Search results for: hybrid energy resources
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14100

Search results for: hybrid energy resources

1830 Bridging the Gap: Living Machine in Educational Nature Preserve Center

Authors: Zakeia Benmoussa

Abstract:

Pressure on freshwater systems comes from removing too much water to grow crops; contamination from economic activities, land use practices, and human waste. The paper will be focusing on how water management can influence the design, implementation, and impacts of the ecological principles of biomimicry as sustainable methods in recycling wastewater. At Texas State, United States of America, in particular the lower area of the Trinity River refuge, there is a true example of the diversity to be found in that area, whether when exploring the lands or the waterways. However, as the Trinity River supplies water to the state’s residents, the lower part of the river at Liberty County presents several problem of wastewater discharge in the river. Therefore, conservation efforts are particularly important in the Trinity River basin. Clearly, alternative ways must be considered in order to conserve water to meet future demands. As a result, there should be another system provided rather than the conventional water treatment. Mimicking ecosystem's technologies out of context is not enough, but if we incorporate plants into building architecture, in addition to their beauty, they can filter waste, absorb excess water, and purify air. By providing an architectural proposal center, a living system can be explored through several methods that influence natural resources on the micro-scale in order to impact sustainability on the macro-scale. The center consists of an ecological program of Plant and Water Biomimicry study which becomes a living organism that purifies the river water in a natural way through architecture. Consequently, a rich beautiful nature could be used as an educational destination, observation and adventure, as well as providing unpolluted fresh water to the major cities of Texas. As a result, these facts raise a couple of questions: Why is conservation so rarely practiced by those who must extract a living from the land? Are we sufficiently enlightened to realize that we must now challenge that dogma? Do architects respond to the environment and reflect on it in the correct way through their public projects? The method adopted in this paper consists of general research into careful study of the system of the living machine, in how to integrate it at architectural level, and finally, the consolidation of the all the conclusions formed into design proposal. To summarise, this paper attempts to provide a sustainable alternative perspective in bridging physical and mental interaction with biodiversity to enhance nature by using architecture.

Keywords: Biodiversity, Design with Nature, Sustainable architecture, Waste water treatment.

Procedia PDF Downloads 297
1829 Effect of Pole Weight on Nordic Walking

Authors: Takeshi Sato, Mizuki Nakajima, Macky Kato, Shoji Igawa

Abstract:

The purpose of study was to investigate the effect of varying pole weights on energy expenditure, upper limb and lower limb muscle activity as Electromyogram during Nordic walking (NW). Four healthy men [age = 22.5 (±1.0) years, body mass = 61.4 (±3.6) kg, height = 170.3 (±4.3) cm] and three healthy women [age = 22.7 (±2.9) years, body mass = 53.0 (±1.7) kg, height = 156.7 (±4.5) cm] participated in the experiments after informed consent. Seven healthy subjects were tested on the treadmill, walking, walking (W) with Nordic Poles (NW) and walking with 1kg weight Nordic Poles (NW+1). Walking speed was 6 km per hours in all trials. Eight EMG activities were recorded by bipolar surface methods in biceps brachii, triceps brachii, trapezius, deltoideus, tibialis anterior, medial gastrocnemius, rectus femoris and biceps femoris muscles. And heart rate (HR), oxygen uptake (VO2), and rate of perceived exertion (RPE) were measured. The level of significance was set at a = 0.05, with p < 0.05 regarded as statistically significant. Our results confirmed that use of NW poles increased HR at a given upper arm muscle activity but decreased lower limb EMGs in comparison with W. Moreover NW was able to increase more step lengths with hip joint extension during NW rather than W. Also, EMG revealed higher activation of upper limb for almost all NW and 1kgNW tests plus added masses compared to W (p < 0.05). Therefore, it was thought either of NW and 1kgNW were to have benefit as a physical exercise for safe, feasible, and readily training for a wide range of aged people in the quality of daily life. However, there was no significant effected in leg muscles activity by using 1kgNW except for upper arm muscle activity during Nordic pole walking.

Keywords: Nordic walking, electromyogram, heart rate, RPE

Procedia PDF Downloads 239
1828 Recent Trends in Transportable First Response Healthcare Architecture

Authors: Stephen Verderber

Abstract:

The World Health Organization (WHO) calls for research and development on ecologically sustainable, resilient structures capable of effectively responding to disaster events globally, in response to climate change, politically based diasporas, earthquakes, and other adverse events upending the rhythms of everyday life globally. By 2050, nearly 80% of the world’s population will reside in coastal zones, and this, coupled with the increasingly dire impacts of climate change, constitute a recipe for further chaos and disruption, and in light of these events, architects have yet to rise up to meet the challenge. In the arena of healthcare, rapidly deployable clinics and field hospitals can provide immediate assistance in medically underserved disaster strike zones. Transportable facilities offer multiple advantages over conventional, fixed-site hospitals, as lightweight, comparatively unencumbered alternatives. These attributes have been proven repeatedly in 20th century vehicular and tent-based structures deployed in frontline combat theaters and in prior natural disasters. Prefab transportable clinics and trauma centers recently responded adroitly to medical emergencies in the aftermath of the Haitian (2010) and Ecuadorian (2016) earthquakes, and in North American post-hurricane relief efforts (2017) while architects continue to be castigated by their engineer colleagues as chronically poor first responders. Architecturally based portable structures for healthcare currently include Redeployable Health Centers (RHCs), Redeployable Trauma Centers (RTCs), and Permanent Modular Installations (PMIs). Five tectonic variants within this typology have recently been operationalized in the field: 1. Vehicular-based Nomadics: Prefab modules installed on a truck chassis with interior compartments dropped in prior to final assembly. Alternately, a two-component apparatus is preferred, with a truck cab pulling a modular medical unit, with independent transiting component; 2. Tent and Pneumatic Systems: Tent/yurt precursors and inflatable systems lightweight and responsive to topographically challenging terrain and diverse climates; 3. Containerized Systems: The standard modular intermodal-shipping container affords structural strength, resiliency in difficult transiting conditions, and can be densely close-packed and these can be custom-built or hold flat-pack systems; 4. Flat-Packs and Pop-Up Systems: These kit-of-part assemblies are shipped in standardized or specially-designed ISO containers; and 5. Hybrid Systems: These consist of composite facilities representing a synthesis of mobile vehicular components and/or tent or shipping containers, fused with conventional or pneumatically activated tent systems. Hybrids are advantageous in many installation contexts from an aesthetic, fabrication, and transiting perspective. Advantages/disadvantages of various modular systems are comparatively examined, followed by presentation of a compendium of 80 evidence (research)-based planning and design considerations addressing site/context, transiting and commissioning, triage, decontamination/intake, diagnostic and treatment, facility tectonics, and administration/total environment. The benefits of offsite pre-manufactured fabrication are examined, as is anticipated growth in international demand for transportable healthcare facilities to meet the challenges posed by accelerating global climate change and global conflicts. This investigation into rapid response facilities for pre and post-disaster zones is drawn from a recent book by the author, the first on architecture on this topic (Innovations in Transportable Healthcare Architecture).

Keywords: disaster mitigation, rapid response healthcare architecture, offsite prefabrication

Procedia PDF Downloads 118
1827 An Effective Synthesis Method of Microwave Solution Combustion with the Application of Visible Light-Responsive Photocatalyst of Rb21 Dye

Authors: Rahul Jarariya

Abstract:

The textile industry uses various types of dyes and discharges a lot of highly coloured wastewater. It impacts the environment like allergic reaction, respiratory, skin problems, irritation to a mucous membrane, the upper respiratory tract has to the fore, Intoxicated dye discharges 40 to 50,000 tons with great concern. Spinel ferrites gained a lot of attention due to their wide application area from biomedical to wastewater treatment. Generally, spinel ferrite is known as M-Fe2O4. Spinel type nanoparticles possess high suspension stability. The synthesis method of Microwave solution combustion (MC) method is effective for nanoscale materials, including oxides, metals, alloys, and sulfides, works as fast and energy-efficient during the process. The review focuses on controlling, nanostructure and doping. The influence of the fuel concentration and the post-treatment temperature on the structural and magnetic properties. The effects of amounts of fuel and phase changes, particle size and shape, and magnetic properties can be characterized by various techniques. Urea is the most commonly used fuel. Ethanol or n-butanol is apt for removing impurities. As a result of the materials gives fine purity. Photocatalysis phenomena act with catalyst dosage to degrade dye from wastewater. Visible light responsive produces a large amount of hydroxyl (•OH) radical made the degradation efficiency of Rh21 type dye. It develops a narrow bandgap to make it suitable for enhanced photocatalytic activity.

Keywords: microwave solution combustion method, normal spinel, doped spinels, magnetic property, Rb21

Procedia PDF Downloads 183
1826 Numerical Study of Elastic Performances of Sandwich Beam with Carbon-Fibre Reinforced Skins

Authors: Soukaina Ounss, Hamid Mounir, Abdellatif El Marjani

Abstract:

Sandwich materials with composite reinforced skins are mostly required in advanced construction applications with a view to ensure resistant structures. Their lightweight, their high flexural stiffness and their optimal thermal insulation make them a suitable solution to obtain efficient structures with performing rigidity and optimal energy safety. In this paper, the mechanical behavior of a sandwich beam with composite skins reinforced by unidirectional carbon fibers is investigated numerically through analyzing the impact of reinforcements specifications on the longitudinal elastic modulus in order to select the adequate sandwich configuration that has an interesting rigidity and an accurate convergence to the analytical approach which is proposed to verify performed numerical simulations. Therefore, concerned study starts by testing flexion performances of skins with various fibers orientations and volume fractions to determine those to use in sandwich beam. For that, the combination of a reinforcement inclination of 30° and a volume ratio of 60% is selected with the one with 60° of fibers orientation and 40% of volume fraction, this last guarantees to chosen skins an important rigidity with an optimal fibers concentration and a great enhance in convergence to analytical results in the sandwich model for the reason of the crucial core role as transverse shear absorber. Thus, a resistant sandwich beam is elaborated from a face-sheet constituted from two layers of previous skins with fibers oriented in 60° and an epoxy core; concerned beam has a longitudinal elastic modulus of 54 Gpa (gigapascal) that equals to the analytical value by a negligible error of 2%.

Keywords: fibers orientation, fibers volume ratio, longitudinal elastic modulus, sandwich beam

Procedia PDF Downloads 168
1825 Influence of Pine Wood Ash as Pozzolanic Material on Compressive Strength of a Concrete

Authors: M. I. Nicolas, J. C. Cruz, Ysmael Verde, A.Yeladaqui-Tello

Abstract:

The manufacture of Portland cement has revolutionized the construction industry since the nineteenth century; however, the high cost and large amount of energy required on its manufacturing encouraged, from the seventies, the search of alternative materials to replace it partially or completely. Among the materials studied to replace the cement are the ashes. In the city of Chetumal, south of the Yucatan Peninsula in Mexico, there are no natural sources of pozzolanic ash. In the present study, the cementitious properties of artificial ash resulting from the combustion of waste pine wood were analyzed. The ash obtained was sieved through the screen and No.200 a fraction was analyzed using the technique of X-ray diffraction; with the aim of identifying the crystalline phases and particle sizes of pozzolanic material by the Debye-Scherrer equation. From the characterization of materials, mixtures for a concrete of f'c = 250 kg / cm2 were designed with the method ACI 211.1; for the pattern mixture and for partial replacements of Portland cement by 5%, 10% and 12% pine wood ash mixture. Simple resistance to axial compression of specimens prepared with each concrete mixture, at 3, 14 and 28 days of curing was evaluated. Pozzolanic activity was observed in the ash obtained, checking the presence of crystalline silica (SiO2 of 40.24 nm) and alumina (Al2O3 of 35.08 nm). At 28 days of curing, the specimens prepared with a 5% ash, reached a compression resistance 63% higher than design; for specimens with 10% ash, was 45%; and for specimens with 12% ash, only 36%. Compared to Pattern mixture, which after 28 days showed a f'c = 423.13 kg/cm2, the specimens reached only 97%, 86% and 82% of the compression resistance, for mixtures containing 5%, 10% ash and 12% respectively. The pozzolanic activity of pine wood ash influences the compression resistance, which indicates that it can replace up to 12% of Portland cement by ash without compromising its design strength, however, there is a decrease in strength compared to the pattern concrete.

Keywords: concrete, pine wood ash, pozzolanic activity, X-ray

Procedia PDF Downloads 456
1824 Enhancement of Light Extraction of Luminescent Coating by Nanostructuring

Authors: Aubry Martin, Nehed Amara, Jeff Nyalosaso, Audrey Potdevin, FrançOis ReVeret, Michel Langlet, Genevieve Chadeyron

Abstract:

Energy-saving lighting devices based on LightEmitting Diodes (LEDs) combine a semiconductor chip emitting in the ultraviolet or blue wavelength region to one or more phosphor(s) deposited in the form of coatings. The most common ones combine a blue LED with the yellow phosphor Y₃Al₅O₁₂:Ce³⁺ (YAG:Ce) and a red phosphor. Even if these devices are characterized by satisfying photometric parameters (Color Rendering Index, Color Temperature) and good luminous efficiencies, further improvements can be carried out to enhance light extraction efficiency (increase in phosphor forward emission). One of the possible strategies is to pattern the phosphor coatings. Here, we have worked on different ways to nanostructure the coating surface. On the one hand, we used the colloidal lithography combined with the Langmuir-Blodgett technique to directly pattern the surface of YAG:Tb³⁺ sol-gel derived coatings, YAG:Tb³⁺ being used as phosphor model. On the other hand, we achieved composite architectures combining YAG:Ce coatings and ZnO nanowires. Structural, morphological and optical properties of both systems have been studied and compared to flat YAG coatings. In both cases, nanostructuring brought a significative enhancement of photoluminescence properties under UV or blue radiations. In particular, angle-resolved photoluminescence measurements have shown that nanostructuring modifies photons path within the coatings, with a better extraction of the guided modes. These two strategies have the advantage of being versatile and applicable to any phosphor synthesizable by sol-gel technique. They then appear as promising ways to enhancement luminescence efficiencies of both phosphor coatings and the optical devices into which they are incorporated, such as LED-based lighting or safety devices.

Keywords: phosphor coatings, nanostructuring, light extraction, ZnO nanowires, colloidal lithography, LED devices

Procedia PDF Downloads 176
1823 Assessment of Pakistan-China Economic Corridor: An Emerging Dynamic of 21st Century

Authors: Naad-E-Ali Sulehria

Abstract:

Pakistan and china have stepped in a new phase of strengthening fraternity as the dream of economic corridor once discerned by both countries is going to take a pragmatic shape. Pak-China economic corridor an under construction program is termed to be an emerging dynamic of 21st century that anticipates a nexus between Asian continent and Indian Ocean by extending its functions to adjoining East, South, Central and Western Asian regions. The $45.6 billion worth heavily invested megaprojects by China are meant to revive energy sector and building economic infrastructure in Pakistan. Evidently, these projects are a part of ‘southern extension’ of Silk Road economic belt which is going to draw out prominent incentives for both countries particularly bolstering China to acquire influential dominance over the regional trade and beyond. In pursuit to adhere, by these progressive plans both countries have began working on their respective assignments. This article discusses the economical development programs under China’s peripheral diplomacy regarding its region-specific-approach to accumulate trade of Persian Gulf and access the landlocked Central Asian states through Pakistan in a sublimate context to break US encirclement of Asia. Pakistan’s utmost preference to utilize its strategic channel as a trade hub to become an emerging economy and surpass its arch-rival India for strategic concerns is contemplated accordingly. The needs and feasibility of the economic gateway and the dividends it can provide in the contemporary scenario are examined carefully and analysis is drawn upon the future prospects of the Pakistan-China Economic corridor once completed.

Keywords: pak-china economic corridor (PCEC), central asian republic states (CARs), new silk road economic belt, gawadar

Procedia PDF Downloads 367
1822 Technology Road Mapping in the Fourth Industrial Revolution: A Comprehensive Analysis and Strategic Framework

Authors: Abdul Rahman Hamdan

Abstract:

The Fourth Industrial Revolution (4IR) has brought unprecedented technological advancements that have disrupted many industries worldwide. In keeping up with the technological advances and rapid disruption by the introduction of many technological advancements brought forth by the 4IR, the use of technology road mapping has emerged as one of the critical tools for organizations to leverage. Technology road mapping can be used by many companies to guide them to become more adaptable and anticipate future transformation and innovation, and avoid being redundant or irrelevant due to the rapid changes in technological advancement. This research paper provides a comprehensive analysis of technology road mapping within the context of the 4IR. The objectives of the paper are to provide companies with practical insights and a strategic framework of technology road mapping for them to navigate the fast-changing nature of the 4IR. This study also contributes to the understanding and practice of technology road mapping in the 4IR and, at the same time, provides organizations with the necessary tools and critical insight to navigate the 4IR transformation by leveraging technology road mapping. Based on the literature review and case studies, the study analyses key principles, methodologies, and best practices in technology road mapping and integrates them with the unique characteristics and challenges of the 4IR. The research paper gives the background of the fourth industrial revolution. It explores the disruptive potential of technologies in the 4IR and the critical need for technology road mapping that consists of strategic planning and foresight to remain competitive and relevant in the 4IR era. It also highlights the importance of technology road mapping as an organisation’s proactive approach to align the organisation’s objectives and resources to their technology and product development in meeting the fast-evolving technological 4IR landscape. The paper also includes the theoretical foundations of technology road mapping and examines various methodological approaches, and identifies external stakeholders in the process, such as external experts, stakeholders, collaborative platforms, and cross-functional teams to ensure an integrated and robust technological roadmap for the organisation. Moreover, this study presents a comprehensive framework for technology road mapping in the 4IR by incorporating key elements and processes such as technology assessment, competitive intelligence, risk analysis, and resource allocation. It provides a framework for implementing technology road mapping from strategic planning, goal setting, and technology scanning to road mapping visualisation, implementation planning, monitoring, and evaluation. In addition, the study also addresses the challenges and limitations related to technology roadmapping in 4IR, including the gap analysis. In conclusion of the study, the study will propose a set of practical recommendations for organizations that intend to leverage technology road mapping as a strategic tool in the 4IR in driving innovation and becoming competitive in the current and future ecosystem.

Keywords: technology management, technology road mapping, technology transfer, technology planning

Procedia PDF Downloads 69
1821 The Role of Goal Orientation on the Structural-Psychological Empowerment Link in the Public Sector

Authors: Beatriz Garcia-Juan, Ana B. Escrig-Tena, Vicente Roca-Puig

Abstract:

The aim of this article is to conduct a theoretical and empirical study in order to examine how the goal orientation (GO) of public employees affects the relationship between the structural and psychological empowerment that they experience at their workplaces. In doing so, we follow structural empowerment (SE) and psychological empowerment (PE) conceptualizations, and relate them to the public administration framework. Moreover, we review arguments from GO theories, and previous related contributions. Empowerment has emerged as an important issue in the public sector organization setting in the wake of mainstream New Public Management (NPM), the new orientation in the public sector that aims to provide a better service for citizens. It is closely linked to the drive to improve organizational effectiveness through the wise use of human resources. Nevertheless, it is necessary to combine structural (managerial) and psychological (individual) approaches in an integrative study of empowerment. SE refers to a set of initiatives that aim the transference of power from managerial positions to the rest of employees. PE is defined as psychological state of competence, self-determination, impact, and meaning that an employee feels at work. Linking these two perspectives will lead to arrive at a broader understanding of the empowerment process. Specifically in the public sector, empirical contributions on this relationship are therefore important, particularly as empowerment is a very useful tool with which to face the challenges of the new public context. There is also a need to examine the moderating variables involved in this relationship, as well as to extend research on work motivation in public management. It is proposed the study of the effect of individual orientations, such as GO. GO concept refers to the individual disposition toward developing or confirming one’s capacity in achievement situations. Employees’ GO may be a key factor at work and in workforce selection processes, since it explains the differences in personal work interests, and in receptiveness to and interpretations of professional development activities. SE practices could affect PE feelings in different ways, depending on employees’ GO, since they perceive and respond differently to such practices, which is likely to yield distinct PE results. The model is tested on a sample of 521 Spanish local authority employees. Hierarchical regression analysis was conducted to test the research hypotheses using SPSS 22 computer software. The results do not confirm the direct link between SE and PE, but show that learning goal orientation has considerable moderating power in this relationship, and its interaction with SE affects employees’ PE levels. Therefore, the combination of SE practices and employees’ high levels of LGO are important factors for creating psychologically empowered staff in public organizations.

Keywords: goal orientation, moderating effect, psychological empowerment, structural empowerment

Procedia PDF Downloads 281
1820 Variable Refrigerant Flow (VRF) Zonal Load Prediction Using a Transfer Learning-Based Framework

Authors: Junyu Chen, Peng Xu

Abstract:

In the context of global efforts to enhance building energy efficiency, accurate thermal load forecasting is crucial for both device sizing and predictive control. Variable Refrigerant Flow (VRF) systems are widely used in buildings around the world, yet VRF zonal load prediction has received limited attention. Due to differences between VRF zones in building-level prediction methods, zone-level load forecasting could significantly enhance accuracy. Given that modern VRF systems generate high-quality data, this paper introduces transfer learning to leverage this data and further improve prediction performance. This framework also addresses the challenge of predicting load for building zones with no historical data, offering greater accuracy and usability compared to pure white-box models. The study first establishes an initial variable set of VRF zonal building loads and generates a foundational white-box database using EnergyPlus. Key variables for VRF zonal loads are identified using methods including SRRC, PRCC, and Random Forest. XGBoost and LSTM are employed to generate pre-trained black-box models based on the white-box database. Finally, real-world data is incorporated into the pre-trained model using transfer learning to enhance its performance in operational buildings. In this paper, zone-level load prediction was integrated with transfer learning, and a framework was proposed to improve the accuracy and applicability of VRF zonal load prediction.

Keywords: zonal load prediction, variable refrigerant flow (VRF) system, transfer learning, energyplus

Procedia PDF Downloads 28
1819 Systematic Identification of Noncoding Cancer Driver Somatic Mutations

Authors: Zohar Manber, Ran Elkon

Abstract:

Accumulation of somatic mutations (SMs) in the genome is a major driving force of cancer development. Most SMs in the tumor's genome are functionally neutral; however, some cause damage to critical processes and provide the tumor with a selective growth advantage (termed cancer driver mutations). Current research on functional significance of SMs is mainly focused on finding alterations in protein coding sequences. However, the exome comprises only 3% of the human genome, and thus, SMs in the noncoding genome significantly outnumber those that map to protein-coding regions. Although our understanding of noncoding driver SMs is very rudimentary, it is likely that disruption of regulatory elements in the genome is an important, yet largely underexplored mechanism by which somatic mutations contribute to cancer development. The expression of most human genes is controlled by multiple enhancers, and therefore, it is conceivable that regulatory SMs are distributed across different enhancers of the same target gene. Yet, to date, most statistical searches for regulatory SMs have considered each regulatory element individually, which may reduce statistical power. The first challenge in considering the cumulative activity of all the enhancers of a gene as a single unit is to map enhancers to their target promoters. Such mapping defines for each gene its set of regulating enhancers (termed "set of regulatory elements" (SRE)). Considering multiple enhancers of each gene as one unit holds great promise for enhancing the identification of driver regulatory SMs. However, the success of this approach is greatly dependent on the availability of comprehensive and accurate enhancer-promoter (E-P) maps. To date, the discovery of driver regulatory SMs has been hindered by insufficient sample sizes and statistical analyses that often considered each regulatory element separately. In this study, we analyzed more than 2,500 whole-genome sequence (WGS) samples provided by The Cancer Genome Atlas (TCGA) and The International Cancer Genome Consortium (ICGC) in order to identify such driver regulatory SMs. Our analyses took into account the combinatorial aspect of gene regulation by considering all the enhancers that control the same target gene as one unit, based on E-P maps from three genomics resources. The identification of candidate driver noncoding SMs is based on their recurrence. We searched for SREs of genes that are "hotspots" for SMs (that is, they accumulate SMs at a significantly elevated rate). To test the statistical significance of recurrence of SMs within a gene's SRE, we used both global and local background mutation rates. Using this approach, we detected - in seven different cancer types - numerous "hotspots" for SMs. To support the functional significance of these recurrent noncoding SMs, we further examined their association with the expression level of their target gene (using gene expression data provided by the ICGC and TCGA for samples that were also analyzed by WGS).

Keywords: cancer genomics, enhancers, noncoding genome, regulatory elements

Procedia PDF Downloads 104
1818 An Analysis of Fundamentals and Factors of Positive Thinking and the Ways of Its Emergence in Islam and the New Testament

Authors: Zahra Mohagheghian, Fatema Agharebparast

Abstract:

The comparative study of religions is one of the ways which provides peace and makes the believers of religions closer together. Finding the common notions could be a foundation for the dialog among the monotheistic religions and a background to eliminate the misunderstandings and to reach common point of views. The cornerstone of all the common efforts of the believers of the religions is to reach an understanding for building a better world where true peace is established. So, the article seeks to verify the notion of positive thinking in the religious resources of Islam and Christianity. In order to understand the foundations of the religious teachings and to provide a better understanding among the believers, then, the article tries to discover the common fundamentals and the opposing points about the positive thinking in these two religions. We first try to explain the notion of positive thinking in Islam and Christianity and then offer recommended ways in both religions to create and to strengthen this way of thinking. As the different parts of the New Testament is not theologically homogeneous, this collection has been verified and explained in four different parts: Three Gospels (Matthew, Mark and Luke), John's thoughts, thoughts and ideas of Paul and finally the Christian sects . The findings of the survey show that the notion of positive thinking in the monotheistic religions of Islam and Christianity can be traced back by the keyword "hope". It is only the hope which could finally create the soul of positive attitude and thinking inside the humankind. This hope is accompanied by the prospect and causes the humankind to work hard to reach their goals. However, there are some opposing points in these two religions about the basic foundation of this true hope. From the Quran viewpoint, the main foundation of the hope is God and the human is obliged to follow his worldly goals in accordance with this foundation as well as faith to God and avoidance of committing sins. On the other hand, the basic foundation of hope in the Three Gospels (Matthew, Mark and Luke) and the teachings of Paul is the promise of a coming Kingdom. Although there are some opposing views about the meaning of this as well as the ways to attain this hope, this hope is generally related to the purpose of human life and afterlife. The Christ, in the John's thoughts, is the source of hope and everybody, believing in God, must also have hope for Jesus Christ. Effects and functions of such hope are strengthening the spirit of love and kindness to others. Hence, in Christianity, the hope and positive thinking about the future, along with good deeds, reflects different viewpoints. On the other hand, in Quran, this is faith to God and fulfilling the Sharia orders which ignite and strengthen this hope and way of thinking. This is the base that continues nowadays with Vilāya and the love for Ahlulbeit in the Shiite views.

Keywords: God, new testament, positive thinking, Quran

Procedia PDF Downloads 453
1817 Applications of Multi-Path Futures Analyses for Homeland Security Assessments

Authors: John Hardy

Abstract:

A range of future-oriented intelligence techniques is commonly used by states to assess their national security and develop strategies to detect and manage threats, to develop and sustain capabilities, and to recover from attacks and disasters. Although homeland security organizations use future's intelligence tools to generate scenarios and simulations which inform their planning, there have been relatively few studies of the methods available or their applications for homeland security purposes. This study presents an assessment of one category of strategic intelligence techniques, termed Multi-Path Futures Analyses (MPFA), and how it can be applied to three distinct tasks for the purpose of analyzing homeland security issues. Within this study, MPFA are categorized as a suite of analytic techniques which can include effects-based operations principles, general morphological analysis, multi-path mapping, and multi-criteria decision analysis techniques. These techniques generate multiple pathways to potential futures and thereby generate insight into the relative influence of individual drivers of change, the desirability of particular combinations of pathways, and the kinds of capabilities which may be required to influence or mitigate certain outcomes. The study assessed eighteen uses of MPFA for homeland security purposes and found that there are five key applications of MPFA which add significant value to analysis. The first application is generating measures of success and associated progress indicators for strategic planning. The second application is identifying homeland security vulnerabilities and relationships between individual drivers of vulnerability which may amplify or dampen their effects. The third application is selecting appropriate resources and methods of action to influence individual drivers. The fourth application is prioritizing and optimizing path selection preferences and decisions. The fifth application is informing capability development and procurement decisions to build and sustain homeland security organizations. Each of these applications provides a unique perspective of a homeland security issue by comparing a range of potential future outcomes at a set number of intervals and by contrasting the relative resource requirements, opportunity costs, and effectiveness measures of alternative courses of action. These findings indicate that MPFA enhances analysts’ ability to generate tangible measures of success, identify vulnerabilities, select effective courses of action, prioritize future pathway preferences, and contribute to ongoing capability development in homeland security assessments.

Keywords: homeland security, intelligence, national security, operational design, strategic intelligence, strategic planning

Procedia PDF Downloads 139
1816 Raman Scattering Broadband Spectrum Generation in Compact Yb-Doped Fiber Laser

Authors: Yanrong Song, Zikai Dong, Runqin Xu, Jinrong Tian, Kexuan Li

Abstract:

Nonlinear polarization rotation (NPR) technique has become one of the main techniques to achieve mode-locked fiber lasers for its compactness, implementation, and low cost. In this paper, we demonstrate a compact mode-locked Yb-doped fiber laser based on NPR technique in the all normal dispersion (ANDi) regime. In the laser cavity, there are no physical filter and polarization controller in laser cavity. Mode-locked pulse train is achieved in ANDi regime based on NPR technique. The fiber birefringence induced filtering effect is the mainly reason for mode-locking. After that, an extra 20 m long single-mode fiber is inserted in two different positions, dissipative soliton operation and noise like pulse operations are achieved correspondingly. The nonlinear effect is obviously enhanced in the noise like pulse regime and broadband spectrum generated owing to enhanced stimulated Raman scattering effect. When the pump power is 210 mW, the central wavelength is 1030 nm, and the corresponding 1st order Raman scattering stokes wave generates and locates at 1075 nm. When the pump power is 370 mW, the 1st and 2nd order Raman scattering stokes wave generate and locate at 1080 nm, 1126 nm respectively. When the pump power is 600 mW, the Raman continuum is generated with cascaded multi-order stokes waves, and the spectrum extends to 1188 nm. The total flat spectrum is from 1000nm to 1200nm. The maximum output average power and pulse energy are 18.0W and 14.75nJ, respectively.

Keywords: fiber laser, mode-locking, nonlinear polarization rotation, Raman scattering

Procedia PDF Downloads 221
1815 Electrochemical Corrosion and Mechanical Properties of Structural Materials for Oil and Gas Applications in Simulated Deep-Sea Well Environments

Authors: Turin Datta, Kisor K. Sahu

Abstract:

Structural materials used in today’s oil and gas exploration and drilling of both onshore and offshore oil and gas wells must possess superior tensile properties, excellent resistance to corrosive degradation that includes general, localized (pitting and crevice) and environment assisted cracking such as stress corrosion cracking and hydrogen embrittlement. The High Pressure and High Temperature (HPHT) wells are typically operated at temperature and pressure that can exceed 300-3500F and 10,000psi (69MPa) respectively which necessitates the use of exotic materials in these exotic sources of natural resources. This research investigation is focussed on the evaluation of tensile properties and corrosion behavior of AISI 4140 High-Strength Low Alloy Steel (HSLA) possessing tempered martensitic microstructure and Duplex 2205 Stainless Steel (DSS) having austenitic and ferritic phase. The selection of this two alloys are primarily based on economic considerations as 4140 HSLA is cheaper when compared to DSS 2205. Due to the harsh aggressive chemical species encountered in deep oil and gas wells like chloride ions (Cl-), carbon dioxide (CO2), hydrogen sulphide (H2S) along with other mineral organic acids, DSS 2205, having a dual-phase microstructure can mitigate the degradation resulting from the presence of both chloride ions (Cl-) and hydrogen simultaneously. Tensile properties evaluation indicates a ductile failure of DSS 2205 whereas 4140 HSLA exhibit quasi-cleavage fracture due to the phenomenon of ‘tempered martensitic embrittlement’. From the potentiodynamic polarization testing, it is observed that DSS 2205 has higher corrosion resistance than 4140 HSLA; the former exhibits passivity signifying resistance to localized corrosion while the latter exhibits active dissolution in all the environmental parameters space that was tested. From the Scanning Electron Microscopy (SEM) evaluation, it is understood that stable pits appear in DSS 2205 only when the temperature exceeds the critical pitting temperature (CPT). SEM observation of the corroded 4140 HSLA specimen tested in aqueous 3.5 wt.% NaCl solution reveals intergranular cracking which appears due to the adsorption and diffusion of hydrogen during polarization, thus, causing hydrogen-induced cracking/hydrogen embrittlement. General corrosion testing of DSS 2205 in acidic brine (pH~3.0) solution at ambient temperature using coupons indicate no weight loss even after three months whereas the corrosion rate of AISI 4140 HSLA is significantly higher after one month of testing.

Keywords: DSS 2205, polarization, pitting, SEM

Procedia PDF Downloads 264
1814 The Effect of Corporate Governance to Islamic Banking Performance Using Maqasid Index Approach in Indonesia

Authors: Audia Syafa'atur Rahman, Rozali Haron

Abstract:

The practices of Islamic banking are more attuned to the goals of profit maximization rather than obtaining ethical profit. Ethical profit is obtained from interest-free earnings and to give an impact which benefits to the growth of society and economy. Good corporate governance practices are needed to assure the sustainability of Islamic banks in order to achieve Maqasid Shariah with the main purpose of boosting the well-being of people. The Maqasid Shariah performance measurement is used to measure the duties and responsibilities expected to be performed by Islamic banks. It covers not only unification dimension like financial measurement, but also many dimensions covered to reflect the main purpose of Islamic banks. The implementation of good corporate governance is essential because it covers the interests of the stakeholders and facilitates effective monitoring to encourage Islamic banks to utilize resources more efficiently in order to achieve the Maqasid Shariah. This study aims to provide the empirical evidence on the Maqasid performance of Islamic banks in relation to the Maqasid performance evaluation model, to examine the influence of SSB characteristics and board structures to Islamic Banks performance as measured by Maqasid performance evaluation model. By employing the simple additive weighting method, Maqasid index for all the Islamic Banks in Indonesia within 2012 to 2016 ranged from above 11% to 28%. The Maqasid Syariah performance index where results reached above 20% are obtained by Islamic Banks such as Bank Muamalat Indonesia, Bank Panin Syariah, and Bank BRI Syariah. The consistent achievement above 23% is achieved by BMI. Other Islamic Banks such as Bank Victoria Syariah, Bank Jabar Banten Syariah, Bank BNI Syariah, Bank Mega Syariah, BCA Syariah, and Maybank Syariah Indonesia shows a fluctuating value of the Maqasid performance index every year. The impact of SSB characteristics and board structures are tested using random-effects generalized least square. The findings indicate that SSB characteristics (Shariah Supervisory Board size, Shariah Supervisory Board cross membership, Shariah Supervisory Board Education, and Shariah Supervisory Board reputation) and board structures (Board size and Board independence) have an essential role in improving the performance of Islamic Banks. The findings denote Shariah Supervisory Board with smaller size, higher portion of Shariah Supervisory Board cross membership; lesser Shariah Supervisory Board holds doctorate degree, lesser reputable scholar, more members on board of directors, and less independence non-executive directors will enhance the performance of Islamic Banks.

Keywords: Maqasid Shariah, corporate governance, Islamic banks, Shariah supervisory board

Procedia PDF Downloads 240
1813 Novel Bioinspired Design to Capture Smoky CO2 by Reactive Absorption with Aqueous Scrubber

Authors: J. E. O. Hernandez

Abstract:

In the next 20 years, energy production by burning fuels will increase and so will the atmospheric concentration of CO2 and its well-known threats to life on Earth. The technologies available for capturing CO2 are still dubious and this keeps fostering an interest in bio-inspired approaches. The leading one is the application of carbonic anhydrase (CA) –a superfast biocatalyst able to convert up to one million molecules of CO2 into carbonates in water. However, natural CA underperforms when applied to real smoky CO2 in chimneys and, so far, the efforts to create superior CAs in the lab rely on screening methods running under pristine conditions at the micro level, which are far from resembling those in chimneys. For the evolution of man-made enzymes, selection rather than screening would be ideal but this is challenging because of the need for a suitable artificial environment that is also sustainable for our society. Herein we present the stepwise design and construction of a bioprocess (from bench-scale to semi-pilot) for evolutionary selection experiments. In this bioprocess, reaction and adsorption took place simultaneously at atmospheric pressure in a spray tower. The scrubbing solution was fed countercurrently by reusing municipal pressure and it was mainly prepared with water, carbonic anhydrase and calcium chloride. This bioprocess allowed for the enzymatic carbonation of smoky CO2; the reuse of process water and the recovery of solid carbonates without cooling of smoke, pretreatments, solvent amines and compression of CO2. The average yield of solid carbonates was 0.54 g min-1 or 12-fold the amount produced in serum bottles at lab bench scale. This bioprocess could be used as a tailor-made environment for driving the selection of superior CAs. The bioprocess and its match CA could be sustainably used to reduce global warming by CO2 emissions from exhausts.

Keywords: biological carbon capture and sequestration, carbonic anhydrase, directed evolution, global warming

Procedia PDF Downloads 193
1812 Micro-Transformation Strategy Of Residential Transportation Space Based On The Demand Of Residents: Taking A Residential District In Wuhan, China As An Example

Authors: Hong Geng, Zaiyu Fan

Abstract:

With the acceleration of urbanization and motorization in China, the scale of cities and the travel distance of residents are constantly expanding, and the number of cars is continuously increasing, so the urban traffic problem is more and more serious. Traffic congestion, environmental pollution, energy consumption, travel safety and direct interference between traffic and other urban activities are increasingly prominent problems brought about by motorized development. This not only has a serious impact on the lives of the residents but also has a major impact on the healthy development of the city. The paper found that, in order to solve the development of motorization, a number of problems will arise; urban planning and traffic planning and design in residential planning often take into account the development of motorized traffic but neglects the demand for street life. This kind of planning has resulted in the destruction of the traditional communication space of the residential area, the pollution of noise and exhaust gas, and the potential safety risks of the residential area, which has disturbed the previously quiet and comfortable life of the residential area, resulting in the inconvenience of residents' life and the loss of street vitality. Based on these facts, this paper takes a residential area in Wuhan as the research object, through the actual investigation and research, from the perspective of micro-transformation analysis, combined with the concept of traffic micro-reconstruction governance. And research puts forward the residential traffic optimization strategies such as strengthening the interaction and connection between the residential area and the urban street system, street traffic classification and organization.

Keywords: micro-transformation, residential traffic, residents demand, traffic microcirculation

Procedia PDF Downloads 116
1811 3-D Numerical Simulation of Scraped Surface Heat Exchanger with Helical Screw

Authors: Rabeb Triki, Hassene Djemel, Mounir Baccar

Abstract:

Surface scraping is a passive heat transfer enhancement technique that is directly used in scraped surface heat exchanger (SSHE). The scraping action prevents the accumulation of the product on the inner wall, which intensifies the heat transfer and avoids the formation of dead zones. SSHEs are widely used in industry for several applications such as crystallization, sterilization, freezing, gelatinization, and many other continuous processes. They are designed to deal with products that are viscous, sticky or that contain particulate matter. This research work presents a three-dimensional numerical simulation of the coupled thermal and hydrodynamic behavior within a SSHE which includes Archimedes’ screw instead of scraper blades. The finite volume Fluent 15.0 was used to solve continuity, momentum and energy equations using multiple reference frame formulation. The process fluid investigated under this study is the pure glycerin. Different geometrical parameters were studied in the case of steady, non-isothermal, laminar flow. In particular, attention is focused on the effect of the conicity of the rotor and the pitch of Archimedes’ screw on temperature and velocity distribution and heat transfer rate. Numerical investigations show that the increase of the number of turns in the screw from five to seven turns leads to amelioration of heat transfer coefficient, and the increase of the conicity of the rotor from 0.1 to 0.15 leads to an increase in the rate of heat transfer. Further studies should investigate the effect of different operating parameters (axial and rotational Reynolds number) on the hydrodynamic and thermal behavior of the SSHE.

Keywords: ANSYS-Fluent, hydrodynamic behavior, scraped surface heat exchange, thermal behavior

Procedia PDF Downloads 160
1810 Fabrication and Characterization Analysis of La-Sr-Co-Fe-O Perovskite Hollow Fiber Catalyst for Oxygen Removal in Landfill Gas

Authors: Seong Woon Lee, Soo Min Lim, Sung Sik Jeong, Jung Hoon Park

Abstract:

The atmospheric concentration of greenhouse gas (GHG, Green House Gas) is increasing continuously as a result of the combustion of fossil fuels and industrial development. In response to this trend, many researches have been conducted on the reduction of GHG. Landfill gas (LFG, Land Fill Gas) is one of largest sources of GHG emissions containing the methane (CH₄) as a major constituent and can be considered renewable energy sources as well. In order to use LFG by connecting to the city pipe network, it required a process for removing impurities. In particular, oxygen must be removed because it can cause corrosion of pipes and engines. In this study, methane oxidation was used to eliminate oxygen from LFG and perovskite-type ceramic catalysts of La-Sr-Co-Fe-O composition was selected as a catalyst. Hollow fiber catalysts (HFC, Hollow Fiber Catalysts) have attracted attention as a new concept alternative because they have high specific surface area and mechanical strength compared to other types of catalysts. HFC was prepared by a phase-inversion/sintering technique using commercial La-Sr-Co-Fe-O powder. In order to measure the catalysts' activity, simulated LFG was used for feed gas and complete oxidation reaction of methane was confirmed. Pore structure of the HFC was confirmed by SEM image and perovskite structure of single phase was analyzed by XRD. In addition, TPR analysis was performed to verify the oxygen adsorption mechanism of the HFC. Acknowledgement—The project is supported by the ‘Global Top Environment R&D Program’ in the ‘R&D Center for reduction of Non-CO₂ Greenhouse gases’ (Development and demonstration of oxygen removal technology of landfill gas) funded by Korea Ministry of Environment (ME).

Keywords: complete oxidation, greenhouse gas, hollow fiber catalyst, land fill gas, oxygen removal, perovskite catalyst

Procedia PDF Downloads 117
1809 Spray Drying: An Innovative and Sustainable Method of Preserving Fruits

Authors: Adepoju Abiola Lydia, Adeyanju James Abiodun, Abioye A. O.

Abstract:

Spray drying, an innovative and sustainable preservation method, is increasingly gaining recognition for its potential to enhance food security by extending the shelf life of fruits. This technique involves the atomization of fruit pulp into fine droplets, followed by rapid drying with hot air, resulting in a powdered product that retains much of the original fruit's nutritional value, flavor, and color. By encapsulating sensitive bioactive compounds within a dry matrix, spray drying mitigates nutrient degradation and extends product usability. This technology aligns with sustainability goals by reducing post-harvest losses, minimizing the need for preservatives, and lowering energy consumption compared to conventional drying methods. Furthermore, spray drying enables the use of imperfect or surplus fruits, contributing to waste reduction and providing a continuous supply of nutritious fruit-based ingredients regardless of seasonal variations. The powdered form enhances versatility, allowing incorporation into various food products, thus broadening the scope of fruit utilization. Innovations in spray drying, such as the use of novel carrier agents and optimization of processing parameters, enhance the quality and functionality of the final product. Moreover, the scalability of spray drying makes it suitable for both industrial applications and smaller-scale operations, supporting local economies and food systems. In conclusion, spray drying stands out as a key technology in enhancing food security by ensuring a stable supply of high-quality, nutritious food ingredients while fostering sustainable agricultural practices.

Keywords: spray drying, sustainable, process parameters, carrier agents, fruits

Procedia PDF Downloads 22
1808 Physicians’ Knowledge and Perception of Gene Profiling in Malaysia: A Pilot Study

Authors: Farahnaz Amini, Woo Yun Kin, Lazwani Kolandaiveloo

Abstract:

Availability of different genetic tests after completion of Human Genome Project increases the physicians’ responsibility to keep themselves update on the potential implementation of these genetic tests in their daily practice. However, due to numbers of barriers, still many of physicians are not either aware of these tests or are not willing to offer or refer their patients for genetic tests. This study was conducted an anonymous, cross-sectional, mailed-based survey to develop a primary data of Malaysian physicians’ level of knowledge and perception of gene profiling. Questionnaire had 29 questions. Total scores on selected questions were used to assess the level of knowledge. The highest possible score was 11. Descriptive statistics, one way ANOVA and chi-squared test was used for statistical analysis. Sixty three completed questionnaires was returned by 27 general practitioners (GPs) and 36 medical specialists. Responders’ age range from 24 to 55 years old (mean 30.2 ± 6.4). About 40% of the participants rated themselves as having poor level of knowledge in genetics in general whilst 60% believed that they have fair level of knowledge. However, almost half (46%) of the respondents felt that they were not knowledgeable about available genetic tests. A majority (94%) of the responders were not aware of any lab or company which is offering gene profiling services in Malaysia. Only 4% of participants were aware of using gene profiling for detection of dosage of some drugs. Respondents perceived greater utility of gene profiling for breast cancer (38%) compared to the colorectal familial cancer (3%). The score of knowledge ranged from 2 to 8 (mean 4.38 ± 1.67). Non-significant differences between score of knowledge of GPs and specialists were observed, with score of 4.19 and 4.58 respectively. There was no significant association between any demographic factors and level of knowledge. However, those who graduated between years 2001 to 2005 had higher level of knowledge. Overall, 83% of participants showed relatively high level of perception on value of gene profiling to detect patient’s risk of disease. However, low perception was observed for both statements of using gene profiling for general population in order to alter their lifestyle (25%) as well as having the full sequence of a patient genome for the purpose of determining a patient’s best match for treatment (18%). The lack of clinical guidelines, limited provider knowledge and awareness, lack of time and resources to educate patients, lack of evidence-based clinical information and cost of tests were the most barriers of ordering gene profiling mentioned by physicians. In conclusion Malaysian physicians who participate in this study had mediocre level of knowledge and awareness in gene profiling. The low exposure to the genetic questions and problems might be a key predictor of lack of awareness and knowledge on available genetic tests. Educational and training workshop might be useful in helping Malaysian physicians incorporate genetic profiling into practice for eligible patients.

Keywords: gene profiling, knowledge, Malaysia, physician

Procedia PDF Downloads 326
1807 Real-Time Working Environment Risk Analysis with Smart Textiles

Authors: Jose A. Diaz-Olivares, Nafise Mahdavian, Farhad Abtahi, Kaj Lindecrantz, Abdelakram Hafid, Fernando Seoane

Abstract:

Despite new recommendations and guidelines for the evaluation of occupational risk assessments and their prevention, work-related musculoskeletal disorders are still one of the biggest causes of work activity disruption, productivity loss, sick leave and chronic work disability. It affects millions of workers throughout Europe, with a large-scale economic and social burden. These specific efforts have failed to produce significant results yet, probably due to the limited availability and high costs of occupational risk assessment at work, especially when the methods are complex, consume excessive resources or depend on self-evaluations and observations of poor accuracy. To overcome these limitations, a pervasive system of risk assessment tools in real time has been developed, which has the characteristics of a systematic approach, with good precision, usability and resource efficiency, essential to facilitate the prevention of musculoskeletal disorders in the long term. The system allows the combination of different wearable sensors, placed on different limbs, to be used for data collection and evaluation by a software solution, according to the needs and requirements in each individual working environment. This is done in a non-disruptive manner for both the occupational health expert and the workers. The creation of this solution allows us to attend different research activities that require, as an essential starting point, the recording of data with ergonomic value of very diverse origin, especially in real work environments. The software platform is here presented with a complimentary smart clothing system for data acquisition, comprised of a T-shirt containing inertial measurement units (IMU), a vest sensorized with textile electronics, a wireless electrocardiogram (ECG) and thoracic electrical bio-impedance (TEB) recorder and a glove sensorized with variable resistors, dependent on the angular position of the wrist. The collected data is processed in real-time through a mobile application software solution, implemented in commercially available Android-based smartphones and tablet platforms. Based on the collection of this information and its analysis, real-time risk assessment and feedback about postural improvement is possible, adapted to different contexts. The result is a tool which provides added value to ergonomists and occupational health agents, as in situ analysis of postural behavior can assist in a quantitative manner in the evaluation of work techniques and the occupational environment.

Keywords: ergonomics, mobile technologies, risk assessment, smart textiles

Procedia PDF Downloads 117
1806 Characterization and Monitoring of the Yarn Faults Using Diametric Fault System

Authors: S. M. Ishtiaque, V. K. Yadav, S. D. Joshi, J. K. Chatterjee

Abstract:

The DIAMETRIC FAULTS system has been developed that captures a bi-directional image of yarn continuously in sequentially manner and provides the detailed classification of faults. A novel mathematical framework developed on the acquired bi-directional images forms the basis of fault classification in four broad categories, namely, Thick1, Thick2, Thin and Normal Yarn. A discretised version of Radon transformation has been used to convert the bi-directional images into one-dimensional signals. Images were divided into training and test sample sets. Karhunen–Loève Transformation (KLT) basis is computed for the signals from the images in training set for each fault class taking top six highest energy eigen vectors. The fault class of the test image is identified by taking the Euclidean distance of its signal from its projection on the KLT basis for each sample realization and fault class in the training set. Euclidean distance applied using various techniques is used for classifying an unknown fault class. An accuracy of about 90% is achieved in detecting the correct fault class using the various techniques. The four broad fault classes were further sub classified in four sub groups based on the user set boundary limits for fault length and fault volume. The fault cross-sectional area and the fault length defines the total volume of fault. A distinct distribution of faults is found in terms of their volume and physical dimensions which can be used for monitoring the yarn faults. It has been shown from the configurational based characterization and classification that the spun yarn faults arising out of mass variation, exhibit distinct characteristics in terms of their contours, sizes and shapes apart from their frequency of occurrences.

Keywords: Euclidean distance, fault classification, KLT, Radon Transform

Procedia PDF Downloads 265
1805 Coupled Hydro-Geomechanical Modeling of Oil Reservoir Considering Non-Newtonian Fluid through a Fracture

Authors: Juan Huang, Hugo Ninanya

Abstract:

Oil has been used as a source of energy and supply to make materials, such as asphalt or rubber for many years. This is the reason why new technologies have been implemented through time. However, research still needs to continue increasing due to new challenges engineers face every day, just like unconventional reservoirs. Various numerical methodologies have been applied in petroleum engineering as tools in order to optimize the production of reservoirs before drilling a wellbore, although not all of these have the same efficiency when talking about studying fracture propagation. Analytical methods like those based on linear elastic fractures mechanics fail to give a reasonable prediction when simulating fracture propagation in ductile materials whereas numerical methods based on the cohesive zone method (CZM) allow to represent the elastoplastic behavior in a reservoir based on a constitutive model; therefore, predictions in terms of displacements and pressure will be more reliable. In this work, a hydro-geomechanical coupled model of horizontal wells in fractured rock was developed using ABAQUS; both extended element method and cohesive elements were used to represent predefined fractures in a model (2-D). A power law for representing the rheological behavior of fluid (shear-thinning, power index <1) through fractures and leak-off rate permeating to the matrix was considered. Results have been showed in terms of aperture and length of the fracture, pressure within fracture and fluid loss. It was showed a high infiltration rate to the matrix as power index decreases. A sensitivity analysis is conclusively performed to identify the most influential factor of fluid loss.

Keywords: fracture, hydro-geomechanical model, non-Newtonian fluid, numerical analysis, sensitivity analysis

Procedia PDF Downloads 206
1804 Compromising Quality of Life in Low-Income Settlements: The Case of Ashrayan Prakalpa, Khulna

Authors: Salma Akter, Md. Kamal Uddin

Abstract:

Quality of life is a vast and comprehensive concept refers overall well-being of society. Current research and efforts of policymakers and planners are concerned to increase the urban quality of life through the sustainable development of city and country. While such efforts effectively improve the quality of life of urban dwellers through improved social, economic and housing infrastructures, very little has been paid to improve low-income settlement users more specifically government provided shelter projects. The top-down shelter policies and its objective indicators (physical design elements and physical environmental elements) indicators on low-income groups merely can ensure grassroots needs, aspiration and well-being refer as subjective qualities obliged to compromise with the quality of life. This research, therefore, aims to measure the quality of life of such government-provided low-income settlements. To do so, a conceptual framework has been developed to measure quality of life with arguing that quality of life depends on both objective and subjective indicators and needs to measure across three scales of living environment refers to macro (community), meso (neighborhood or shelter/built environment), and micro (family). The top-down shelter project, Dakshin Chandani Mahal Ashrayan Prakalpa is a resettlement/housing project of Government of Bangladesh for providing shelters and human resources development activities like education, microcredit, and training programme to landless, homeless and rootless people has been taken as case study. The study area is located at Dighalia Upazila, Khulna Bangladesh. In terms of methodology, this research is primarily exploratory and adopts a case study method and deductive approach for evaluating the quality of life. Data have been obtained from relevant literature review, key informant interview, focus group discussion, necessary drawings, photographs and participant observation across dwelling, neighborhood, and community level. Findings have revealed that Shelter users mostly compromise the quality of life at community level due to insufficient physical design elements and facilities while neighborhood and dwelling level have been manifested similar result like former ones. Thus, the outcome of this study can be beneficial for a global-level understating of the compromising the ‘quality of life’ under top-down shelter policy. Locally, for instance, in the context of Bangladesh, it can help policymakers and concerned authorities to formulate the shelter policies and take initiatives to improve the well-being of marginalized.

Keywords: Ashrayan Prakalpa, compromise, displaced people, quality of life

Procedia PDF Downloads 217
1803 Supply Chain Analysis with Product Returns: Pricing and Quality Decisions

Authors: Mingming Leng

Abstract:

Wal-Mart has allocated considerable human resources for its quality assurance program, in which the largest retailer serves its supply chains as a quality gatekeeper. Asda Stores Ltd., the second largest supermarket chain in Britain, is now investing £27m in significantly increasing the frequency of quality control checks in its supply chains and thus enhancing quality across its fresh food business. Moreover, Tesco, the largest British supermarket chain, already constructed a quality assessment center to carry out its gatekeeping responsibility. Motivated by the above practices, we consider a supply chain in which a retailer plays the gatekeeping role in quality assurance by identifying defects among a manufacturer's products prior to selling them to consumers. The impact of a retailer's gatekeeping activity on pricing and quality assurance in a supply chain has not been investigated in the operations management area. We draw a number of managerial insights that are expected to help practitioners judiciously consider the quality gatekeeping effort at the retail level. As in practice, when the retailer identifies a defective product, she immediately returns it to the manufacturer, who then replaces the defect with a good quality product and pays a penalty to the retailer. If the retailer does not recognize a defect but sells it to a consumer, then the consumer will identify the defect and return it to the retailer, who then passes the returned 'unidentified' defect to the manufacturer. The manufacturer also incurs a penalty cost. Accordingly, we analyze a two-stage pricing and quality decision problem, in which the manufacturer and the retailer bargain over the manufacturer's average defective rate and wholesale price at the first stage, and the retailer decides on her optimal retail price and gatekeeping intensity at the second stage. We also compare the results when the retailer performs quality gatekeeping with those when the retailer does not. Our supply chain analysis exposes some important managerial insights. For example, the retailer's quality gatekeeping can effectively reduce the channel-wide defective rate, if her penalty charge for each identified de-fect is larger than or equal to the market penalty for each unidentified defect. When the retailer imple-ments quality gatekeeping, the change in the negotiated wholesale price only depends on the manufac-turer's 'individual' benefit, and the change in the retailer's optimal retail price is only related to the channel-wide benefit. The retailer is willing to take on the quality gatekeeping responsibility, when the impact of quality relative to retail price on demand is high and/or the retailer has a strong bargaining power. We conclude that the retailer's quality gatekeeping can help reduce the defective rate for consumers, which becomes more significant when the retailer's bargaining position in her supply chain is stronger. Retailers with stronger bargaining powers can benefit more from their quality gatekeeping in supply chains.

Keywords: bargaining, game theory, pricing, quality, supply chain

Procedia PDF Downloads 277
1802 Modeling and Simulation of Honeycomb Steel Sandwich Panels under Blast Loading

Authors: Sayed M. Soleimani, Nader H. Ghareeb, Nourhan H. Shaker, Muhammad B. Siddiqui

Abstract:

Honeycomb sandwich panels have been widely used as protective structural elements against blast loading. The main advantages of these panels include their light weight due to the presence of voids, as well as their energy absorption capability. Terrorist activities have imposed new challenges to structural engineers to design protective measures for vital structures. Since blast loading is not usually considered in the load combinations during the design process of a structure, researchers around the world have been motivated to study the behavior of potential elements capable of resisting sudden loads imposed by the detonation of explosive materials. One of the best candidates for this objective is the honeycomb sandwich panel. Studying the effects of explosive materials on the panels requires costly and time-consuming experiments. Moreover, these type of experiments need permission from defense organizations which can become a hurdle. As a result, modeling and simulation using an appropriate tool can be considered as a good alternative. In this research work, the finite element package ABAQUS® is used to study the behavior of hexagonal and squared honeycomb steel sandwich panels under the explosive effects of different amounts of trinitrotoluene (TNT). The results of finite element modeling of a specific honeycomb configuration are initially validated by comparing them with the experimental results from literature. Afterwards, several configurations including different geometrical properties of the honeycomb wall are investigated and the results are compared with the original model. Finally, the effectiveness of the core shape and wall thickness are discussed, and conclusions are made.

Keywords: Abaqus, blast loading, finite element modeling, steel honeycomb sandwich panel

Procedia PDF Downloads 353
1801 Community Singing, a Pathway to Social Capital: A Cross-Cultural Comparative Assessment of the Benefits of Singing Communities in South Tyrol and South Africa

Authors: Johannes Van Der Sandt

Abstract:

This quantitative study investigates different approaches of community singing, in building social capital in South Tyrol, Italy, and South Africa. The impact of the various approaches of community singing is examined by investigating the main components of social capital, namely, social norms and obligations, social networks and associations and trust, and how these components are manifested in two different societies. The research is based on the premise that community singing is an important agent for the development of social capital. It seeks to establish in what form community singing can best enhance the social capital of communities in South Tyrol that are undergoing significant changes in the ways in which social capital is generally being generated on account of demographic, economic, technological and cultural changes. South Tyrol and South Africa share some similarities in the management of their multi-cultural composition. By comparing the different approaches to community singing in two multi-cultural societies, it is hoped to gain insight, and an understanding of the connections between culture, social cohesion, identity and therefore to be able to add to the understanding of the building of social capital through community singing. Participation in music contributes to the growth of social capital in communities, this is amongst others the finding of an ever increasing amount of research. In sociological discourses on social capital generation, the dimension of community music making is recognized as an important factor. Trust and mutual cooperation are products when people listen to each other, when they work or play together, and when they care about each other. This is how social capital develops as an important shared resource. Scholars of Community Music still do not agree on a short and concise definition for Community Music. For the purpose of this research, the author concurs with the definition of Community Music of the Community Music Activity commission of the International Society of Music Education as having the following characteristics: decentralization, accessibility, equal opportunity, and active participation in music-making. These principles are social and political ones, and there can be no doubt that community music activity is more than a purely musical one. Trust, shared norms and values civic and community involvement, networks, knowledge resources, contact with families and friends, and fellowship are key components in fostering group cohesion and social capital development in a community. The research will show that there is no better place for these factors to flourish than in a community singing group. Through this comparative study, it is the aim to identify, analyze and explain similarities and differences in approaches to community across societies that find themselves in a rapid transition from traditional cultural to global cultural habits characterized by a plurality of orientation points, with the aim to gain a better understanding of the various directions South Tyrolean singing culture can take.

Keywords: community music, multicultural, singing, social capital

Procedia PDF Downloads 283