Search results for: practice performance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16705

Search results for: practice performance

4345 Medical Image Augmentation Using Spatial Transformations for Convolutional Neural Network

Authors: Trupti Chavan, Ramachandra Guda, Kameshwar Rao

Abstract:

The lack of data is a pain problem in medical image analysis using a convolutional neural network (CNN). This work uses various spatial transformation techniques to address the medical image augmentation issue for knee detection and localization using an enhanced single shot detector (SSD) network. The spatial transforms like a negative, histogram equalization, power law, sharpening, averaging, gaussian blurring, etc. help to generate more samples, serve as pre-processing methods, and highlight the features of interest. The experimentation is done on the OpenKnee dataset which is a collection of knee images from the openly available online sources. The CNN called enhanced single shot detector (SSD) is utilized for the detection and localization of the knee joint from a given X-ray image. It is an enhanced version of the famous SSD network and is modified in such a way that it will reduce the number of prediction boxes at the output side. It consists of a classification network (VGGNET) and an auxiliary detection network. The performance is measured in mean average precision (mAP), and 99.96% mAP is achieved using the proposed enhanced SSD with spatial transformations. It is also seen that the localization boundary is comparatively more refined and closer to the ground truth in spatial augmentation and gives better detection and localization of knee joints.

Keywords: data augmentation, enhanced SSD, knee detection and localization, medical image analysis, openKnee, Spatial transformations

Procedia PDF Downloads 161
4344 Suicide Wrongful Death: Standard of Care Problems Involving the Inaccurate Discernment of Lethal Risk When Focusing on the Elicitation of Suicide Ideation

Authors: Bill D. Geis

Abstract:

Suicide wrongful death forensic cases are the fastest rising tort in mental health law. It is estimated that suicide-related cases have accounted for 15% of U.S. malpractice claims since 2006. Most suicide-related personal injury claims fall into the legal category of “wrongful death.” Though mental health experts may be called on to address a range of forensic questions in wrongful death cases, the central consultation that most experts provide is about the negligence element—specifically, the issue of whether the clinician met the clinical standard of care in assessing, treating, and managing the deceased person’s mental health care. Standards of care, varying from U.S. state to state, are broad and address what a reasonable clinician might do in a similar circumstance. This fact leaves the issue of the suicide standard of care, in each case, up to forensic experts to put forth a reasoned estimate of what the standard of care should have been in the specific case under litigation. Because the general state guidelines for standard of care are broad, forensic experts are readily retained to provide scientific and clinical opinions about whether or not a clinician met the standard of care in their suicide assessment, treatment, and management of the case. In the past and in much of current practice, the assessment of suicide has centered on the elicitation of verbalized suicide ideation. Research in recent years, however, has indicated that the majority of persons who end their lives do not say they are suicidal at their last medical or psychiatric contact. Near-term risk assessment—that goes beyond verbalized suicide ideation—is needed. Our previous research employed structural equation modeling to predict lethal suicide risk--eight negative thought patterns (feeling like a burden on others, hopelessness, self-hatred, etc.) mediated by nine transdiagnostic clinical factors (mental torment, insomnia, substance abuse, PTSD intrusions, etc.) were combined to predict acute lethal suicide risk. This structural equation model, the Lethal Suicide Risk Pattern (LSRP), Acute model, had excellent goodness-of-fit [χ2(df) = 94.25(47)***, CFI = .98, RMSEA = .05, .90CI = .03-.06, p(RMSEA = .05) = .63. AIC = 340.25, ***p < .001.]. A further SEQ analysis was completed for this paper, adding a measure of Acute Suicide Ideation to the previous SEQ. Acceptable prediction model fit was no longer achieved [χ2(df) = 3.571, CFI > .953, RMSEA = .075, .90% CI = .065-.085, AIC = 529.550].This finding suggests that, in this additional study, immediate verbalized suicide ideation information was unhelpful in the assessment of lethal risk. The LSRP and other dynamic, near-term risk models (such as the Acute Suicide Affective Disorder Model and the Suicide Crisis Syndrome Model)—going beyond elicited suicide ideation—need to be incorporated into current clinical suicide assessment training. Without this training, the standard of care for suicide assessment is out of sync with current research—an emerging dilemma for the forensic evaluation of suicide wrongful death cases.

Keywords: forensic evaluation, standard of care, suicide, suicide assessment, wrongful death

Procedia PDF Downloads 72
4343 Recycled Plastic Fibers for Minimizing Plastic Shrinkage Cracking of Cement Based Mortar

Authors: B. S. Al-Tulaian, M. J. Al-Shannag, A. M. Al-Hozaimy

Abstract:

The development of new construction materials using recycled plastic is important to both the construction and the plastic recycling industries. Manufacturing of fibers from industrial or post-consumer plastic waste is an attractive approach with such benefits as concrete performance enhancement, and reduced needs for land filling. The main objective of this study is to investigate the effect of plastic fibers obtained locally from recycled waste on plastic shrinkage cracking of ordinary cement based mortar. Parameters investigated include: Fiber length ranging from 20 to 50 mm, and fiber volume fraction ranging from 0% to 1.5% by volume. The test results showed significant improvement in crack arresting mechanism and substantial reduction in the surface area of cracks for the mortar reinforced with recycled plastic fibers compared to plain mortar. Furthermore, test results indicated that there was a slight decrease in compressive strength of mortar reinforced with different lengths and contents of recycled fibers compared to plain mortar. This study suggests that adding more than 1% of RP fibers to mortar, can be used effectively for controlling plastic shrinkage cracking of cement based mortar, and thus results in waste reduction and resources conservation.

Keywords: mortar, plastic, shrinkage cracking, compressive strength, RF recycled fibers

Procedia PDF Downloads 414
4342 IoT and Advanced Analytics Integration in Biogas Modelling

Authors: Rakesh Choudhary, Ajay Kumar, Deepak Sharma

Abstract:

The main goal of this paper is to investigate the challenges and benefits of IoT integration in biogas production. This overview explains how the inclusion of IoT can enhance biogas production efficiency. Therefore, such collected data can be explored by advanced analytics, including Artificial intelligence (AI) and Machine Learning (ML) algorithms, consequently improving bio-energy processes. To boost biogas generation efficiency, this report examines the use of IoT devices for real-time data collection on key parameters, e.g., pH, temperature, gas composition, and microbial growth. Real-time monitoring through big data has made it possible to detect diverse, complex trends in the process of producing biogas. The Informed by advanced analytics can also help in improving bio-energy production as well as optimizing operational conditions. Moreover, IoT allows remote observation, control and management, which decreases manual intervention needed whilst increasing process effectiveness. Such a paradigm shift in the incorporation of IoT technologies into biogas production systems helps to achieve higher productivity levels as well as more practical biomass quality biomethane through real-time monitoring-based proactive decision-making, thus driving continuous performance improvement.

Keywords: internet of things, biogas, renewable energy, sustainability, anaerobic digestion, real-time monitoring, optimization

Procedia PDF Downloads 25
4341 Modification of a Human Powered Lawn Mower

Authors: Akinwale S. O., Koya O. A.

Abstract:

The need to provide ecologically-friendly and effective lawn mowing solution is crucial for the well-being of humans. This study involved the modification of a human-powered lawn mower designed to cut tall grasses in residential areas. This study designed and fabricated a reel-type mower blade system and a pedal-powered test rig for the blade system. It also evaluated the performance of the machine. The machine was tested on some overgrown grass plots at College of Education Staff School Ilesa. Parameters such as theoretical field capacity, field efficiency and effective field capacity were determined from the data gathered. The quality of cut achieved by the unit was also documented. Test results showed that the fabricated cutting system produced a theoretical field capacity of 0.11 ha/h and an effective field capacity of 0.08ha/h. Moreover, the unit’s cutting system showed a substantial improvement over existing reel mower designs in its ability to cut on both the forward and reverse phases of its motion. This study established that the blade system described herein has the capacity to cut tall grasses. Hence, this device can therefore eliminate the need for powered mowers entirely on small residential lawns.

Keywords: effective field capacity, field efficiency, theoretical field capacity, quality of cut

Procedia PDF Downloads 150
4340 Navigate the Labyrinth of Leadership: Leaders’ Experiences in Saudi Higher Education

Authors: Laila Albughayl

Abstract:

The purpose of this qualitative case study was to explore Saudi females’ leadership journeys as they navigate the labyrinth of leadership in higher education. To gain a better understanding of how these leaders overcame challenges and accessed support as they progressed through the labyrinth to top positions in Saudi higher education. The significance of this research derived from the premise that leaders need to acquire essential leadership competencies such as knowledge, skills, and practices to effectively lead through economic transformation, growing globalism, and rapidly developing technology in an increasingly diverse world. In addition, understanding Saudi women’s challenges in the labyrinth will encourage policymakers to improve the situation under which these women work. The metaphor ‘labyrinth’ for Eagly and Carli (2007) encapsulates the winding paths, dead ends, and maze-like pathways that are full of challenges and supports that women traverse to access and maintain leadership positions was used. In this study, ‘labyrinth’ was used as the conceptual framework to explore women leaders’ challenges and opportunities in leadership in Saudi higher education. A proposed model for efficient navigation of the labyrinth of leadership was used. This model focused on knowledge, skills, and behaviours (KSB) as the analytical framework for examining responses to the research questions. This research was conducted using an interpretivist qualitative approach. A case study was the methodology used. Semi-structured interviews were the main data collection method. Purposive sampling was used to select ten Saudi leaders in three public universities. In coding, the 6-step framework of thematic analysis for Braun and Clarke was used to identify, analyze, and report themes within the data. NVivo software was also used as a tool to assist with managing and organizing the data. The resultant findings showed that the challenges identified by participants in navigating the labyrinth of leadership in Saudi higher education replicated some of those identified in the literature. The onset findings also revealed that the organizational barriers in Saudi higher education came as the top hindrance to women’s advancement in the labyrinth of leadership, followed by societal barriers. The findings also showed that women’s paths in the labyrinth of leadership in higher education were still convoluted and tedious compared to their male counterparts. In addition, the findings revealed that Saudi women leaders use significant strategies to access leadership posts and effectively navigate the labyrinth; this was not indicated in the literature. In addition, the resultant findings revealed that there are keys that assisted Saudi female leaders in effectively navigating the labyrinth of leadership. For example, the findings indicated that spirituality (religion) was a powerful key that enabled Saudi women leaders to pursue and persist in their leadership paths. Based on participants' experiences, a compass for effective navigation of the labyrinth of leadership in higher education was created for current and aspirant Saudi women leaders to follow. Finally, the findings had several significant implications for practice, policy, theory, and future research.

Keywords: women, leadership, labyrinth, higher education

Procedia PDF Downloads 86
4339 Effect of Varying Levels of Concentrate Ration on the Performance of Nili-Ravi Buffalo Heifer Calves

Authors: Z. M. Iqbal, M. Abdullah, K. Javed, M. A. Jabbar, A. Haque, M. Saadullah, F. Shahzad

Abstract:

The current study was conducted to set the appropriate concentrate level for Nili-Ravi buffalo heifers. Twenty seven buffalo heifers were randomly divided into three different groups A, B and C having nine animals in each group. All the heifers were given free access to chopped green fodder and fresh water. In addition, heifers of group A, B and C were given concentrate at the rate of 0.5%, 1% and 1.5% of their body weight. The average daily dry matter intake was 2.69, 3.06 and 3.83 kg with average daily gain of 456.09, 398.56 and 515.87 gm in group A, B and C, respectively. The feed conversion ratio of heifers of these groups was 5.89, 7.74 and 7.52, respectively. There was non-significant (P>0.05) difference in the body measurements (height at wither, body length and heart girth), final body condition and scoring and blood serum (glucose, total protein and cholesterol) of heifers of all the three groups. The results of current study shows that there is non-significant (P>0.05) difference in the growth rate of Nili-Ravi heifers at varying levels of concentrate so, it is cost effective to raise 6-8 month calves by offering concentrate at the rate of 0.5% body weight along with free access of green fodder.

Keywords: concentrate level, buffalo heifer, body measurement, green fodder

Procedia PDF Downloads 427
4338 Improved Multilevel Inverter with Hybrid Power Selector and Solar Panel Cleaner in a Solar System

Authors: S. Oladoyinbo, A. A. Tijani

Abstract:

Multilevel inverters (MLI) are used at high power application based on their operation. There are 3 main types of multilevel inverters (MLI); diode clamped, flying capacitor and cascaded MLI. A cascaded MLI requires the least number of components to achieve same number of voltage levels when compared to other types of MLI while the flying capacitor has the minimum harmonic distortion. However, maximizing the advantage of cascaded H-bridge MLI and flying capacitor MLI, an improved MLI can be achieved with fewer components and better performance. In this paper an improved MLI is presented by asymmetrically integrating a flying capacitor to a cascaded H-bridge MLI also integrating an auxiliary transformer to the main transformer to decrease the total harmonics distortion (THD) with increased number of output voltage levels. Furthermore, the system is incorporated with a hybrid time and climate based solar panel cleaner and power selector which intelligently manage the input of the MLI and clean the solar panel weekly ensuring the environmental factor effect on the panel is reduced to minimum.

Keywords: multilevel inverter, total harmonics distortion, cascaded h-bridge inverter, flying capacitor

Procedia PDF Downloads 369
4337 Preparation and in vitro Bactericidal and Fungicidal Efficiency of NanoSilver/Methylcellulose Hydrogel

Authors: A. Panacek, M. Kilianova, R. Prucek, V. Husickova, R. Vecerova, M. Kolar, L. Kvitek, R. Zboril

Abstract:

In this work we describe the preparation of NanoSilver/methylcellulose hydrogel containing silver nanoparticles (NPs) for topical bactericidal applications. Highly concentrated dispersion of silver NPs as high as of 5g/L of silver with diameter of 10nm was prepared by reduction of AgNO3 via strong reducing agent NaBH4. Silver NPs were stabilized by addition of sodium polyacrylate in order to prevent their aggregation at such high concentration. This way synthesized silver NPs were subsequently incorporated into methylcellulose suspension at elevated temperature resulting in formation of NanoSilver/methylcellulose hydrogel when temperature cooled down to laboratory conditions. In vitro antibacterial activity assay proved high bactericidal and fungicidal efficiency of silver NPs alone in the form of dispersion as well as in the form of hydrogel against broad spectrum of bacteria and yeasts including highly multiresistant strains such as methicillin-resistant Staphylococcus aureus. A very low concentrations of silver as low as 0.84mg/L Ag in as-prepared dispersion gave antibacterial performance. NanoSilver/methylcellulose hydrogel showed antibacterial action at the lowest used silver concentration equal to 25mg/L. Such prepared NanoSilver/methylcellulose hydrogel represent promising topical antimicrobial formulation for treatment of burns and wounds.

Keywords: antimicrobial, burn, hydrogel, silver NPs

Procedia PDF Downloads 456
4336 Building Information Modelling Implementation in the Lifecycle of Sustainable Buildings

Authors: Scarlet Alejandra Romano, Joni Kareco

Abstract:

The three pillars of sustainability (social, economic and environmental) are relevant concepts to the Architecture, Engineering, and Construction (AEC) industry because of the increase of international agreements and guidelines related to this topic during the last years. Considering these three pillars, the AEC industry faces important challenges, for instance, to decrease the carbon emissions (environmental challenge), design sustainable spaces for people (social challenge), and improve the technology of this field to reduce costs and environmental problems (economic and environmental challenge). One alternative to overcome these challenges is Building Information Modelling program (BIM) because according to several authors, this technology improves the performance of the sustainable buildings in all their lifecycle phases. The main objective of this paper is to explore and analyse the current advantages and disadvantages of the BIM implementation in the life-cycle of sustainable buildings considering the three pillars of sustainability as analysis parameters. The methodology established to achieve this objective is exploratory-descriptive with the literature review technique. The partial results illustrate that despite the BIM disadvantages and the lack of information about its social sustainability advantages, this software represents a significant opportunity to improve the three sustainable pillars of the sustainable buildings.

Keywords: building information modelling, building lifecycle analysis, sustainability, sustainable buildings

Procedia PDF Downloads 190
4335 A Cloud Computing System Using Virtual Hyperbolic Coordinates for Services Distribution

Authors: Telesphore Tiendrebeogo, Oumarou Sié

Abstract:

Cloud computing technologies have attracted considerable interest in recent years. Thus, these latters have become more important for many existing database applications. It provides a new mode of use and of offer of IT resources in general. Such resources can be used “on demand” by anybody who has access to the internet. Particularly, the Cloud platform provides an ease to use interface between providers and users, allow providers to develop and provide software and databases for users over locations. Currently, there are many Cloud platform providers support large scale database services. However, most of these only support simple keyword-based queries and can’t response complex query efficiently due to lack of efficient in multi-attribute index techniques. Existing Cloud platform providers seek to improve performance of indexing techniques for complex queries. In this paper, we define a new cloud computing architecture based on a Distributed Hash Table (DHT) and design a prototype system. Next, we perform and evaluate our cloud computing indexing structure based on a hyperbolic tree using virtual coordinates taken in the hyperbolic plane. We show through our experimental results that we compare with others clouds systems to show our solution ensures consistence and scalability for Cloud platform.

Keywords: virtual coordinates, cloud, hyperbolic plane, storage, scalability, consistency

Procedia PDF Downloads 429
4334 Speech Perception by Monolingual and Bilingual Dravidian Speakers under Adverse Listening Conditions

Authors: S. B. Rathna Kumar, Sale Kranthi, Sandya K. Varudhini

Abstract:

The precise perception of spoken language is influenced by several variables, including the listeners’ native language, distance between speaker and listener, reverberation and background noise. When noise is present in an acoustic environment, it masks the speech signal resulting in reduction in the redundancy of the acoustic and linguistic cues of speech. There is strong evidence that bilinguals face difficulty in speech perception for their second language compared with monolingual speakers under adverse listening conditions such as presence of background noise. This difficulty persists even for speakers who are highly proficient in their second language and is greater in those who have learned the second language later in life. The present study aimed to assess the performance of monolingual (Telugu speaking) and bilingual (Tamil as first language and Telugu as second language) speakers on Telugu speech perception task under quiet and noisy environments. The results indicated that both the groups performed similar in both quiet and noisy environments. The findings of the present study are not in accordance with the findings of previous studies which strongly report poorer speech perception in adverse listening conditions such as noise with bilingual speakers for their second language compared with monolinguals.

Keywords: monolingual, bilingual, second language, speech perception, quiet, noise

Procedia PDF Downloads 389
4333 Elaboration and Characterization of Self-Compacting Mortar Based Biopolymer

Authors: I. Djefour, M. Saidi, I. Tlemsani, S. Toubal

Abstract:

Lignin is a molecule derived from wood and also generated as waste from the paper industry. With a view to its valorization and protection of the environment, we are interested in its use as a superplasticizer-type adjuvant in mortars and concretes to improve their mechanical strengths. The additives of the concrete have a very strong influence on the properties of the fresh and / or hardened concrete. This study examines the development and use of industrial waste and lignin extracted from a renewable natural source (wood) in cementitious materials. The use of these resources is known at present as a definite resurgence of interest in the development of building materials. Physicomechanical characteristics of mortars are determined by optimization quantity of the natural superplasticizer. The results show that the mechanical strengths of mortars based on natural adjuvant have improved by 20% (64 MPa) for a W/C ratio = 0.4, and the amount of natural adjuvant of dry extract needed is 40 times smaller than commercial adjuvant. This study has a scientific impact (improving the performance of the mortar with an increase in compactness and reduction of the quantity of water), ecological use of the lignin waste generated by the paper industry) and economic reduction of the cost price necessary to elaboration of self-compacting mortars and concretes).

Keywords: biopolymer (lignin), industrial waste, mechanical resistances, self compacting mortars (SCM)

Procedia PDF Downloads 168
4332 Mechanical Behavior of Geosynthetics vs the Combining Effect of Aging, Temperature and Internal Structure

Authors: Jaime Carpio-García, Elena Blanco-Fernández, Jorge Rodríguez-Hernández, Daniel Castro-Fresno

Abstract:

Geosynthetic mechanical behavior vs temperature or vs aging has been widely studied independently during the last years, both in laboratory and in outdoor conditions. This paper studies this behavior deeper, considering that geosynthetics have to perform adequately at different outdoor temperatures once they have been subjected to a certain degree of aging, and also considering the different geosynthetic structures made of the same material. This combining effect has been not considered so far, and it is important to ensure the performance of geosynthetics, especially where high temperatures are expected. In order to fill this gap, six commercial geosynthetics with different internal structures made of polypropylene (PP), high density polyethylene (HDPE), bitumen and polyvinyl chloride (PVC), or even a combination of some of them have been mechanically tested at mild temperature (20ºC or 23ºC) and at warm temperature (45ºC) before and after specific exposition to air at standardized high temperature in order to simulate 25 years of aging due to oxidation. Besides, for 45ºC tests, an innovative heating system during test for high deformable specimens is proposed. The influence of the combining effect of aging, structure and temperature in the product behavior have been analyzed and discussed, concluding that internal structure is more influential than aging in the mechanical behavior of a geosynthetic versus temperature.

Keywords: geosynthetics, mechanical behavior, temperature, aging, internal structure

Procedia PDF Downloads 75
4331 An Image Enhancement Method Based on Curvelet Transform for CBCT-Images

Authors: Shahriar Farzam, Maryam Rastgarpour

Abstract:

Image denoising plays extremely important role in digital image processing. Enhancement of clinical image research based on Curvelet has been developed rapidly in recent years. In this paper, we present a method for image contrast enhancement for cone beam CT (CBCT) images based on fast discrete curvelet transforms (FDCT) that work through Unequally Spaced Fast Fourier Transform (USFFT). These transforms return a table of Curvelet transform coefficients indexed by a scale parameter, an orientation and a spatial location. Accordingly, the coefficients obtained from FDCT-USFFT can be modified in order to enhance contrast in an image. Our proposed method first uses a two-dimensional mathematical transform, namely the FDCT through unequal-space fast Fourier transform on input image and then applies thresholding on coefficients of Curvelet to enhance the CBCT images. Consequently, applying unequal-space fast Fourier Transform leads to an accurate reconstruction of the image with high resolution. The experimental results indicate the performance of the proposed method is superior to the existing ones in terms of Peak Signal to Noise Ratio (PSNR) and Effective Measure of Enhancement (EME).

Keywords: curvelet transform, CBCT, image enhancement, image denoising

Procedia PDF Downloads 303
4330 Data-Driven Approach to Predict Inpatient's Estimated Discharge Date

Authors: Ayliana Dharmawan, Heng Yong Sheng, Zhang Xiaojin, Tan Thai Lian

Abstract:

To facilitate discharge planning, doctors are presently required to assign an Estimated Discharge Date (EDD) for each patient admitted to the hospital. This assignment of the EDD is largely based on the doctor’s judgment. This can be difficult for cases which are complex or relatively new to the doctor. It is hypothesized that a data-driven approach would be able to facilitate the doctors to make accurate estimations of the discharge date. Making use of routinely collected data on inpatient discharges between January 2013 and May 2016, a predictive model was developed using machine learning techniques to predict the Length of Stay (and hence the EDD) of inpatients, at the point of admission. The predictive performance of the model was compared to that of the clinicians using accuracy measures. Overall, the best performing model was found to be able to predict EDD with an accuracy improvement in Average Squared Error (ASE) by -38% as compared to the first EDD determined by the present method. It was found that important predictors of the EDD include the provisional diagnosis code, patient’s age, attending doctor at admission, medical specialty at admission, accommodation type, and the mean length of stay of the patient in the past year. The predictive model can be used as a tool to accurately predict the EDD.

Keywords: inpatient, estimated discharge date, EDD, prediction, data-driven

Procedia PDF Downloads 176
4329 Self Tuning Controller for Reducing Cycle to Cycle Variations in SI Engine

Authors: Alirıza Kaleli, M. Akif Ceviz, Erdoğan Güner, Köksal Erentürk

Abstract:

The cyclic variations in spark ignition engines occurring especially under specific engine operating conditions make the maximum pressure variable for successive in-cylinder pressure cycles. Minimization of cyclic variations has a great importance in effectively operating near to lean limit, or at low speed and load. The cyclic variations may reduce the power output of the engine, lead to operational instabilities, and result in undesirable engine vibrations and noise. In this study, spark timing is controlled in order to reduce the cyclic variations in spark ignition engines. Firstly, an ARMAX model has developed between spark timing and maximum pressure using system identification techniques. By using this model, the maximum pressure of the next cycle has been predicted. Then, self-tuning minimum variance controller has been designed to change the spark timing for consecutive cycles of the first cylinder of test engine to regulate the in-cylinder maximum pressure. The performance of the proposed controller is illustrated in real time and experimental results show that the controller has a reliable effect on cycle to cycle variations of maximum cylinder pressure when the engine works under low speed conditions.

Keywords: cyclic variations, cylinder pressure, SI engines, self tuning controller

Procedia PDF Downloads 483
4328 Effects and Mechanization of a High Gradient Magnetic Separation Process for Particulate and Microbe Removal from Ballast Water

Authors: Zhijun Ren, Zhang Lin, Zhao Ye, Zuo Xiangyu, Mei Dongxing

Abstract:

As a pretreatment process of ballast water treatment, the performance of high gradient magnetic separation (HGMS) technology for the removal of particulates and microorganisms was studied. The results showed that HGMS process could effectively remove suspended particles larger than 5 µm and had ability to resist impact load. Microorganism could also be effectively removed by HGMS process, and the removal effect increased with increasing magnetic field strength. The maximum removal rates for Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were 4016.1% and 9675.3% higher, respectively, than without the magnetic field. In addition, the superoxide dismutase (SOD) activity of the microbes decreased by 32.2% when the magnetic field strength was 15.4 mT for 72 min. The microstructure of the stainless steel wool was investigated, and the results showed that particle removal by HGMS has common function by the magnetic force of the high-strength, high-gradient magnetic field on weakly magnetic particles in the water, and on the stainless steel wool.

Keywords: HGMS, particulates, superoxide dismutase (SOD) activity, steel wool magnetic medium

Procedia PDF Downloads 455
4327 Efficacy of a Wiener Filter Based Technique for Speech Enhancement in Hearing Aids

Authors: Ajish K. Abraham

Abstract:

Hearing aid is the most fundamental technology employed towards rehabilitation of persons with sensory neural hearing impairment. Hearing in noise is still a matter of major concern for many hearing aid users and thus continues to be a challenging issue for the hearing aid designers. Several techniques are being currently used to enhance the speech at the hearing aid output. Most of these techniques, when implemented, result in reduction of intelligibility of the speech signal. Thus the dissatisfaction of the hearing aid user towards comprehending the desired speech amidst noise is prevailing. Multichannel Wiener Filter is widely implemented in binaural hearing aid technology for noise reduction. In this study, Wiener filter based noise reduction approach is experimented for a single microphone based hearing aid set up. This method checks the status of the input speech signal in each frequency band and then selects the relevant noise reduction procedure. Results showed that the Wiener filter based algorithm is capable of enhancing speech even when the input acoustic signal has a very low Signal to Noise Ratio (SNR). Performance of the algorithm was compared with other similar algorithms on the basis of improvement in intelligibility and SNR of the output, at different SNR levels of the input speech. Wiener filter based algorithm provided significant improvement in SNR and intelligibility compared to other techniques.

Keywords: hearing aid output speech, noise reduction, SNR improvement, Wiener filter, speech enhancement

Procedia PDF Downloads 249
4326 Hybrid Algorithm for Non-Negative Matrix Factorization Based on Symmetric Kullback-Leibler Divergence for Signal Dependent Noise: A Case Study

Authors: Ana Serafimovic, Karthik Devarajan

Abstract:

Non-negative matrix factorization approximates a high dimensional non-negative matrix V as the product of two non-negative matrices, W and H, and allows only additive linear combinations of data, enabling it to learn parts with representations in reality. It has been successfully applied in the analysis and interpretation of high dimensional data arising in neuroscience, computational biology, and natural language processing, to name a few. The objective of this paper is to assess a hybrid algorithm for non-negative matrix factorization with multiplicative updates. The method aims to minimize the symmetric version of Kullback-Leibler divergence known as intrinsic information and assumes that the noise is signal-dependent and that it originates from an arbitrary distribution from the exponential family. It is a generalization of currently available algorithms for Gaussian, Poisson, gamma and inverse Gaussian noise. We demonstrate the potential usefulness of the new generalized algorithm by comparing its performance to the baseline methods which also aim to minimize symmetric divergence measures.

Keywords: non-negative matrix factorization, dimension reduction, clustering, intrinsic information, symmetric information divergence, signal-dependent noise, exponential family, generalized Kullback-Leibler divergence, dual divergence

Procedia PDF Downloads 248
4325 Data Science-Based Key Factor Analysis and Risk Prediction of Diabetic

Authors: Fei Gao, Rodolfo C. Raga Jr.

Abstract:

This research proposal will ascertain the major risk factors for diabetes and to design a predictive model for risk assessment. The project aims to improve diabetes early detection and management by utilizing data science techniques, which may improve patient outcomes and healthcare efficiency. The phase relation values of each attribute were used to analyze and choose the attributes that might influence the examiner's survival probability using Diabetes Health Indicators Dataset from Kaggle’s data as the research data. We compare and evaluate eight machine learning algorithms. Our investigation begins with comprehensive data preprocessing, including feature engineering and dimensionality reduction, aimed at enhancing data quality. The dataset, comprising health indicators and medical data, serves as a foundation for training and testing these algorithms. A rigorous cross-validation process is applied, and we assess their performance using five key metrics like accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC-ROC). After analyzing the data characteristics, investigate their impact on the likelihood of diabetes and develop corresponding risk indicators.

Keywords: diabetes, risk factors, predictive model, risk assessment, data science techniques, early detection, data analysis, Kaggle

Procedia PDF Downloads 81
4324 Developing a Web-Based Workflow Management System in Cloud Computing Platforms

Authors: Wang Shuen-Tai, Lin Yu-Ching, Chang Hsi-Ya

Abstract:

Cloud computing is the innovative and leading information technology model for enabling convenient, on-demand network access to a shared pool of configurable computing resources that can be rapidly provisioned and released with minimal management effort. In this paper, we aim at the development of workflow management system for cloud computing platforms based on our previous research on the dynamic allocation of the cloud computing resources and its workflow process. We took advantage of the HTML 5 technology and developed web-based workflow interface. In order to enable the combination of many tasks running on the cloud platform in sequence, we designed a mechanism and developed an execution engine for workflow management on clouds. We also established a prediction model which was integrated with job queuing system to estimate the waiting time and cost of the individual tasks on different computing nodes, therefore helping users achieve maximum performance at lowest payment. This proposed effort has the potential to positively provide an efficient, resilience and elastic environment for cloud computing platform. This development also helps boost user productivity by promoting a flexible workflow interface that lets users design and control their tasks' flow from anywhere.

Keywords: web-based, workflow, HTML5, Cloud Computing, Queuing System

Procedia PDF Downloads 311
4323 The Impact of Democratic Leadership on Job Satisfaction Among Teachers in South Hebron Directorate Schools

Authors: Mohammad Mahmoud Rjoob

Abstract:

This study aimed to explore the impact of democratic leadership on job satisfaction among teachers in the South Hebron Directorate schools. The study was applied to a random sample representing the study population of teachers in the South Hebron Directorate of Education, with a sample size of 301 teachers from 12 schools. The researcher adopted the descriptive approach as it is the most suitable for the nature of this study, and a questionnaire was used as a tool for data collection and measuring various variables. The study recommended the importance of enhancing the concept of democratic leadership in schools to boost teachers' morale and improve the quality of the educational process. It also encouraged the adoption of democratic leadership styles by administrations, educational areas, and new principals due to their positive and effective impact on job performance. Additionally, the study suggested providing training courses for school principals and new teachers on how to apply the principles of democratic leadership that contribute to creating a positive educational environment and enhance the spirit of cooperation to achieve the school's goals. Finally, the study called for granting school principals more authority and powers to increase their ability to effectively deal with challenges and problems, which contributes to improving the educational process and enhances teachers' job satisfaction.

Keywords: democratic leadership, job satisfaction, teachers, South Hebron Directorate Schools

Procedia PDF Downloads 18
4322 Continuous Dyeing of Graphene and Polyaniline on Textiles for Electromagnetic interference Shielding: An Application of Intelligent Fabrics

Authors: Mourad Makhlouf Sabrina Bouriche, Zoubir Benmaamar, Didier Villemin

Abstract:

Background: The increasing presence of electromagnetic interference (EMI) requires the development of effective protection solutions. Intelligent textiles offer a promising approach due to their wear ability and the possibility of integration into everyday clothing. In this study, the use of graphene and polyaniline for EMI shielding on cotton fabrics was examined. Methods: In this study, the continuous dyeing of recycled graphite-derived graphene and polyaniline was examined. Bottom-reforming technology was adopted to improve adhesion and achieve uniform distribution of conductive material on the fiber surface. The effect of material weight ratio on fabric performance and X-band EMI shielding effectiveness (SE) was evaluated. Significant Findings: The dyed cotton fabrics incorporating graphene, polyaniline, and their combination exhibited improved conductivity. Notably, these fabrics achieved EMI SE values ranging from 9 to 16 dB within the X-band frequency range (8-9 GHz). These findings demonstrate the potential of this approach for developing intelligent textiles with effective EMI shielding capabilities. Additionally, the utilization of recycled materials contributes to a more sustainable shielding solution.

Keywords: Intelligent textiles, graphene, polyaniline, electromagnetic shielding, conductivity, recycling

Procedia PDF Downloads 51
4321 Reclamation of Molding Sand: A Chemical Approach to Recycle Waste Foundry Sand

Authors: Mohd Moiz Khan, S. M. Mahajani, G. N. Jadhav

Abstract:

Waste foundry sand (total clay content 15%) contains toxic heavy metals and particulate matter which make dumping of waste sand an environmental and health hazard. Disposal of waste foundry sand (WFS) remains one of the substantial challenges faced by Indian foundries nowadays. To cope up with this issue, the chemical method was used to reclaim WFS. A stirrer tank reactor was used for chemical reclamation. Experiments were performed to reduce the total clay content from 15% to as low as 0.9% in chemical reclamation. This method, although found to be effective for WFS reclamation, it may face a challenge due to the possibly high operating cost. Reclaimed sand was found to be satisfactory in terms of sand qualities such as total clay (0.9%), active clay (0.3%), acid demand value (ADV) (2.6%), loss on igniting (LOI) (3 %), grain fineness number (GFN) (56), and compressive strength (60 kPa). The experimental data generated on chemical reactor under different conditions is further used to optimize the design and operating parameters (rotation speed, sand to acidic solution ratio, acid concentration, temperature and time) for the best performance. The use of reclaimed sand within the foundry would improve the economics and efficiency of the process and reduce environmental concerns.

Keywords: chemical reclamation, clay content, environmental concerns, recycle, waste foundry sand

Procedia PDF Downloads 151
4320 Advances in Artificial intelligence Using Speech Recognition

Authors: Khaled M. Alhawiti

Abstract:

This research study aims to present a retrospective study about speech recognition systems and artificial intelligence. Speech recognition has become one of the widely used technologies, as it offers great opportunity to interact and communicate with automated machines. Precisely, it can be affirmed that speech recognition facilitates its users and helps them to perform their daily routine tasks, in a more convenient and effective manner. This research intends to present the illustration of recent technological advancements, which are associated with artificial intelligence. Recent researches have revealed the fact that speech recognition is found to be the utmost issue, which affects the decoding of speech. In order to overcome these issues, different statistical models were developed by the researchers. Some of the most prominent statistical models include acoustic model (AM), language model (LM), lexicon model, and hidden Markov models (HMM). The research will help in understanding all of these statistical models of speech recognition. Researchers have also formulated different decoding methods, which are being utilized for realistic decoding tasks and constrained artificial languages. These decoding methods include pattern recognition, acoustic phonetic, and artificial intelligence. It has been recognized that artificial intelligence is the most efficient and reliable methods, which are being used in speech recognition.

Keywords: speech recognition, acoustic phonetic, artificial intelligence, hidden markov models (HMM), statistical models of speech recognition, human machine performance

Procedia PDF Downloads 480
4319 (Re)connecting to the Spirit of the Language: Decolonizing from Eurocentric Indigenous Language Revitalization Methodologies

Authors: Lana Whiskeyjack, Kyle Napier

Abstract:

The Spirit of the language embodies the motivation for indigenous people to connect with the indigenous language of their lineage. While the concept of the spirit of the language is often woven into the discussion by indigenous language revitalizationists, particularly those who are indigenous, there are few tangible terms in academic research conceptually actualizing the term. Through collaborative work with indigenous language speakers, elders, and learners, this research sets out to identify the spirit of the language, the catalysts of disconnection from the spirit of the language, and the sources of reconnection to the spirit of the language. This work fundamentally addresses the terms of engagement around collaboration with indigenous communities, itself inviting a decolonial approach to community outreach and individual relationships. As indigenous researchers, this means beginning, maintain, and closing this work in the ceremony while being transparent with community members in this work and related publishing throughout the project’s duration. Decolonizing this approach also requires maintaining explicit ongoing consent by the elders, knowledge keepers, and community members when handling their ancestral and indigenous knowledge. The handling of this knowledge is regarded in this work as stewardship, both in the handling of digital materials and the handling of ancestral Indigenous knowledge. This work observes recorded conversations in both nêhiyawêwin and English, resulting from 10 semi-structured interviews with fluent nêhiyawêwin speakers as well as three structured dialogue circles with fluent and emerging speakers. The words were transcribed by a speaker fluent in both nêhiyawêwin and English. The results of those interviews were categorized thematically to conceptually actualize the spirit of the language, catalysts of disconnection to thespirit of the language, and community voices methods of reconnection to the spirit of the language. Results of these interviews vastly determine that the spirit of the language is drawn from the land. Although nêhiyawêwin is the focus of this work, Indigenous languages are by nature inherently related to the land. This is further reaffirmed by the Indigenous language learners and speakers who expressed having ancestries and lineages from multiple Indigenous communities. Several other key differences embody this spirit of the language, which include ceremony and spirituality, as well as the semantic worldviews tied to polysynthetic verb-oriented morphophonemics most often found in indigenous languages — and of focus, nêhiyawêwin. The catalysts of disconnection to the spirit of the language are those whose histories have severed connections between Indigenous Peoples and the spirit of their languages or those that have affected relationships with the land, ceremony, and ways of thinking. Results of this research and its literature review have determined the three most ubiquitously damaging interdependent factors, which are catalysts of disconnection from the spirit of the language as colonization, capitalism, and Christianity. As voiced by the Indigenous language learners, this work necessitates addressing means to reconnect to the spirit of the language. Interviewees mentioned that the process of reconnection involves a whole relationship with the land, the practice of reciprocal-relational methodologies for language learning, and indigenous-protected and -governed learning. This work concludes in support of those reconnection methodologies.

Keywords: indigenous language acquisition, indigenous language reclamation, indigenous language revitalization, nêhiyawêwin, spirit of the language

Procedia PDF Downloads 146
4318 Belarus Rivers Runoff: Current State, Prospects

Authors: Aliaksandr Volchak, Мaryna Barushka

Abstract:

The territory of Belarus is studied quite well in terms of hydrology but runoff fluctuations over time require more detailed research in order to forecast changes in rivers runoff in future. Generally, river runoff is shaped by natural climatic factors, but man-induced impact has become so big lately that it can be compared to natural processes in forming runoffs. In Belarus, a heavy man load on the environment was caused by large-scale land reclamation in the 1960s. Lands of southern Belarus were reclaimed most, which contributed to changes in runoff. Besides, global warming influences runoff. Today we observe increase in air temperature, decrease in precipitation, changes in wind velocity and direction. These result from cyclic climate fluctuations and, to some extent, the growth of concentration of greenhouse gases in the air. Climate change affects Belarus’s water resources in different ways: in hydropower industry, other water-consuming industries, water transportation, agriculture, risks of floods. In this research we have done an assessment of river runoff according to the scenarios of climate change and global climate forecast presented in the 4th and 5th Assessment Reports conducted by Intergovernmental Panel on Climate Change (IPCC) and later specified and adjusted by experts from Vilnius Gediminas Technical University with the use of a regional climatic model. In order to forecast changes in climate and runoff, we analyzed their changes from 1962 up to now. This period is divided into two: from 1986 up to now in comparison with the changes observed from 1961 to 1985. Such a division is a common world-wide practice. The assessment has revealed that, on the average, changes in runoff are insignificant all over the country, even with its irrelevant increase by 0.5 – 4.0% in the catchments of the Western Dvina River and north-eastern part of the Dnieper River. However, changes in runoff have become more irregular both in terms of the catchment area and inter-annual distribution over seasons and river lengths. Rivers in southern Belarus (the Pripyat, the Western Bug, the Dnieper, the Neman) experience reduction of runoff all year round, except for winter, when their runoff increases. The Western Bug catchment is an exception because its runoff reduces all year round. Significant changes are observed in spring. Runoff of spring floods reduces but the flood comes much earlier. There are different trends in runoff changes in spring, summer, and autumn. Particularly in summer, we observe runoff reduction in the south and west of Belarus, with its growth in the north and north-east. Our forecast of runoff up to 2035 confirms the trend revealed in 1961 – 2015. According to it, in the future, there will be a strong difference between northern and southern Belarus, between small and big rivers. Although we predict irrelevant changes in runoff, it is quite possible that they will be uneven in terms of seasons or particular months. Especially, runoff can change in summer, but decrease in the rest seasons in the south of Belarus, whereas in the northern part the runoff is predicted to change insignificantly.

Keywords: assessment, climate fluctuation, forecast, river runoff

Procedia PDF Downloads 127
4317 Dual-Channel Multi-Band Spectral Subtraction Algorithm Dedicated to a Bilateral Cochlear Implant

Authors: Fathi Kallel, Ahmed Ben Hamida, Christian Berger-Vachon

Abstract:

In this paper, a Speech Enhancement Algorithm based on Multi-Band Spectral Subtraction (MBSS) principle is evaluated for Bilateral Cochlear Implant (BCI) users. Specifically, dual-channel noise power spectral estimation algorithm using Power Spectral Densities (PSD) and Cross Power Spectral Densities (CPSD) of the observed signals is studied. The enhanced speech signal is obtained using Dual-Channel Multi-Band Spectral Subtraction ‘DC-MBSS’ algorithm. For performance evaluation, objective speech assessment test relying on Perceptual Evaluation of Speech Quality (PESQ) score is performed to fix the optimal number of frequency bands needed in DC-MBSS algorithm. In order to evaluate the speech intelligibility, subjective listening tests are assessed with 3 deafened BCI patients. Experimental results obtained using French Lafon database corrupted by an additive babble noise at different Signal-to-Noise Ratios (SNR) showed that DC-MBSS algorithm improves speech understanding for single and multiple interfering noise sources.

Keywords: speech enhancement, spectral substracion, noise estimation, cochlear impalnt

Procedia PDF Downloads 553
4316 Assessment of Material Type, Diameter, Orientation and Closeness of Fibers in Vulcanized Reinforced Rubbers

Authors: Ali Osman Güney, Bahattin Kanber

Abstract:

In this work, the effect of material type, diameter, orientation and closeness of fibers on the general performance of reinforced vulcanized rubbers are investigated using finite element method with experimental verification. Various fiber materials such as hemp, nylon, polyester are used for different fiber diameters, orientations and closeness. 3D finite element models are developed by considering bonded contact elements between fiber and rubber sheet interfaces. The fibers are assumed as linear elastic, while vulcanized rubber is considered as hyper-elastic. After an experimental verification of finite element results, the developed models are analyzed under prescribed displacement that causes tension. The normal stresses in fibers and shear stresses between fibers and rubber sheet are investigated in all models. Large deformation of reinforced rubber sheet also represented with various fiber conditions under incremental loading. A general assessment is achieved about best fiber properties of reinforced rubber sheets for tension-load conditions.

Keywords: reinforced vulcanized rubbers, fiber properties, out of plane loading, finite element method

Procedia PDF Downloads 350