Search results for: Hyperspectral remote sensing
571 A Cluster Randomised Controlled Trial Investigating the Impact of Integrating Mass Drug Administration Treating Soil Transmitted Helminths with Mass Dog Rabies Vaccination in Remote Communities in Tanzania
Authors: Felix Lankester, Alicia Davis, Safari Kinung'hi, Catherine Bunga, Shayo Alkara, Imam Mzimbiri, Jonathan Yoder, Sarah Cleaveland, Guy H. Palmer
Abstract:
Achieving the London Declaration goal of a 90% reduction in neglected tropical diseases (NTDs) by 2030 requires cost-effective strategies that attain high and comprehensive coverage. The first objective of this trial was to assess the impact on cost and coverage of employing a novel integrative One Health approach linking two NTD control programs: mass drug administration (MDA) for soil-transmitted helminths in humans (STH) and mass dog rabies vaccination (MDRV). The second objective was to compare the coverage achieved by the MDA, a community-wide deworming intervention, with that of the existing national primary school-based deworming program (NSDP), with particular focus on the proportion of primary school-age children reached and their school enrolment status. Our approach was unconventional because, in line with the One Health approach to disease control, it coupled the responsibilities and resources of the Ministries responsible for human and animal health into one program with the shared aim of preventing multiple NTDs. The trial was carried out in hard-to-reach pastoral communities comprising 24 villages of the Ngorongoro District, Tanzania, randomly allocated to either Arm A (MDA and MDRV), Arm B (MDA only) or Arm C (MDRV only). Objective one: The percentage of people in each target village that received treatment through MDA in Arms A and B was 63% and 65%, respectively (χ2 = 1, p = 0.32). The percentage of dogs vaccinated in Arm A and C was 70% and 81%, respectively (χ2 =9, p = 0.003). It took 33% less time for a single person and a dog to attend the integrated delivery than two separate events. Cost per dose (including delivery) was lower under the integrated strategy, with delivery of deworming and rabies vaccination reduced by $0.13 (54%) and $0.85 (19%) per dose, respectively. Despite a slight reduction in the proportion of village dogs vaccinated in the integrated event, both the integrated and non-integrated strategies achieved the target threshold of 70% required to eliminate rabies. Objective two: The percentages of primary school age children enrolled in school that was reached by this trial (73%) and the existing NSDP (80%) were not significantly different (F = 0.9, p = 0.36). However, of the primary school age children treated in this trial, 46% were not enrolled in school. Furthermore, 86% of the people treated would have been outside the reach of the NSDP because they were not primary school age or were primary school age children not enrolled in school. The comparable reach, the substantial reductions in cost per dose delivered and the decrease in participants’ time support this integrated One Health approach to control multiple NTDs. Further, the recorded level of non-enrolment at primary school suggests that, in remote areas, school-based delivery strategies could miss a large fraction of school-age children and that programs that focus delivery solely at the level of the primary school will miss a substantial proportion of both primary school age children as well as other individuals from the community. We have shown that these populations can be effectively reached through extramural programs.Keywords: canine mediated human rabies, integrated health interventions, mass drug administration, neglected tropical disease, One Health, soil-transmitted helminths
Procedia PDF Downloads 179570 Visualization of Flow Behaviour in Micro-Cavities during Micro Injection Moulding
Authors: Reza Gheisari, Paulo J. Bartolo, Nicholas Goddard
Abstract:
Polymeric micro-cantilevers (Cs) are rapidly becoming popular for MEMS applications such as chemo- and bio-sensing as well as purely electromechanical applications such as microrelays. Polymer materials present suitable physical and chemical properties combined with low-cost mass production. Hence, micro-cantilevers made of polymers indicate much more biocompatibility and adaptability of rapid prototyping along with mechanical properties. This research studies the effects of three process and one size factors on the filling behaviour in micro cavity, and the role of each in the replication of micro parts using different polymer materials i.e. polypropylene (PP) SABIC 56M10 and acrylonitrile butadiene styrene (ABS) Magnum 8434. In particular, the following factors are considered: barrel temperature, mould temperature, injection speed and the thickness of micro features. The study revealed that the barrel temperature and the injection speed are the key factors affecting the flow length of micro features replicated in PP and ABS. For both materials, an increase of feature sizes improves the melt flow. However, the melt fill of micro features does not increase linearly with the increase of their thickness.Keywords: flow length, micro cantilevers, micro injection moulding, microfabrication
Procedia PDF Downloads 394569 Coil-Over Shock Absorbers Compared to Inherent Material Damping
Authors: Carina Emminger, Umut D. Cakmak, Evrim Burkut, Rene Preuer, Ingrid Graz, Zoltan Major
Abstract:
Damping accompanies us daily in everyday life and is used to protect (e.g., in shoes) and make our life more comfortable (damping of unwanted motion) and calm (noise reduction). In general, damping is the absorption of energy which is either stored in the material (vibration isolation systems) or changed into heat (vibration absorbers). In case of the last, the damping mechanism can be split in active, passive, as well as semi-active (a combination of active and passive). Active damping is required to enable an almost perfect damping over the whole application range and is used, for instance, in sport cars. In contrast, passive damping is a response of the material due to external loading. Consequently, the material composition has a huge influence on the damping behavior. For elastomers, the material behavior is inherent viscoelastic, temperature, and frequency dependent. However, passive damping is not adjustable during application. Therefore, it is of importance to understand the fundamental viscoelastic behavior and the dissipation capability due to external loading. The objective of this work is to assess the limitation and applicability of viscoelastic material damping for applications in which currently coil-over shock absorbers are utilized. Coil-over shock absorbers are usually made of various mechanical parts and incorporate fluids within the damper. These shock absorbers are well-known and studied in the industry, and when needed, they can be easily adjusted during their product lifetime. In contrary, dampers made of – ideally – a single material are more resource efficient, have an easier serviceability, and are easier manufactured. However, they lack of adaptability and adjustability in service. Therefore, a case study with a remote-controlled sport car was conducted. The original shock absorbers were redesigned, and the spring-dashpot system was replaced by both an elastomer and a thermoplastic-elastomer, respectively. Here, five different formulations of elastomers were used, including a pure and an iron-particle filled thermoplastic poly(urethan) (TPU) and blends of two different poly(dimethyl siloxane) (PDMS). In addition, the TPUs were investigated as full and hollow dampers to investigate the difference between solid and structured material. To get comparative results each material formulation was comprehensively characterized, by monotonic uniaxial compression tests, dynamic thermomechanical analysis (DTMA), and rebound resilience. Moreover, the new material-based shock absorbers were compared with spring-dashpot shock absorbers. The shock absorbers were analyzed under monotonic and cyclic loading. In addition, an impact loading was applied on the remote-controlled car to measure the damping properties in operation. A servo-hydraulic high-speed linear actuator was utilized to apply the loads. The acceleration of the car and the displacement of specific measurement points were recorded while testing by a sensor and high-speed camera, respectively. The results prove that elastomers are suitable in damping applications, but they are temperature and frequency dependent. This is a limitation in applicability of viscous material damper. Feasible fields of application may be in the case of micromobility, like bicycles, e-scooters, and e-skateboards. Furthermore, the viscous material damping could be used to increase the inherent damping of a whole structure, e.g., in bicycle-frames.Keywords: damper structures, material damping, PDMS, TPU
Procedia PDF Downloads 113568 Surface Plasmon Resonance Imaging-Based Epigenetic Assay for Blood DNA Post-Traumatic Stress Disorder Biomarkers
Authors: Judy M. Obliosca, Olivia Vest, Sandra Poulos, Kelsi Smith, Tammy Ferguson, Abigail Powers Lott, Alicia K. Smith, Yang Xu, Christopher K. Tison
Abstract:
Post-Traumatic Stress Disorder (PTSD) is a mental health problem that people may develop after experiencing traumatic events such as combat, natural disasters, and major emotional challenges. Tragically, the number of military personnel with PTSD correlates directly with the number of veterans who attempt suicide, with the highest rate in the Army. Research has shown epigenetic risks in those who are prone to several psychiatric dysfunctions, particularly PTSD. Once initiated in response to trauma, epigenetic alterations in particular, the DNA methylation in the form of 5-methylcytosine (5mC) alters chromatin structure and represses gene expression. Current methods to detect DNA methylation, such as bisulfite-based genomic sequencing techniques, are laborious and have massive analysis workflow while still having high error rates. A faster and simpler detection method of high sensitivity and precision would be useful in a clinical setting to confirm potential PTSD etiologies, prevent other psychiatric disorders, and improve military health. A nano-enhanced Surface Plasmon Resonance imaging (SPRi)-based assay that simultaneously detects site-specific 5mC base (termed as PTSD base) in methylated genes related to PTSD is being developed. The arrays on a sensing chip were first constructed for parallel detection of PTSD bases using synthetic and genomic DNA (gDNA) samples. For the gDNA sample extracted from the whole blood of a PTSD patient, the sample was first digested using specific restriction enzymes, and fragments were denatured to obtain single-stranded methylated target genes (ssDNA). The resulting mixture of ssDNA was then injected into the assay platform, where targets were captured by specific DNA aptamer probes previously immobilized on the surface of a sensing chip. The PTSD bases in targets were detected by anti-5-methylcytosine antibody (anti-5mC), and the resulting signals were then enhanced by the universal nanoenhancer. Preliminary results showed successful detection of a PTSD base in a gDNA sample. Brighter spot images and higher delta values (control-subtracted reflectivity signal) relative to those of the control were observed. We also implemented the in-house surface activation system for detection and developed SPRi disposable chips. Multiplexed PTSD base detection of target methylated genes in blood DNA from PTSD patients of severity conditions (asymptomatic and severe) was conducted. This diagnostic capability being developed is a platform technology, and upon successful implementation for PTSD, it could be reconfigured for the study of a wide variety of neurological disorders such as traumatic brain injury, Alzheimer’s disease, schizophrenia, and Huntington's disease and can be extended to the analyses of other sample matrices such as urine and saliva.Keywords: epigenetic assay, DNA methylation, PTSD, whole blood, multiplexing
Procedia PDF Downloads 121567 Perception-Oriented Model Driven Development for Designing Data Acquisition Process in Wireless Sensor Networks
Authors: K. Indra Gandhi
Abstract:
Wireless Sensor Networks (WSNs) have always been characterized for application-specific sensing, relaying and collection of information for further analysis. However, software development was not considered as a separate entity in this process of data collection which has posed severe limitations on the software development for WSN. Software development for WSN is a complex process since the components involved are data-driven, network-driven and application-driven in nature. This implies that there is a tremendous need for the separation of concern from the software development perspective. A layered approach for developing data acquisition design based on Model Driven Development (MDD) has been proposed as the sensed data collection process itself varies depending upon the application taken into consideration. This work focuses on the layered view of the data acquisition process so as to ease the software point of development. A metamodel has been proposed that enables reusability and realization of the software development as an adaptable component for WSN systems. Further, observing users perception indicates that proposed model helps in improving the programmer's productivity by realizing the collaborative system involved.Keywords: data acquisition, model-driven development, separation of concern, wireless sensor networks
Procedia PDF Downloads 434566 Design and Implementation of a Monitoring System Using Arduino and MATLAB
Authors: Jonas P. Reges, Jessyca A. Bessa, Auzuir R. Alexandria
Abstract:
The research came up with the need of monitoring them of temperature and relative moisture in past work that enveloped the study of a greenhouse located in the Research and Extension Unit(UEPE). This research brought several unknowns that were resolved from bibliographical research. Based on the studies performed were found some monitoring methods, including the serial communication between the arduino and matlab which showed a great option due to the low cost. The project was conducted in two stages, the first, an algorithm was developed to the Arduino and Matlab, and second, the circuits were assembled and performed the monitoring tests the following variables: moisture, temperature, and distance. During testing it was possible to momentarily observe the change in the levels of monitored variables. The project showed satisfactory results, such as: real-time verification of the change of state variables, the low cost of acquisition of the prototype, possibility of easy change of programming for the execution of monitoring of other variables. Therefore, the project showed the possibility of monitoring through software and hardware that have easy programming and can be used in several areas. However, it is observed also the possibility of improving the project from a remote monitoring via Bluetooth or web server and through the control of monitored variables.Keywords: automation, monitoring, programming, arduino, matlab
Procedia PDF Downloads 512565 Digital Twin Technology: A Solution for Remote Operation and Productivity Improvement During Covid-19 Era and Future
Authors: Muhamad Sahir Bin Ahmad Shatiry, Wan Normeza Wan Zakaria, Mohamad Zaki Hassan
Abstract:
The pandemic Covid19 has significantly impacted the world; the spreading of the Covid19 virus initially from China has dramatically impacted the world's economy. Therefore, the world reacts with establishing the new way or norm in daily life. The rapid rise of the latest technology has been seen by introducing many technologies to ease human life to have a minor contract between humans and avoid spreading the virus Covid19. Digital twin technologies are one of the technologies created before the pandemic Covid19 but slow adoption in the industry. Throughout the Covid19, most of the companies in the world started to explore to use it. The digital twin technology provides the virtual platform to replicate the existing condition or setup for anything such as office, manufacturing line, factories' machine, building, and many more. This study investigates the effect on the economic perspective after the companies use the Digital Twin technology in the industry. To minimize the contact between humans and to have the ability to operate the system digitally remotely. In this study, the explanation of the digital twin technology impacts the world's microeconomic and macroeconomic.Keywords: productivity, artificially intelligence, IoT, digital twin
Procedia PDF Downloads 200564 Challenges Affecting the Livelihoods of Small-Scale, Aggregate Miners, Vhembe District, Limpopo Province, South Africa
Authors: Ndivhudzannyi Rembuluwani, Francis Dacosta, Emmanuel Mhlongo
Abstract:
The small-scale rock aggregate sector of the mining industry is a major source of employment for a significant number of people, particularly in remote rural areas, where alternative livelihoods are rare. It contributes to local economy by generating income and producing major and essential materials for the building, construction, and other industries. However, the sector is confronted with many challenges that hamper productivity and growth. The problems that confront this sector includes: health and safety, environmental impacts, low production and low adherence to mining legislations. This study investigated the challenges confronting selected small-scale rock aggregate mines in the Vhembe District of Limpopo province of South Africa, assesses the health, safety, low production and environmental impacts associated with aggregate production and to develop an integrated approach of addressing the multi-faceted challenges.Keywords: health and safety, legislative framework, productivity, rock aggregate, small-scale mining
Procedia PDF Downloads 503563 Core-Shell Structured Magnetic Nanoparticles for Efficient Hyperthermia Cancer Treatment
Authors: M. R. Phadatare, J. V. Meshram, S. H. Pawar
Abstract:
Conversion of electromagnetic energy into heat by nanoparticles (NPs) has the potential to be a powerful, non-invasive technique for biomedical applications such as magnetic fluid hyperthermia, drug release, disease treatment and remote control of single cell functions, but poor conversion efficiencies have hindered practical applications so far. In this paper, an attempt has been made to increase the efficiency of magnetic, thermal induction by NPs. To increase the efficiency of magnetic, thermal induction by NPs, one can take advantage of the exchange coupling between a magnetically hard core and magnetically soft shell to tune the magnetic properties of the NP and maximize the specific absorption rate, which is the gauge of conversion efficiency. In order to examine the tunability of magnetocrystalline anisotropy and its magnetic heating power, a representative magnetically hard material (CoFe₂O₄) has been coupled to a soft material (Ni₀.₅Zn₀.₅Fe₂O₄). The synthesized NPs show specific absorption rates that are of an order of magnitude larger than the conventional one.Keywords: magnetic nanoparticles, surface functionalization of magnetic nanoparticles, magnetic fluid hyperthermia, specific absorption rate
Procedia PDF Downloads 318562 Maackiain Attenuates Alpha-Synuclein Accumulation and Improves 6-OHDA-Induced Dopaminergic Neuron Degeneration in Parkinson's Disease Animal Model
Authors: Shao-Hsuan Chien, Ju-Hui Fu
Abstract:
Parkinson’s disease (PD) is a degenerative disorder of the central nervous system that is characterized by progressive loss of dopaminergic neurons in the substantia nigra pars compacta and motor impairment. Aggregation of α-synuclein in neuronal cells plays a key role in this disease. At present, therapeutics for PD provides moderate symptomatic benefit but is not able to delay the development of this disease. Current efforts for the treatment of PD are to identify new drugs that show slow or arrest progressive course of PD by interfering with a disease-specific pathogenetic process in PD patients. Maackiain is a bioactive compound isolated from the roots of the Chinese herb Sophora flavescens. The purpose of the present study was to assess the potential for maackiain to ameliorate PD in Caenorhabditis elegans models. Our data reveal that maackiain prevents α-synuclein accumulation in the transgenic Caenorhabditis elegans model and also improves dopaminergic neuron degeneration, food-sensing behavior, and life-span in 6-hydroxydopamine-induced Caenorhabditis elegans model, thus indicating its potential as a candidate antiparkinsonian drug.Keywords: maackiain, Parkinson’s disease, dopaminergic neurons, α-Synuclein
Procedia PDF Downloads 197561 Sensing Study through Resonance Energy and Electron Transfer between Föster Resonance Energy Transfer Pair of Fluorescent Copolymers and Nitro-Compounds
Authors: Vishal Kumar, Soumitra Satapathi
Abstract:
Föster Resonance Energy Transfer (FRET) is a powerful technique used to probe close-range molecular interactions. Physically, the FRET phenomenon manifests as a dipole–dipole interaction between closely juxtaposed fluorescent molecules (10–100 Å). Our effort is to employ this FRET technique to make a prototype device for highly sensitive detection of environment pollutant. Among the most common environmental pollutants, nitroaromatic compounds (NACs) are of particular interest because of their durability and toxicity. That’s why, sensitive and selective detection of small amounts of nitroaromatic explosives, in particular, 2,4,6-trinitrophenol (TNP), 2,4-dinitrotoluene (DNT) and 2,4,6-trinitrotoluene (TNT) has been a critical challenge due to the increasing threat of explosive-based terrorism and the need of environmental monitoring of drinking and waste water. In addition, the excessive utilization of TNP in several other areas such as burn ointment, pesticides, glass and the leather industry resulted in environmental accumulation, and is eventually contaminating the soil and aquatic systems. To the date, high number of elegant methods, including fluorimetry, gas chromatography, mass, ion-mobility and Raman spectrometry have been successfully applied for explosive detection. Among these efforts, fluorescence-quenching methods based on the mechanism of FRET show good assembly flexibility, high selectivity and sensitivity. Here, we report a FRET-based sensor system for the highly selective detection of NACs, such as TNP, DNT and TNT. The sensor system is composed of a copolymer Poly [(N,N-dimethylacrylamide)-co-(Boc-Trp-EMA)] (RP) bearing tryptophan derivative in the side chain as donor and dansyl tagged copolymer P(MMA-co-Dansyl-Ala-HEMA) (DCP) as an acceptor. Initially, the inherent fluorescence of RP copolymer is quenched by non-radiative energy transfer to DCP which only happens once the two molecules are within Förster critical distance (R0). The excellent spectral overlap (Jλ= 6.08×10¹⁴ nm⁴M⁻¹cm⁻¹) between donors’ (RP) emission profile and acceptors’ (DCP) absorption profile makes them an exciting and efficient FRET pair i.e. further confirmed by the high rate of energy transfer from RP to DCP i.e. 0.87 ns⁻¹ and lifetime measurement by time correlated single photon counting (TCSPC) to validate the 64% FRET efficiency. This FRET pair exhibited a specific fluorescence response to NACs such as DNT, TNT and TNP with 5.4, 2.3 and 0.4 µM LODs, respectively. The detection of NACs occurs with high sensitivity by photoluminescence quenching of FRET signal induced by photo-induced electron transfer (PET) from electron-rich FRET pair to electron-deficient NAC molecules. The estimated stern-volmer constant (KSV) values for DNT, TNT and TNP are 6.9 × 10³, 7.0 × 10³ and 1.6 × 104 M⁻¹, respectively. The mechanistic details of molecular interactions are established by time-resolved fluorescence, steady-state fluorescence and absorption spectroscopy confirmed that the sensing process is of mixed type, i.e. both dynamic and static quenching as lifetime of FRET system (0.73 ns) is reduced to 0.55, 0.57 and 0.61 ns DNT, TNT and TNP, respectively. In summary, the simplicity and sensitivity of this novel FRET sensor opens up the possibility of designing optical sensor of various NACs in one single platform for developing multimodal sensor for environmental monitoring and future field based study.Keywords: FRET, nitroaromatic, stern-Volmer constant, tryptophan and dansyl tagged copolymer
Procedia PDF Downloads 133560 Ambidentate Ligands as Platforms for Efficient Synthesis of Pd-based Metallosupramolecular Cages
Authors: Wojcieh Drożdż, Artur R. Stefankiewicz
Abstract:
Ambidentate ligands can be described as organic structures possessing two different types of coordination units within a single molecule. These features enable the coordination of two different metal ions, which can directly affect the properties of obtained complexes as well as further application. In the current research, we focused on a β-diketone ligand containing terminally located pyridine units in order to assemble cage-like architectures. This will be possible due to the peculiar geometry of the proposed ligands, called "banana-shape", widely used in the synthesis of sophisticated metallosupramolecular architectures. Each of the coordination units plays an important role in cage assembly. Pyridine units enable the coordination of square-planar metal ions (Pd²⁺, Pt²⁺), forming a positively charged cage. On the other hand, the β-diketone group provides the possibility of post-modification, including the introduction of additional functional groups with specific properties (sensing, catalytic, etc.). Such obtained cages are of great interest due to their application potential, including storage or transport of guest molecules, selective detection/separation of analytes as well as efficient catalytic processes.Keywords: metalloligands, coordination cages, nanoreactors, β-diketonate complexes
Procedia PDF Downloads 71559 Textile Based Physical Wearable Sensors for Healthcare Monitoring in Medical and Protective Garments
Authors: Sejuti Malakar
Abstract:
Textile sensors have gained a lot of interest in recent years as it is instrumental in monitoring physiological and environmental changes, for a better diagnosis that can be useful in various fields like medical textiles, sports textiles, protective textiles, agro textiles, and geo-textiles. Moreover, with the development of flexible textile-based wearable sensors, the functionality of smart clothing is augmented for a more improved user experience when it comes to technical textiles. In this context, conductive textiles using new composites and nanomaterials are being developed while considering its compatibility with the textile manufacturing processes. This review aims to provide a comprehensive and detailed overview of the contemporary advancements in textile-based wearable physical sensors, used in the field of medical, security, surveillance, and protection, from a global perspective. The methodology used is through analysing various examples of integration of wearable textile-based sensors with clothing for daily use, keeping in mind the technological advances in the same. By comparing various case studies, we come across various challenges textile sensors, in terms of stability, the comfort of movement, and reliable sensing components to enable accurate measurements, in spite of progress in the engineering of the wearable. Addressing such concerns is critical for the future success of wearable sensors.Keywords: flexible textile-based wearable sensors, contemporary advancements, conductive textiles, body conformal design
Procedia PDF Downloads 182558 Green-synthesized of Selenium Nanoparticles Using Garlic Extract and Their Application for Rapid Detection of Salicylic Acid in Milk
Authors: Kashif Jabbar
Abstract:
Milk adulteration is a global concern, and the current study was plan to synthesize Selenium nanoparticles by green method using plant extract of garlic, Allium Sativum, and to characterize Selenium nanoparticles through different analytical techniques and to apply Selenium nanoparticles as fast and easy technique for the detection of salicylic acid in milk. The highly selective, sensitive, and quick interference green synthesis-based sensing of possible milk adulterants i.e., salicylic acid, has been reported here. Salicylic acid interacts with nanoparticles through strong bonding interactions, hence resulting in an interruption within the formation of selenium nanoparticles which is confirmed by UV-VIS spectroscopy, scanning electron microscopy, and x-ray diffraction. This interaction in the synthesis of nanoparticles resulted in transmittance wavelength that decrease with the increasing amount of salicylic acid, showing strong binding of selenium nanoparticles with adulterant, thereby permitting in-situ fast detection of salicylic acid from milk having a limit of detection at 10-3 mol and linear coefficient correlation of 0.9907. Conclusively, it can be draw that colloidal selenium could be synthesize successfully by garlic extract in order to serve as a probe for fast and cheap testing of milk adulteration.Keywords: adulteration, green synthesis, selenium nanoparticles, salicylic acid, aggregation
Procedia PDF Downloads 80557 Contesting Discourses in Physical Education: A Critical Discourse Analysis of 20 Textbooks Used in Physical Education Teacher Education in Denmark
Authors: Annemari Munk Svendsen, Jesper Tinggaard Svendsen
Abstract:
The purpose of this study was to investigate different discourses about the body, movement and the main progression in and aim of Physical Education (PE) that are immersed within Physical Education Teacher Education (PETE) textbooks. The study was based on an examination of Danish PETE course documents listing 296 educational texts prescribed by PETE teachers for PETE programs in Denmark. It presents a more specific analysis of the 20 most used textbooks in Danish PETE. The study found three different discourses termed: (1) Developing the potential for sport, (2) Basis for creative sensing and (3) Being part of a cultural ballast. These discourses represent different ways of conceptualising and appraising PE as a school subject. The results also suggest that PETE textbooks are deeply involved in the (re)construction, struggling and ‘working’ of classical discourses in PE. Furthermore, that PETE textbooks comprise powerful documents that through their recurrent use of high modality are tending to be unequivocal in their suggestions for PE practices. On the basis of these findings, the presentation suggests that PETE teachers may use textbook analysis in the educational program as a tool for enhancing critical reflections upon central ideological dilemmas in PE.Keywords: critical discourse analysis, critical reflection, physical education teacher education, textbooks
Procedia PDF Downloads 294556 End-to-End Pyramid Based Method for Magnetic Resonance Imaging Reconstruction
Authors: Omer Cahana, Ofer Levi, Maya Herman
Abstract:
Magnetic Resonance Imaging (MRI) is a lengthy medical scan that stems from a long acquisition time. Its length is mainly due to the traditional sampling theorem, which defines a lower boundary for sampling. However, it is still possible to accelerate the scan by using a different approach such as Compress Sensing (CS) or Parallel Imaging (PI). These two complementary methods can be combined to achieve a faster scan with high-fidelity imaging. To achieve that, two conditions must be satisfied: i) the signal must be sparse under a known transform domain, and ii) the sampling method must be incoherent. In addition, a nonlinear reconstruction algorithm must be applied to recover the signal. While the rapid advances in Deep Learning (DL) have had tremendous successes in various computer vision tasks, the field of MRI reconstruction is still in its early stages. In this paper, we present an end-to-end method for MRI reconstruction from k-space to image. Our method contains two parts. The first is sensitivity map estimation (SME), which is a small yet effective network that can easily be extended to a variable number of coils. The second is reconstruction, which is a top-down architecture with lateral connections developed for building high-level refinement at all scales. Our method holds the state-of-art fastMRI benchmark, which is the largest, most diverse benchmark for MRI reconstruction.Keywords: magnetic resonance imaging, image reconstruction, pyramid network, deep learning
Procedia PDF Downloads 90555 Analysis and Evaluation of Both AC and DC Standalone Photovoltaic Supply to Ethio-Telecom Access Layer Devices: The Case of Multi-Service Access Gateway in Adama
Authors: Frie Ayalew, Seada Hussen
Abstract:
Ethio-telecom holds a variety of telecom devices that needs a consistent power source to be operational. The company got this power mainly from the national grid and used this power source alone or with a generator and/or batteries as a backup. In addition, for off-grid or remote areas, the company commonly uses generators and batteries. But unstable diesel prices, huge expenses of fuel and transportation, and high carbon emissions are the main problems associated with fuel energy. So, the design of solar power with battery backup is a highly recommended and advantageous source for the next coming years. This project designs the AC and DC standalone photovoltaic supply to Ethio-telecom access layer devices for the case of multi-service access gateway in Adama. The design is done by using Homer software for both AC and DC loads. The project shows that the design of a solar based microgrid is the best option for the designed area.Keywords: solar power, battery, inverter, Ethio-telecom, solar radiation
Procedia PDF Downloads 80554 The Use of Lane-Centering to Assure the Visible Light Communication Connectivity for a Platoon of Autonomous Vehicles
Authors: Mohammad Y. Abualhoul, Edgar Talavera Munoz, Fawzi Nashashibi
Abstract:
The new emerging Visible Light Communication (VLC) technology has been subjected to intensive investigation, evaluation, and lately, deployed in the context of convoy-based applications for Intelligent Transportations Systems (ITS). The technology limitations were defined and supported by different solutions proposals to enhance the crucial alignment and mobility limitations. In this paper, we propose the incorporation of VLC technology and Lane-Centering (LC) technique to assure the VLC-connectivity by keeping the autonomous vehicle aligned to the lane center using vision-based lane detection in a convoy-based formation. Such combination can ensure the optical communication connectivity with a lateral error less than 30 cm. As soon as the road lanes are detectable, the evaluated system showed stable behavior independently from the inter-vehicle distances and without the need for any exchanged information of the remote vehicles. The evaluation of the proposed system is verified using VLC prototype and an empirical result of LC running application over 60 km in Madrid M40 highway.Keywords: visible light communication, lane-centerin, platooning, intelligent transportation systems, road safety applications
Procedia PDF Downloads 169553 Climate Change and Food Security: Effects of Ozone on Crops in North-West Pakistan
Authors: Muhammad Nauman Ahmad, Patrick Büker, Sofia Khalid, Leon Van Den Berg, Hamid Ullah Shah, Abdul Wahid, Lisa Emberson, Sally A. Power, Mike Ashmore
Abstract:
Although ozone is well-documented to affect crop yields in the densely populated Indo-Gangetic Plain, there is little knowledge of its effects around cities in more remote areas of South Asia. We surveyed crops around the city of Peshawar, Pakistan for visible injury, linking this to passive measurements of ozone concentrations. Foliar injury was found in the field on potato, onion and cotton when the mean monthly ozone concentration reached 35-55ppb. The symptoms on onion were reproduced in ozone fumigation experiments, which also showed that daytime ozone concentrations of 60ppb and above significantly reduce the growth of Pakistani varieties of both spinach (Beta vulgaris) and onion. Aphid infestation on spinach was also reduced at these elevated ozone concentrations. The ozone concentrations in Peshawar are comparable to those through many parts of northern south Asia, where ozone may therefore be a significant threat to sensitive vegetable crops in peri-urban regions.Keywords: ozone, air pollution, vegetable crops, peshawar, south asia
Procedia PDF Downloads 740552 Wind Energy Potential of Southern Sindh, Pakistan for Power Generation
Authors: M. Akhlaque Ahmed, Maliha Afshan Siddiqui
Abstract:
A study has been carried out to see the prospect of wind power potential of southern Sindh namely Karachi, Hawksbay, Norriabad, Hyderabad, Ketibander and Shahbander using local wind speed data. The monthly average wind speed for these area ranges from 4.5m/sec to 8.5m/sec at 30m height from ground. Extractable wind power, wind energy and Weibul parameter for above mentioned areas have been examined. Furthermore, the power output using fast and slow wind machine using different blade diameter along with the 4Kw and 20 Kw aero-generator were examined to see the possible use for deep well pumping and electricity supply to remote villages. The analysis reveals that in this wind corridor of southern Sindh Hawksbay, Ketibander and Shahbander belongs to wind power class-3 Hyderabad and Nooriabad belongs to wind power class-5 and Karachi belongs to wind power class-2. The result shows that the that higher wind speed values occur between June till August. It was found that considering maximum wind speed location, Hawksbay,Noriabad are the best location for setting up wind machines for power generation.Keywords: wind energy generation, Southern Sindh, seasonal change, Weibull parameter, wind machines
Procedia PDF Downloads 147551 A Plan of Smart Management for Groundwater Resources
Authors: Jennifer Chen, Pei Y. Hsu, Yu W. Chen
Abstract:
Groundwater resources play a vital role in regional water supply because over 1/3 of total demand is satisfied by groundwater resources. Because over-pumpage might cause environmental impact such as land subsidence, a sustainable management of groundwater resource is required. In this study, a blueprint of smart management for groundwater resource is proposed and planned. The framework of the smart management can be divided into two major parts, hardware and software parts. First, an internet of groundwater (IoG) which is inspired by the internet of thing (IoT) is proposed to observe the migration of groundwater usage and the associated response, groundwater levels. Second, algorithms based on data mining and signal analysis are proposed to achieve the goal of providing highly efficient management of groundwater. The entire blueprint is a 4-year plan and this year is the first year. We have finished the installation of 50 flow meters and 17 observation wells. An underground hydrological model is proposed to determine the associated drawdown caused by the measured pumpages. Besides, an alternative to the flow meter is also proposed to decrease the installation cost of IoG. An accelerometer and 3G remote transmission are proposed to detect the on and off of groundwater pumpage.Keywords: groundwater management, internet of groundwater, underground hydrological model, alternative of flow meter
Procedia PDF Downloads 375550 Study of the Mega–Landslide at the Community of Ropoto, Central Greece, and of the Design of Mitigation and Early Warning System Using the Fiber Bragg Grating Technology
Authors: Michael Bellas, George Voulgaridis
Abstract:
This paper refers to the world known mega - landslide induced at the community of Ropoto, belonging to the Municipality of Trikala, in the Central part of Greece. The landslide affected the debris as well as the colluvium mantle of the flysch, and makes up a special case of study in engineering geology and geotechnical engineering not only because of the size of the domain affected by the landslide (approximately 750m long), but also because of the geostructure’s global behavior. Due to the landslide, the whole community’s infrastructure massively collapsed and human lives were put in danger. After the complete simulation of the coupled Seepage - Deformation phenomenon due to the extreme rainfall, and by closely examining the slope’s global behavior, both the mitigation of the landslide, as well as, an advanced surveillance method (Fiber Bragg Grating) using fiber optics were further studied, in order both to retain the geostructure and to monitor its health by creating an early warning system, which would serve as a complete safety net for saving both the community’s infrastructure as well as the lives of its habitats.Keywords: landslide, remediation measures, the finite element method (FEM), Fiber Bragg Grating (FBG) sensing method
Procedia PDF Downloads 328549 Ultra-Wideband (45-50 GHz) mm-Wave Substrate Integrated Waveguide Cavity Slots Antenna for Future Satellite Communications
Authors: Najib Al-Fadhali, Huda Majid
Abstract:
In this article, a substrate integrated waveguide cavity slot antenna was designed using a computer simulation technology software tool to address the specific design challenges for millimeter-wave communications posed by future satellite communications. Due to the symmetrical structure, a high-order mode is generated in SIW, which yields high gain and high efficiency with a compact feed structure. The antenna has dimensions of 20 mm x 20 mm x 1.34 mm. The proposed antenna bandwidth ranges from 45 GHz to 50 GHz, covering a Q-band application such as satellite communication. Antenna efficiency is above 80% over the operational frequency range. The gain of the antenna is above 9 dB with a peak value of 9.4 dB at 47.5 GHz. The proposed antenna is suitable for various millimeter-wave applications such as sensing, body imaging, indoor scenarios, new generations of wireless networks, and future satellite communications. The simulated results show that the SIW antenna resonates throughout the bands of 45 to 50 GHz, making this new antenna cover all applications within this range. The reflection coefficients are below 10 dB in most ranges from 45 to 50 GHz. The compactness, integrity, reliability, and performance at various operating frequencies make the proposed antenna a good candidate for future satellite communications.Keywords: ultra-wideband, Q-band, SIW, mm-wave, satellite communications
Procedia PDF Downloads 83548 Designing and Analyzing Sensor and Actuator of a Nano/Micro-System for Fatigue and Fracture Characterization of Nanomaterials
Authors: Mohammad Reza Zamani Kouhpanji
Abstract:
This paper presents a MEMS/NEMS device for fatigue and fracture characterization of nanomaterials. This device can apply static loads, cyclic loads, and their combinations in nanomechanical experiments. It is based on the electromagnetic force induced between paired parallel wires carrying electrical currents. Using this concept, the actuator and sensor parts of the device were designed and analyzed while considering the practical limitations. Since the PWCC device only uses two wires for actuation part and sensing part, its fabrication process is extremely easier than the available MEMS/NEMS devices. The total gain and phase shift of the MEMS/NEMS device were calculated and investigated. Furthermore, the maximum gain and sensitivity of the MEMS/NEMS device were studied to demonstrate the capability and usability of the device for wide range of nanomaterials samples. This device can be readily integrated into SEM/TEM instruments to provide real time study of the mechanical behaviors of nanomaterials as well as their fatigue and fracture properties, softening or hardening behaviors, and initiation and propagation of nanocracks.Keywords: sensors and actuators, MEMS/NEMS devices, fatigue and fracture nanomechanical testing device, static and cyclic nanomechanical testing device
Procedia PDF Downloads 296547 Power System Modeling for Calculations in Frequency and Steady State Domain
Authors: G. Levacic, A. Zupan
Abstract:
Application of new technological solutions and installation of new elements into the network requires special attention when investigating its interaction with the existing power system. Special attention needs to be devoted to the occurrence of harmonic resonance. Sources of increasing harmonic penetration could be wind power plants, Flexible Alternating Current Transmission System (FACTS) devices, underground and submarine cable installations etc. Calculation in frequency domain with various software, for example, the software for power systems transients EMTP-RV presents one of the most common ways to obtain the harmonic impedance of the system. Along calculations in frequency domain, such software allows performing of different type of calculations as well as steady-state domain. This paper describes a power system modeling with software EMTP-RV based on data from SCADA/EMS system. The power flow results on 220 kV and 400 kV voltage levels retrieved from EMTP-RV are verified by comparing with power flow results from power transmissions system planning software PSS/E. The determination of the harmonic impedance for the case of remote power plant connection with cable up to 2500 Hz is presented as an example of calculations in frequency domain.Keywords: power system modeling, frequency domain, steady state, EMTP-RV, PSS/E
Procedia PDF Downloads 319546 Collaborative Implementation of Master Plans in Afghanistan's Context Considering Land Readjustment as Case Study
Authors: Ahmad Javid Habib, Tetsuo Kidokoro
Abstract:
There is an increasing demand for developing urban land to provide better living conditions for all citizens in Afghanistan. Most of the development will involve the acquisition of land. And the current land acquisition method practiced by central government is expropriation, which is a cash-based transaction method that imposes heavy fiscal burden on local municipalities and central government, and it does not protect ownership rights and social equity of landowners besides it relocates the urban poor to remote areas with limited access to jobs and public services. The questionnaire analysis, backed by observations of different case studies in countries where land readjustment is used as a collaborative land development tool indicates that the method plays a key role in valuing landowners’ rights, giving other community members and stakeholders the opportunity to collaboratively implement urban development projects. The practice of the method is reducing the heavy fiscal burden on the local and central governments and is a better option to deal with the current development challenges in Afghanistan.Keywords: collaboration, land readjustment, master plan, expropriation
Procedia PDF Downloads 295545 Influence of the Flow Rate Ratio in a Jet Pump on the Size of Air Bubbles
Authors: L. Grinis, N. Lubashevsky, Y. Ostrovski
Abstract:
In waste water treatment processes, aeration introduces air into a liquid. In these systems, air is introduced by different devices submerged in the waste water. Smaller bubbles result in more bubble surface area per unit of volume and higher oxygen transfer efficiency. Jet pumps are devices that use air bubbles and are widely used in waste water treatment processes. The principle of jet pumps is their ability to transfer energy of one fluid, called primary or motive, into a secondary fluid or gas. These pumps have no moving parts and are able to work in remote areas under extreme conditions. The objective of this work is to study experimentally the characteristics of the jet pump and the size of air bubbles in the laboratory water tank. The effect of flow rate ratio on pump performance is investigated in order to have a better understanding about pump behavior under various conditions, in order to determine the efficiency of receiving air bubbles different sizes. The experiments show that we should take care when increasing the flow rate ratio while seeking to decrease bubble size in the outlet flow. This study will help improve and extend the use of the jet pump in many practical applications.Keywords: jet pump, air bubbles size, retention time, waste water
Procedia PDF Downloads 306544 Integrated Flavor Sensor Using Microbead Array
Authors: Ziba Omidi, Min-Ki Kim
Abstract:
This research presents the design, fabrication and application of a flavor sensor for an integrated electronic tongue and electronic nose that can allow rapid characterization of multi-component mixtures in a solution. The odor gas and liquid are separated using hydrophobic porous membrane in micro fluidic channel. The sensor uses an array composed of microbeads in micromachined cavities localized on silicon wafer. Sensing occurs via colorimetric and fluorescence changes to receptors and indicator molecules that are attached to termination sites on the polymeric microbeads. As a result, the sensor array system enables simultaneous and near-real-time analyses using small samples and reagent volumes with the capacity to incorporate significant redundancies. One of the key parts of the system is a passive pump driven only by capillary force. The hydrophilic surface of the fluidic structure draws the sample into the sensor array without any moving mechanical parts. Since there is no moving mechanical component in the structure, the size of the fluidic structure can be compact and the fabrication becomes simple when compared to the device including active microfluidic components. These factors should make the proposed system inexpensive to mass-produce, portable and compatible with biomedical applications.Keywords: optical sensor, semiconductor manufacturing, smell sensor, taste sensor
Procedia PDF Downloads 438543 Cement-Based Composites with Carbon Nanofillers for Smart Structural Health Monitoring Sensors
Authors: Antonella D'Alessandro, Filippo Ubertini, Annibale Luigi Materazzi
Abstract:
The progress of nanotechnology resulted in the development of new instruments in the field of civil engineering. In particular, the introduction of carbon nanofillers into construction materials can enhance their mechanical and electrical properties. In construction, concrete is among the most used materials. Due to the characteristics of its components and its structure, concrete is suitable for modification, at the nanometer level too. Moreover, to guarantee structural safety, it is desirable to achieve a widespread monitoring of structures. The ideal thing would be to realize structures able to identify their behavior modifications, states of incipient damage or conditions of possible risk for people. This paper presents a research work about novel cementitious composites with conductive carbon nanoinclusions able of monitoring their state of deformation, with particular attention to concrete. The self-sensing ability is achieved through the correlation between the variation of stress or strain and that of electrical resistance. Carbon nanofillers appear particularly suitable for such applications. Nanomodified concretes with different carbon nanofillers has been tested. The samples have been subjected to cyclic and dynamic loads. The experimental campaign shows the potentialities of this new type of sensors made of nanomodified concrete for diffuse Structural Health Monitoring.Keywords: carbon nanofillers, cementitious nanocomposites, smart sensors, structural health monitoring.
Procedia PDF Downloads 334542 Anajaa-Visual Substitution System: A Navigation Assistive Device for the Visually Impaired
Authors: Juan Pablo Botero Torres, Alba Avila, Luis Felipe Giraldo
Abstract:
Independent navigation and mobility through unknown spaces pose a challenge for the autonomy of visually impaired people (VIP), who have relied on the use of traditional assistive tools like the white cane and trained dogs. However, emerging visually assistive technologies (VAT) have proposed several human-machine interfaces (HMIs) that could improve VIP’s ability for self-guidance. Hereby, we introduce the design and implementation of a visually assistive device, Anajaa – Visual Substitution System (AVSS). This system integrates ultrasonic sensors with custom electronics, and computer vision models (convolutional neural networks), in order to achieve a robust system that acquires information of the surrounding space and transmits it to the user in an intuitive and efficient manner. AVSS consists of two modules: the sensing and the actuation module, which are fitted to a chest mount and belt that communicate via Bluetooth. The sensing module was designed for the acquisition and processing of proximity signals provided by an array of ultrasonic sensors. The distribution of these within the chest mount allows an accurate representation of the surrounding space, discretized in three different levels of proximity, ranging from 0 to 6 meters. Additionally, this module is fitted with an RGB-D camera used to detect potentially threatening obstacles, like staircases, using a convolutional neural network specifically trained for this purpose. Posteriorly, the depth data is used to estimate the distance between the stairs and the user. The information gathered from this module is then sent to the actuation module that creates an HMI, by the means of a 3x2 array of vibration motors that make up the tactile display and allow the system to deliver haptic feedback. The actuation module uses vibrational messages (tactones); changing both in amplitude and frequency to deliver different awareness levels according to the proximity of the obstacle. This enables the system to deliver an intuitive interface. Both modules were tested under lab conditions, and the HMI was additionally tested with a focal group of VIP. The lab testing was conducted in order to establish the processing speed of the computer vision algorithms. This experimentation determined that the model can process 0.59 frames per second (FPS); this is considered as an adequate processing speed taking into account that the walking speed of VIP is 1.439 m/s. In order to test the HMI, we conducted a focal group composed of two females and two males between the ages of 35-65 years. The subject selection was aided by the Colombian Cooperative of Work and Services for the Sightless (COOTRASIN). We analyzed the learning process of the haptic messages throughout five experimentation sessions using two metrics: message discrimination and localization success. These correspond to the ability of the subjects to recognize different tactones and locate them within the tactile display. Both were calculated as the mean across all subjects. Results show that the focal group achieved message discrimination of 70% and a localization success of 80%, demonstrating how the proposed HMI leads to the appropriation and understanding of the feedback messages, enabling the user’s awareness of its surrounding space.Keywords: computer vision on embedded systems, electronic trave aids, human-machine interface, haptic feedback, visual assistive technologies, vision substitution systems
Procedia PDF Downloads 80