated piezoelectric plates are presented. The electromechanical coupling effect of the piezoelectric plate is considered and the governing equations and boundary conditions are derived using the principle of minimum total potential energy. The solution procedure is a three-dimensional multi-term extended Kantorovich method (3DMTEKM). The objective of this paper is to accurately study coupling influence on the edge effects of piezolaminated plates with finite dimensions, arbitrary lamination lay-ups and under uniform axial strain. These results can provide a benchmark for checking the accuracy of the other numerical method or two-dimensional laminate theories. To verify the accuracy of the 3DMTEKM, first examples are simplified to special cases such as cross-ply or symmetric laminations and are compared with other analytical solutions available in the literature. Excellent agreement is achieved in validation test and other numerical results are presented for general cases. Numerical examples indicate the singular behavior of interlaminar normal/shear stresses and electric field strength components near the edges of the piezolaminated plates. The coupling influence on the free edge effect with respect to lamination lay-ups of piezoelectric plate is studied in several examples.Keywords: electromechanical coupling, generally laminated piezoelectric plates, Kantorovich method, edge effect, interlaminar stresses
Procedia PDF Downloads 1506636 Evaluation of Clinical Decision Support System in Electronic Medical Record System: A Case of Malawi National Art Electronic Medical Record System
Authors: Pachawo Bisani, Goodall Nyirenda
Abstract:
The Malawi National Antiretroviral Therapy (NART) Electronic Medical Record (EMR) system was designed and developed with guidance from the Ministry of Health through the Department of HIV and AIDS (DHA) with the aim of supporting the management of HIV patient data and reporting in high prevalence ART clinics. As of 2021, the system has been scaled up to over 206 facilities across the country. The system is integrated with the clinical decision support system (CDSS) to assist healthcare providers in making a decision about an individual patient at a particular point in time. Despite NART EMR undergoing several evaluations and assessments, little has been done to evaluate the clinical decision support system in the NART EMR system. Hence, the study aimed to evaluate the use of CDSS in the NART EMR system in Malawi. The study adopted a mixed-method approach, and data was collected through interviews, observations, and questionnaires. The study has revealed that the CDSS tools were integrated into the ART clinic workflow, making it easy for the user to use it. The study has also revealed challenges in system reliability and information accuracy. Despite the challenges, the study further revealed that the system is effective and efficient, and overall, users are satisfied with the system. The study recommends that the implementers focus more on the logic behind the clinical decision-support intervention in order to address some of the concerns and enhance the accuracy of the information supplied. The study further suggests consulting the system's actual users throughout implementation.Keywords: clinical decision support system, electronic medical record system, usability, antiretroviral therapy
Procedia PDF Downloads 1046635 Water Body Detection and Estimation from Landsat Satellite Images Using Deep Learning
Authors: M. Devaki, K. B. Jayanthi
Abstract:
The identification of water bodies from satellite images has recently received a great deal of attention. Different methods have been developed to distinguish water bodies from various satellite images that vary in terms of time and space. Urban water identification issues body manifests in numerous applications with a great deal of certainty. There has been a sharp rise in the usage of satellite images to map natural resources, including urban water bodies and forests, during the past several years. This is because water and forest resources depend on each other so heavily that ongoing monitoring of both is essential to their sustainable management. The relevant elements from satellite pictures have been chosen using a variety of techniques, including machine learning. Then, a convolution neural network (CNN) architecture is created that can identify a superpixel as either one of two classes, one that includes water or doesn't from input data in a complex metropolitan scene. The deep learning technique, CNN, has advanced tremendously in a variety of visual-related tasks. CNN can improve classification performance by reducing the spectral-spatial regularities of the input data and extracting deep features hierarchically from raw pictures. Calculate the water body using the satellite image's resolution. Experimental results demonstrate that the suggested method outperformed conventional approaches in terms of water extraction accuracy from remote-sensing images, with an average overall accuracy of 97%.Keywords: water body, Deep learning, satellite images, convolution neural network
Procedia PDF Downloads 916634 MIMIC: A Multi Input Micro-Influencers Classifier
Authors: Simone Leonardi, Luca Ardito
Abstract:
Micro-influencers are effective elements in the marketing strategies of companies and institutions because of their capability to create an hyper-engaged audience around a specific topic of interest. In recent years, many scientific approaches and commercial tools have handled the task of detecting this type of social media users. These strategies adopt solutions ranging from rule based machine learning models to deep neural networks and graph analysis on text, images, and account information. This work compares the existing solutions and proposes an ensemble method to generalize them with different input data and social media platforms. The deployed solution combines deep learning models on unstructured data with statistical machine learning models on structured data. We retrieve both social media accounts information and multimedia posts on Twitter and Instagram. These data are mapped into feature vectors for an eXtreme Gradient Boosting (XGBoost) classifier. Sixty different topics have been analyzed to build a rule based gold standard dataset and to compare the performances of our approach against baseline classifiers. We prove the effectiveness of our work by comparing the accuracy, precision, recall, and f1 score of our model with different configurations and architectures. We obtained an accuracy of 0.91 with our best performing model.Keywords: deep learning, gradient boosting, image processing, micro-influencers, NLP, social media
Procedia PDF Downloads 1846633 Significant Reduction in Specific CO₂ Emission through Process Optimization at G Blast Furnace, Tata Steel Jamshedpur
Authors: Shoumodip Roy, Ankit Singhania, M. K. G. Choudhury, Santanu Mallick, M. K. Agarwal, R. V. Ramna, Uttam Singh
Abstract:
One of the key corporate goals of Tata Steel company is to demonstrate Environment Leadership. Decreasing specific CO₂ emission is one of the key steps to achieve the stated corporate goal. At any Blast Furnace, specific CO₂ emission is directly proportional to fuel intake. To reduce the fuel intake at G Blast Furnace, an initial benchmarking exercise was carried out with international and domestic Blast Furnaces to determine the potential for improvement. The gap identified during the exercise revealed that the benchmark Blast Furnaces operated with superior raw material quality than that in G Blast Furnace. However, since the raw materials to G Blast Furnace are sourced from the captive mines, improvement in the raw material quality was out of scope. Therefore, trials were taken with different operating regimes, to identify the key process parameters, which on optimization could significantly reduce the fuel intake in G Blast Furnace. The key process parameters identified from the trial were the Stoichiometric Oxygen Ratio, Melting Capacity ratio and the burden distribution inside the furnace. These identified process parameters were optimized to bridge the gap in fuel intake at G Blast Furnace, thereby reducing specific CO₂ emission to benchmark levels. This paradigm shift enabled to lower the fuel intake by 70kg per ton of liquid iron produced, thereby reducing the specific CO₂ emission by 15 percent.Keywords: benchmark, blast furnace, CO₂ emission, fuel rate
Procedia PDF Downloads 2816632 Gap Analysis of Service Quality: The Veterinary Teaching Hospital, University of Peradeniya, Sri Lanka
Authors: Preethi Sudarshanie Dassanayake, R. A. Sudath Weerasiri
Abstract:
Objective: The objective of this study were to find out highest expectation and perception,highest gap between perception and expectation of service quality, and to find out such gaps between perception and expectation with regard to service quality dimensions were whether statistically significant. Methodology: This study carried out at the Out Patient Department (OPD) of the Veterinary Teaching Hospital (VTH), University of Peradeniya. Modified version of SERVQUAL with 22-pairs of items regarding expectation and perception of service quality in dimensions of tangible, reliability, responsiveness, assurance and empathy were included in Part 1 and the Part 2 of the questionnaire consisted of questions regarding socio-demographic factors. Sample size was 200 and sampling procedure was Systematic Random Sampling. Customers above 18 years of age, able to read, write and understand Sinhala or English language, visits more than twice in last six months and who willing to respond were selected. Findings: The analysis revealed customers expectations of service higher than the perceived for all 22- items of the SERVQUAL. This high expectation suggests that there is sufficient room for further improvement of service quality in all five dimensions. Originality/Value of the Paper: This study gave a new insight for poorly researched area of veterinary health service quality in Sri Lankan context. It provides hospital administrators and policy makers to develop strategies for further improvement of service quality according to customers' view.Keywords: expectation, perception, service quality, SERVQUAL, veterinary health care
Procedia PDF Downloads 4706631 A Static Android Malware Detection Based on Actual Used Permissions Combination and API Calls
Authors: Xiaoqing Wang, Junfeng Wang, Xiaolan Zhu
Abstract:
Android operating system has been recognized by most application developers because of its good open-source and compatibility, which enriches the categories of applications greatly. However, it has become the target of malware attackers due to the lack of strict security supervision mechanisms, which leads to the rapid growth of malware, thus bringing serious safety hazards to users. Therefore, it is critical to detect Android malware effectively. Generally, the permissions declared in the AndroidManifest.xml can reflect the function and behavior of the application to a large extent. Since current Android system has not any restrictions to the number of permissions that an application can request, developers tend to apply more than actually needed permissions in order to ensure the successful running of the application, which results in the abuse of permissions. However, some traditional detection methods only consider the requested permissions and ignore whether it is actually used, which leads to incorrect identification of some malwares. Therefore, a machine learning detection method based on the actually used permissions combination and API calls was put forward in this paper. Meanwhile, several experiments are conducted to evaluate our methodology. The result shows that it can detect unknown malware effectively with higher true positive rate and accuracy while maintaining a low false positive rate. Consequently, the AdaboostM1 (J48) classification algorithm based on information gain feature selection algorithm has the best detection result, which can achieve an accuracy of 99.8%, a true positive rate of 99.6% and a lowest false positive rate of 0.Keywords: android, API Calls, machine learning, permissions combination
Procedia PDF Downloads 3316630 Application of MALDI-MS to Differentiate SARS-CoV-2 and Non-SARS-CoV-2 Symptomatic Infections in the Early and Late Phases of the Pandemic
Authors: Dmitriy Babenko, Sergey Yegorov, Ilya Korshukov, Aidana Sultanbekova, Valentina Barkhanskaya, Tatiana Bashirova, Yerzhan Zhunusov, Yevgeniya Li, Viktoriya Parakhina, Svetlana Kolesnichenko, Yeldar Baiken, Aruzhan Pralieva, Zhibek Zhumadilova, Matthew S. Miller, Gonzalo H. Hortelano, Anar Turmuhambetova, Antonella E. Chesca, Irina Kadyrova
Abstract:
Introduction: The rapidly evolving COVID-19 pandemic, along with the re-emergence of pathogens causing acute respiratory infections (ARI), has necessitated the development of novel diagnostic tools to differentiate various causes of ARI. MALDI-MS, due to its wide usage and affordability, has been proposed as a potential instrument for diagnosing SARS-CoV-2 versus non-SARS-CoV-2 ARI. The aim of this study was to investigate the potential of MALDI-MS in conjunction with a machine learning model to accurately distinguish between symptomatic infections caused by SARS-CoV-2 and non-SARS-CoV-2 during both the early and later phases of the pandemic. Furthermore, this study aimed to analyze mass spectrometry (MS) data obtained from nasal swabs of healthy individuals. Methods: We gathered mass spectra from 252 samples, comprising 108 SARS-CoV-2-positive samples obtained in 2020 (Covid 2020), 7 SARS-CoV- 2-positive samples obtained in 2023 (Covid 2023), 71 samples from symptomatic individuals without SARS-CoV-2 (Control non-Covid ARVI), and 66 samples from healthy individuals (Control healthy). All the samples were subjected to RT-PCR testing. For data analysis, we employed the caret R package to train and test seven machine-learning algorithms: C5.0, KNN, NB, RF, SVM-L, SVM-R, and XGBoost. We conducted a training process using a five-fold (outer) nested repeated (five times) ten-fold (inner) cross-validation with a randomized stratified splitting approach. Results: In this study, we utilized the Covid 2020 dataset as a case group and the non-Covid ARVI dataset as a control group to train and test various machine learning (ML) models. Among these models, XGBoost and SVM-R demonstrated the highest performance, with accuracy values of 0.97 [0.93, 0.97] and 0.95 [0.95; 0.97], specificity values of 0.86 [0.71; 0.93] and 0.86 [0.79; 0.87], and sensitivity values of 0.984 [0.984; 1.000] and 1.000 [0.968; 1.000], respectively. When examining the Covid 2023 dataset, the Naive Bayes model achieved the highest classification accuracy of 43%, while XGBoost and SVM-R achieved accuracies of 14%. For the healthy control dataset, the accuracy of the models ranged from 0.27 [0.24; 0.32] for k-nearest neighbors to 0.44 [0.41; 0.45] for the Support Vector Machine with a radial basis function kernel. Conclusion: Therefore, ML models trained on MALDI MS of nasopharyngeal swabs obtained from patients with Covid during the initial phase of the pandemic, as well as symptomatic non-Covid individuals, showed excellent classification performance, which aligns with the results of previous studies. However, when applied to swabs from healthy individuals and a limited sample of patients with Covid in the late phase of the pandemic, ML models exhibited lower classification accuracy.Keywords: SARS-CoV-2, MALDI-TOF MS, ML models, nasopharyngeal swabs, classification
Procedia PDF Downloads 1116629 Long Standing Orbital Floor Fracture Repair: Case Report
Authors: Hisham A. Hashem, Sameh Galal, Bassem M. Moeshed
Abstract:
A 36 years old male patient presented to our unit with a history of motor-car accident from 7 months complaining of disfigurement and double vision. On examination and investigations, there was an orbital floor fracture in the left eye with inferior rectus muscle entrapment causing diplopia, dystopia and enophthalmos. Under general anesthesia, a sub-ciliary incision was performed, and the orbital floor fracture was repaired with a double layer Medpor sheet (30x50x15) with removing and freeing fibrosis that was present and freeing of the inferior rectus muscle. Remarkable improvement of the dystopia was noticed, however, there was a residual diplopia in upgaze and enophthalmos. He was then referred to a strabismologist, which upon examination found left hypotropia of 8 ΔD corrected by 8 ΔD base up prism and positive forced duction test on elevation and pseudoptosis. Under local anesthesia, a limbal incision approach with hangback 4mm recession of inferior rectus muscle was performed after identifying an inferior rectus muscle structure. Improvement was noted shortly postoperative with correction of both diplopia and pseudoptosis. Follow up after 1, 4 and 8 months was done showing a stable condition. Delayed surgery in cases of orbital floor fracture may still hold good results provided proper assessment of the case with management of each sign separately.Keywords: diplopia, dystopia, late surgery, orbital floor fracture
Procedia PDF Downloads 2276628 Hybrid Intelligent Optimization Methods for Optimal Design of Horizontal-Axis Wind Turbine Blades
Authors: E. Tandis, E. Assareh
Abstract:
Designing the optimal shape of MW wind turbine blades is provided in a number of cases through evolutionary algorithms associated with mathematical modeling (Blade Element Momentum Theory). Evolutionary algorithms, among the optimization methods, enjoy many advantages, particularly in stability. However, they usually need a large number of function evaluations. Since there are a large number of local extremes, the optimization method has to find the global extreme accurately. The present paper introduces a new population-based hybrid algorithm called Genetic-Based Bees Algorithm (GBBA). This algorithm is meant to design the optimal shape for MW wind turbine blades. The current method employs crossover and neighborhood searching operators taken from the respective Genetic Algorithm (GA) and Bees Algorithm (BA) to provide a method with good performance in accuracy and speed convergence. Different blade designs, twenty-one to be exact, were considered based on the chord length, twist angle and tip speed ratio using GA results. They were compared with BA and GBBA optimum design results targeting the power coefficient and solidity. The results suggest that the final shape, obtained by the proposed hybrid algorithm, performs better compared to either BA or GA. Furthermore, the accuracy and speed convergence increases when the GBBA is employedKeywords: Blade Design, Optimization, Genetic Algorithm, Bees Algorithm, Genetic-Based Bees Algorithm, Large Wind Turbine
Procedia PDF Downloads 3176627 Diagnostic Accuracy Of Core Biopsy In Patients Presenting With Axillary Lymphadenopathy And Suspected Non-Breast Malignancy
Authors: Monisha Edirisooriya, Wilma Jack, Dominique Twelves, Jennifer Royds, Fiona Scott, Nicola Mason, Arran Turnbull, J. Michael Dixon
Abstract:
Introduction: Excision biopsy has been the investigation of choice for patients presenting with pathological axillary lymphadenopathy without a breast abnormality. Core biopsy of nodes can provide sufficient tissue for diagnosis and has advantages in terms of morbidity and speed of diagnosis. This study evaluates the diagnostic accuracy of core biopsy in patients presenting with axillary lymphadenopathy. Methods: Between 2009 and 2019, 165 patients referred to the Edinburgh Breast Unit had a total of 179 axillary lymph node core biopsies. Results: 152 (92%) of the 165 initial core biopsies were deemed to contain adequate nodal tissue. Core biopsy correctly established malignancy in 75 of the 78 patients with haematological malignancy (96%) and in all 28 patients with metastatic carcinoma (100%) and correctly diagnosed benign changes in 49 of 57 (86%) patients with benign conditions. There were no false positives and no false negatives. In 67 (85.9%) of the 78 patients with hematological malignancy, there was sufficient material in the first core biopsy to allow the pathologist to make an actionable diagnosis and not ask for more tissue sampling prior to treatment. There were no complications of core biopsy. On follow up, none of the patients with benign cores has been shown to have malignancy in the axilla and none with lymphoma had their initial disease incorrectly classified. Conclusions: This study shows that core biopsy is now the investigation of choice for patients presenting with axillary lymphadenopathy even in those suspected as having lymphoma.Keywords: core biopsy, excision biopsy, axillary lymphadenopathy, non-breast malignancy
Procedia PDF Downloads 2446626 Making the Right Call for Falls: Evaluating the Efficacy of a Multi-Faceted Trust Wide Approach to Improving Patient Safety Post Falls
Authors: Jawaad Saleem, Hannah Wright, Peter Sommerville, Adrian Hopper
Abstract:
Introduction: Inpatient falls are the most commonly reported patient safety incidents, and carry a significant burden on resources, morbidity, and mortality. Ensuring adequate post falls management of patients by staff is therefore paramount to maintaining patient safety especially in out of hours and resource stretched settings. Aims: This quality improvement project aims to improve the current practice of falls management at Guys St Thomas Hospital, London as compared to our 2016 Quality Improvement Project findings. Furthermore, it looks to increase current junior doctors confidence in managing falls and their use of new guidance protocols. Methods: Multifaceted Interventions implemented included: the development of new trust wide guidelines detailing management pathways for patients post falls, available for intranet access. Furthermore, the production of 2000 lanyard cards distributed amongst junior doctors and staff which summarised these guidelines. Additionally, a ‘safety signal’ email was sent from the Trust chief medical officer to all staff raising awareness of falls and the guidelines. Formal falls teaching was also implemented for new doctors at induction. Using an established incident database, 189 consecutive falls in 2017were retrospectively analysed electronically to assess and compared to the variables measured in 2016 post interventions. A separate serious incident database was used to analyse 50 falls from May 2015 to March 2018 to ascertain the statistical significance of the impact of our interventions on serious incidents. A similar questionnaire for the 2017 cohort of foundation year one (FY1) doctors was performed and compared to 2016 results. Results: Questionnaire data demonstrated improved awareness and utility of guidelines and increased confidence as well as an increase in training. 97% of FY1 trainees felt that the interventions had increased their awareness of the impact of falls on patients in the trust. Data from the incident database demonstrated the time to review patients post fall had decreased from an average of 130 to 86 minutes. Improvement was also demonstrated in the reduced time to order and schedule X-ray and CT imaging, 3 and 5 hours respectively. Data from the serious incident database show that ‘the time from fall until harm was detected’ was statistically significantly lower (P = 0.044) post intervention. We also showed the incidence of significant delays in detecting harm ( > 10 hours) reduced post intervention. Conclusions: Our interventions have helped to significantly reduce the average time to assess, order and schedule appropriate imaging post falls. Delays of over ten hours to detect serious injuries after falls were commonplace; since the intervention, their frequency has markedly reduced. We suggest this will lead to identifying patient harm sooner, reduced clinical incidents relating to falls and thus improve overall patient safety. Our interventions have also helped increase clinical staff confidence, management, and awareness of falls in the trust. Next steps include expanding teaching sessions, improving multidisciplinary team involvement to aid this improvement.Keywords: patient safety, quality improvement, serious incidents, falls, clinical care
Procedia PDF Downloads 1256625 Modeling Fertility and Production of Hazelnut Cultivars through the Artificial Neural Network under Climate Change of Karaj
Authors: Marziyeh Khavari
Abstract:
In recent decades, climate change, global warming, and the growing population worldwide face some challenges, such as increasing food consumption and shortage of resources. Assessing how climate change could disturb crops, especially hazelnut production, seems crucial for sustainable agriculture production. For hazelnut cultivation in the mid-warm condition, such as in Iran, here we present an investigation of climate parameters and how much they are effective on fertility and nut production of hazelnut trees. Therefore, the climate change of the northern zones in Iran has investigated (1960-2017) and was reached an uptrend in temperature. Furthermore, the descriptive analysis performed on six cultivars during seven years shows how this small-scale survey could demonstrate the effects of climate change on hazelnut production and stability. Results showed that some climate parameters are more significant on nut production, such as solar radiation, soil temperature, relative humidity, and precipitation. Moreover, some cultivars have produced more stable production, for instance, Negret and Segorbe, while the Mervill de Boliver recorded the most variation during the study. Another aspect that needs to be met is training and predicting an actual model to simulate nut production through a neural network and linear regression simulation. The study developed and estimated the ANN model's generalization capability with different criteria such as RMSE, SSE, and accuracy factors for dependent and independent variables (environmental and yield traits). The models were trained and tested while the accuracy of the model is proper to predict hazelnut production under fluctuations in weather parameters.Keywords: climate change, neural network, hazelnut, global warming
Procedia PDF Downloads 1356624 A Methodology for Automatic Diversification of Document Categories
Authors: Dasom Kim, Chen Liu, Myungsu Lim, Su-Hyeon Jeon, ByeoungKug Jeon, Kee-Young Kwahk, Namgyu Kim
Abstract:
Recently, numerous documents including unstructured data and text have been created due to the rapid increase in the usage of social media and the Internet. Each document is usually provided with a specific category for the convenience of the users. In the past, the categorization was performed manually. However, in the case of manual categorization, not only can the accuracy of the categorization be not guaranteed but the categorization also requires a large amount of time and huge costs. Many studies have been conducted towards the automatic creation of categories to solve the limitations of manual categorization. Unfortunately, most of these methods cannot be applied to categorizing complex documents with multiple topics because the methods work by assuming that one document can be categorized into one category only. In order to overcome this limitation, some studies have attempted to categorize each document into multiple categories. However, they are also limited in that their learning process involves training using a multi-categorized document set. These methods therefore cannot be applied to multi-categorization of most documents unless multi-categorized training sets are provided. To overcome the limitation of the requirement of a multi-categorized training set by traditional multi-categorization algorithms, we previously proposed a new methodology that can extend a category of a single-categorized document to multiple categorizes by analyzing relationships among categories, topics, and documents. In this paper, we design a survey-based verification scenario for estimating the accuracy of our automatic categorization methodology.Keywords: big data analysis, document classification, multi-category, text mining, topic analysis
Procedia PDF Downloads 2756623 Identifying Critical Links of a Transport Network When Affected by a Climatological Hazard
Authors: Beatriz Martinez-Pastor, Maria Nogal, Alan O'Connor
Abstract:
During the last years, the number of extreme weather events has increased. A variety of extreme weather events, including river floods, rain-induced landslides, droughts, winter storms, wildfire, and hurricanes, have threatened and damaged many different regions worldwide. These events have a devastating impact on critical infrastructure systems resulting in high social, economical and environmental costs. These events have a huge impact in transport systems. Since, transport networks are completely exposed to every kind of climatological perturbations, and its performance is closely related with these events. When a traffic network is affected by a climatological hazard, the quality of its service is threatened, and the level of the traffic conditions usually decreases. With the aim of understanding this process, the concept of resilience has become most popular in the area of transport. Transport resilience analyses the behavior of a traffic network when a perturbation takes place. This holistic concept studies the complete process, from the beginning of the perturbation until the total recovery of the system, when the perturbation has finished. Many concepts are included in the definition of resilience, such as vulnerability, redundancy, adaptability, and safety. Once the resilience of a transport network can be evaluated, in this case, the methodology used is a dynamic equilibrium-restricted assignment model that allows the quantification of the concept, the next step is its improvement. Through the improvement of this concept, it will be possible to create transport networks that are able to withstand and have a better performance under the presence of climatological hazards. Analyzing the impact of a perturbation in a traffic network, it is observed that the response of the different links, which are part of the network, can be completely different from one to another. Consequently and due to this effect, many questions arise, as what makes a link more critical before an extreme weather event? or how is it possible to identify these critical links? With this aim, and knowing that most of the times the owners or managers of the transport systems have limited resources, the identification of the critical links of a transport network before extreme weather events, becomes a crucial objective. For that reason, using the available resources in the areas that will generate a higher improvement of the resilience, will contribute to the global development of the network. Therefore, this paper wants to analyze what kind of characteristic makes a link a critical one when an extreme weather event damages a transport network and finally identify them.Keywords: critical links, extreme weather events, hazard, resilience, transport network
Procedia PDF Downloads 2886622 Pricing Effects on Equitable Distribution of Forest Products and Livelihood Improvement in Nepalese Community Forestry
Authors: Laxuman Thakuri
Abstract:
Despite the large number of in-depth case studies focused on policy analysis, institutional arrangement, and collective action of common property resource management; how the local institutions take the pricing decision of forest products in community forest management and what kinds of effects produce it, the answers of these questions are largely silent among the policy-makers and researchers alike. The study examined how the local institutions take the pricing decision of forest products in the lowland community forestry of Nepal and how the decisions affect to equitable distribution of benefits and livelihood improvement which are also objectives of Nepalese community forestry. The study assumes that forest products pricing decisions have multiple effects on equitable distribution and livelihood improvement in the areas having heterogeneous socio-economic conditions. The dissertation was carried out at four community forests of lowland, Nepal that has characteristics of high value species, matured-experience of community forest management and better record-keeping system of forest products production, pricing and distribution. The questionnaire survey, individual to group discussions and direct field observation were applied for data collection from the field, and Lorenz curve, gini-coefficient, χ²-text, and SWOT (Strong, Weak, Opportunity, and Threat) analysis were performed for data analysis and results interpretation. The dissertation demonstrates that the low pricing strategy of high-value forest products was supposed crucial to increase the access of socio-economically weak households, and to and control over the important forest products such as timber, but found counter productive as the strategy increased the access of socio-economically better-off households at higher rate. In addition, the strategy contradicts to collect a large-scale community fund and carry out livelihood improvement activities as per the community forestry objectives. The crucial part of the study is despite the fact of low pricing strategy; the timber alone contributed large part of community fund collection. The results revealed close relation between pricing decisions and livelihood objectives. The action research result shows that positive price discrimination can slightly reduce the prevailing inequality and increase the fund. However, it lacks to harness the full price of forest products and collects a large-scale community fund. For broader outcomes of common property resource management in terms of resource sustainability, equity, and livelihood opportunity, the study suggests local institutions to harness the full price of resource products with respect to the local market.Keywords: community, equitable, forest, livelihood, socioeconomic, Nepal
Procedia PDF Downloads 5386621 Enhanced Planar Pattern Tracking for an Outdoor Augmented Reality System
Authors: L. Yu, W. K. Li, S. K. Ong, A. Y. C. Nee
Abstract:
In this paper, a scalable augmented reality framework for handheld devices is presented. The presented framework is enabled by using a server-client data communication structure, in which the search for tracking targets among a database of images is performed on the server-side while pixel-wise 3D tracking is performed on the client-side, which, in this case, is a handheld mobile device. Image search on the server-side adopts a residual-enhanced image descriptors representation that gives the framework a scalability property. The tracking algorithm on the client-side is based on a gravity-aligned feature descriptor which takes the advantage of a sensor-equipped mobile device and an optimized intensity-based image alignment approach that ensures the accuracy of 3D tracking. Automatic content streaming is achieved by using a key-frame selection algorithm, client working phase monitoring and standardized rules for content communication between the server and client. The recognition accuracy test performed on a standard dataset shows that the method adopted in the presented framework outperforms the Bag-of-Words (BoW) method that has been used in some of the previous systems. Experimental test conducted on a set of video sequences indicated the real-time performance of the tracking system with a frame rate at 15-30 frames per second. The presented framework is exposed to be functional in practical situations with a demonstration application on a campus walk-around.Keywords: augmented reality framework, server-client model, vision-based tracking, image search
Procedia PDF Downloads 2776620 Fast Approximate Bayesian Contextual Cold Start Learning (FAB-COST)
Authors: Jack R. McKenzie, Peter A. Appleby, Thomas House, Neil Walton
Abstract:
Cold-start is a notoriously difficult problem which can occur in recommendation systems, and arises when there is insufficient information to draw inferences for users or items. To address this challenge, a contextual bandit algorithm – the Fast Approximate Bayesian Contextual Cold Start Learning algorithm (FAB-COST) – is proposed, which is designed to provide improved accuracy compared to the traditionally used Laplace approximation in the logistic contextual bandit, while controlling both algorithmic complexity and computational cost. To this end, FAB-COST uses a combination of two moment projection variational methods: Expectation Propagation (EP), which performs well at the cold start, but becomes slow as the amount of data increases; and Assumed Density Filtering (ADF), which has slower growth of computational cost with data size but requires more data to obtain an acceptable level of accuracy. By switching from EP to ADF when the dataset becomes large, it is able to exploit their complementary strengths. The empirical justification for FAB-COST is presented, and systematically compared to other approaches on simulated data. In a benchmark against the Laplace approximation on real data consisting of over 670, 000 impressions from autotrader.co.uk, FAB-COST demonstrates at one point increase of over 16% in user clicks. On the basis of these results, it is argued that FAB-COST is likely to be an attractive approach to cold-start recommendation systems in a variety of contexts.Keywords: cold-start learning, expectation propagation, multi-armed bandits, Thompson Sampling, variational inference
Procedia PDF Downloads 1116619 Procedural Protocol for Dual Energy Computed Tomography (DECT) Inversion
Authors: Rezvan Ravanfar Haghighi, S. Chatterjee, Pratik Kumar, V. C. Vani, Priya Jagia, Sanjiv Sharma, Susama Rani Mandal, R. Lakshmy
Abstract:
The dual energy computed tomography (DECT) aims at noting the HU(V) values for the sample at two different voltages V=V1, V2 and thus obtain the electron densities (ρe) and effective atomic number (Zeff) of the substance. In the present paper, we aim to obtain a numerical algorithm by which (ρe, Zeff) can be obtained from the HU(100) and HU(140) data, where V=100, 140 kVp. The idea is to use this inversion method to characterize and distinguish between the lipid and fibrous coronary artery plaques.With the idea to develop the inversion algorithm for low Zeff materials, as is the case with non calcified coronary artery plaque, we prepare aqueous samples whose calculated values of (ρe, Zeff) lie in the range (2.65×1023≤ ρe≤ 3.64×1023 per cc ) and (6.80≤ Zeff ≤ 8.90). We fill the phantom with these known samples and experimentally determine HU(100) and HU(140) for the same pixels. Knowing that the HU(V) values are related to the attenuation coefficient of the system, we present an algorithm by which the (ρe, Zeff) is calibrated with respect to (HU(100), HU(140)). The calibration is done with a known set of 20 samples; its accuracy is checked with a different set of 23 known samples. We find that the calibration gives the ρe with an accuracy of ± 4% while Zeff is found within ±1% of the actual value, the confidence being 95%.In this inversion method (ρe, Zeff) of the scanned sample can be found by eliminating the effects of the CT machine and also by ensuring that the determination of the two unknowns (ρe, Zeff) does not interfere with each other. It is found that this algorithm can be used for prediction of chemical characteristic (ρe, Zeff) of unknown scanned materials with 95% confidence level, by inversion of the DECT data.Keywords: chemical composition, dual-energy computed tomography, inversion algorithm
Procedia PDF Downloads 4396618 Interpretation of the Russia-Ukraine 2022 War via N-Gram Analysis
Authors: Elcin Timur Cakmak, Ayse Oguzlar
Abstract:
This study presents the results of the tweets sent by Twitter users on social media about the Russia-Ukraine war by bigram and trigram methods. On February 24, 2022, Russian President Vladimir Putin declared a military operation against Ukraine, and all eyes were turned to this war. Many people living in Russia and Ukraine reacted to this war and protested and also expressed their deep concern about this war as they felt the safety of their families and their futures were at stake. Most people, especially those living in Russia and Ukraine, express their views on the war in different ways. The most popular way to do this is through social media. Many people prefer to convey their feelings using Twitter, one of the most frequently used social media tools. Since the beginning of the war, it is seen that there have been thousands of tweets about the war from many countries of the world on Twitter. These tweets accumulated in data sources are extracted using various codes for analysis through Twitter API and analysed by Python programming language. The aim of the study is to find the word sequences in these tweets by the n-gram method, which is known for its widespread use in computational linguistics and natural language processing. The tweet language used in the study is English. The data set consists of the data obtained from Twitter between February 24, 2022, and April 24, 2022. The tweets obtained from Twitter using the #ukraine, #russia, #war, #putin, #zelensky hashtags together were captured as raw data, and the remaining tweets were included in the analysis stage after they were cleaned through the preprocessing stage. In the data analysis part, the sentiments are found to present what people send as a message about the war on Twitter. Regarding this, negative messages make up the majority of all the tweets as a ratio of %63,6. Furthermore, the most frequently used bigram and trigram word groups are found. Regarding the results, the most frequently used word groups are “he, is”, “I, do”, “I, am” for bigrams. Also, the most frequently used word groups are “I, do, not”, “I, am, not”, “I, can, not” for trigrams. In the machine learning phase, the accuracy of classifications is measured by Classification and Regression Trees (CART) and Naïve Bayes (NB) algorithms. The algorithms are used separately for bigrams and trigrams. We gained the highest accuracy and F-measure values by the NB algorithm and the highest precision and recall values by the CART algorithm for bigrams. On the other hand, the highest values for accuracy, precision, and F-measure values are achieved by the CART algorithm, and the highest value for the recall is gained by NB for trigrams.Keywords: classification algorithms, machine learning, sentiment analysis, Twitter
Procedia PDF Downloads 76