Search results for: two magnetic phase transitions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5888

Search results for: two magnetic phase transitions

4688 The Impact of the Composite Expanded Graphite PCM on the PV Panel Whole Year Electric Output: Case Study Milan

Authors: Hasan A Al-Asadi, Ali Samir, Afrah Turki Awad, Ali Basem

Abstract:

Integrating the phase change material (PCM) with photovoltaic (PV) panels is one of the effective techniques to minimize the PV panel temperature and increase their electric output. In order to investigate the impact of the PCM on the electric output of the PV panels for a whole year, a lumped-distributed parameter model for the PV-PCM module has been developed. This development has considered the impact of the PCM density variation between the solid phase and liquid phase. This contribution will increase the assessment accuracy of the electric output of the PV-PCM module. The second contribution is to assess the impact of the expanded composite graphite-PCM on the PV electric output in Milan for a whole year. The novel one-dimensional model has been solved using MATLAB software. The results of this model have been validated against literature experiment work. The weather and the solar radiation data have been collected. The impact of expanded graphite-PCM on the electric output of the PV panel for a whole year has been investigated. The results indicate this impact has an enhancement rate of 2.39% for the electric output of the PV panel in Milan for a whole year.

Keywords: PV panel efficiency, PCM, numerical model, solar energy

Procedia PDF Downloads 173
4687 Effects of Seed Culture and Attached Growth System on the Performance of Anammox Hybrid Reactor (AHR) Treating Nitrogenous Wastewater

Authors: Swati Tomar, Sunil Kumar Gupta

Abstract:

The start-up of anammox (anaerobic ammonium oxidation) process in hybrid reactor delineated four distinct phases i.e. cell lysis, lag phase, activity elevation and stationary phase. Cell lysis phase was marked by death and decay of heterotrophic denitrifiers resulting in breakdown of organic nitrogen into ammonium. Lag phase showed initiation of anammox activity with turnover of heterotrophic denitrifiers, which is evident from appearance of NO3-N in the effluent. In activity elevation phase, anammox became the dominant reaction, which can be attributed to consequent reduction of NH4-N into N2 with increased NO3-N in the effluent. Proper selection of mixed seed culture at influent NO2-/NH4+ ratio (1:1) and hydraulic retention time (HRT) of 1 day led to early startup of anammox within 70 days. Pseudo steady state removal efficiencies of NH4+ and NO2- were found as 94.3% and 96.4% respectively, at nitrogen loading rate (NLR) of 0.35 kg N/m3d at an HRT of 1 day. Analysis of the data indicated that attached growth system contributes an additional 11% increase in the ammonium removal and results in an average of 29% reduction in sludge washout rate. Mass balance study of nitrogen indicated that 74.1% of total input nitrogen is converted into N2 gas followed by 11.2% being utilized in biomass development. Scanning electron microscope (SEM) observation of the granular sludge clearly showed the presence of cocci and rod shaped microorganisms intermingled on the external surface of the granules. The average size of anammox granules (1.2-1.5 mm) with an average settling velocity of 45.6 m/h indicated a high degree of granulation resulting into formation of well compacted granules in the anammox process.

Keywords: anammox, hybrid reactor, startup, granulation, nitrogen removal, mixed seed culture

Procedia PDF Downloads 186
4686 Evaluation of the Adsorption Adaptability of Activated Carbon Using Dispersion Force

Authors: Masao Fujisawa, Hirohito Ikeda, Tomonori Ohata, Miho Yukawa, Hatsumi Aki, Takayoshi Kimura

Abstract:

We attempted to predict adsorption coefficients by utilizing dispersion energies. We performed liquid-phase free energy calculations based on gas-phase geometries of organic compounds using the DFT and studied the relationship between the adsorption of organic compounds by activated carbon and dispersion energies of the organic compounds. A linear correlation between absorption coefficients and dispersion energies was observed.

Keywords: activated carbon, adsorption, prediction, dispersion energy

Procedia PDF Downloads 235
4685 Direct Bonded Aluminum to Alumina Using a Transient Eutectic Liquid Phase for Power Electronics Applications

Authors: Yu-Ting Wang, Yun-Hsiang Cheng, Chien-Cheng Lin, Kun-Lin Lin

Abstract:

Using a transient liquid phase method, Al was successfully bonded with Al₂O₃, which deposited Ni, Cu, Ge, and Si at the surface of the Al₂O₃ substrate after annealing at the relatively low melting point of Al. No reaction interlayer existed at the interface of any Al/Al₂O₃ specimens. Al−Fe intermetallic compounds, such as Al₉Fe₂ and Al₃Fe, formed in the Al substrate because of the precipitation of Fe, which was an impurity of the Al foil, and the reaction with Al at the grain boundaries of Al during annealing processing. According to the evaluation results of mechanical and thermal properties, the Al/Al₂O₃ specimen deposited on the Ni film possessed the highest shear strength, thermal conductivity, and bonding area percentage, followed by the Cu, Ge, and Si films. The properties of the Al/Al₂O₃ specimens deposited with Ge and Si were relatively unsatisfactory, which could be because the deposited amorphous layers easily formed oxide, resulting in inferior adhesion between Al and Al₂O₃. Therefore, the optimal choice for use in high-power devices is Al/Al₂O₃, with the deposition of Ni film.

Keywords: direct-bonded aluminum, transient liquid phase, thermal conductivity, microstructures, shear strength

Procedia PDF Downloads 160
4684 Berry Phase and Quantum Skyrmions: A Loop Tour in Physics

Authors: Sinuhé Perea Puente

Abstract:

In several physics systems the whole can be obtained as an exact copy of each of its parts, which facilitates the study of a complex system by looking carefully at its elements, separately. Reducionism offers simplified models which makes the problems easier, but “there’s plenty of room...at the mesoscopic scale”. Here we present a tour for two of its representants: Berry phase and skyrmions, studying some of its basic definitions and properties, and two cases in which both arise together, to finish constraining the scale for our mesoscopic system in the quest of quantum skyrmions, discovering which properties are conserved and which others may be destroyed.

Keywords: condensed mattter, quantum physics, skyrmions, topological defects

Procedia PDF Downloads 146
4683 Design, Simulation and Fabrication of Electro-Magnetic Pulse Welding Coil and Initial Experimentation

Authors: Bharatkumar Doshi

Abstract:

Electro-Magnetic Pulse Welding (EMPW) is a solid state welding process carried out at almost room temperature, in which joining is enabled by high impact velocity deformation. In this process, high voltage capacitor’s stored energy is discharged in an EM coil resulting in a damped, sinusoidal current with an amplitude of several hundred kiloamperes. Due to these transient magnetic fields of few tens of Tesla near the coil is generated. As the conductive (tube) part is positioned in this area, an opposing eddy current is induced in this part. Consequently, high Lorentz forces act on the part, leading to acceleration away from the coil. In case of a tube, it gets compressed under forming velocities of more than 300 meters per second. After passing the joining gap it collides with the second metallic joining rod, leading to the formation of a jet under appropriate collision conditions. Due to the prevailing high pressure, metallurgical bonding takes place. A characteristic feature is the wavy interface resulting from the heavy plastic deformations. In the process, the formation of intermetallic compounds which might deteriorate the weld strength can be avoided, even for metals with dissimilar thermal properties. In order to optimize the process parameters like current, voltage, inductance, coil dimensions, workpiece dimensions, air gap, impact velocity, effective plastic strain, shear stress acting in the welding zone/impact zone etc. are very critical and important to establish. These process parameters could be determined by simulation using Finite Element Methods (FEM) in which electromagnetic –structural couple field analysis is performed. The feasibility of welding could thus be investigated by varying the parameters in the simulation using COMSOL. Simulation results shall be applied in performing the preliminary experiments of welding the different alloy steel tubes and/or alloy steel to other materials. The single turn coil (S.S.304) with field shaper (copper) has been designed and manufactured. The preliminary experiments are performed using existing EMPW facility available Institute for Plasma Research, Gandhinagar, India. The experiments are performed at 22kV charged into 64µF capacitor bank and the energy is discharged into single turn EM coil. Welding of axi-symetric components such as aluminum tube and rod has been proven experimentally using EMPW techniques. In this paper EM coil design, manufacturing, Electromagnetic-structural FEM simulation of Magnetic Pulse Welding and preliminary experiment results is reported.

Keywords: COMSOL, EMPW, FEM, Lorentz force

Procedia PDF Downloads 185
4682 Clinical Applications of Amide Proton Transfer Magnetic Resonance Imaging: Detection of Brain Tumor Proliferative Activity

Authors: Fumihiro Imai, Shinichi Watanabe, Shingo Maeda, Haruna Imai, Hiroki Niimi

Abstract:

It is important to know the growth rate of brain tumors before surgery because it influences treatment planning, including not only surgical resection strategy but also adjuvant therapy after surgery. Amide proton transfer (APT) imaging is an emerging molecular magnetic resonance imaging (MRI) technique based on chemical exchange saturation transfer without the administration of a contrast medium. The underlying assumption in APT imaging of tumors is that there is a close relationship between the proliferative activity of the tumor and mobile protein synthesis. We aimed to evaluate the diagnostic performance of APT imaging of pre-and post-treatment brain tumors. Ten patients with brain tumor underwent conventional and APT-weighted sequences on a 3.0 Tesla MRI before clinical intervention. The maximum and the minimum APT-weighted signals (APTWmax and APTWmin) in each solid tumor region were obtained and compared before and after a clinical intervention. All surgical specimens were examined for histopathological diagnosis. Eight of ten patients underwent adjuvant therapy after surgery. Histopathological diagnosis was glioma in 7 patients (WHO grade 2 in 2 patients, WHO grade 3 in 3 patients, and WHO grade 4 in 2 patients), meningioma WHO grade 1 in 2 patients, and primary lymphoma of the brain in 1 patient. High-grade gliomas showed significantly higher APTW signals than that low-grade gliomas. APTWmax in one huge parasagittal meningioma infiltrating into the skull bone was higher than that in glioma WHO grade 4. On the other hand, APTWmax in another convexity meningioma was the same as that in glioma WHO grade 3. Diagnosis of primary lymphoma of the brain was possible with APT imaging before pathological confirmation. APTW signals in residual tumors decreased dramatically within one year after adjuvant therapy in all patients. APT imaging demonstrated excellent diagnostic performance for the planning of surgery and adjuvant therapy of brain tumors.

Keywords: amides, magnetic resonance imaging, brain tumors, cell proliferation

Procedia PDF Downloads 88
4681 A Model Towards Creating Positive Accounting Classroom Conditions That Supports Successful Learning at School

Authors: Vine Petzer, Mirna Nel

Abstract:

An explanatory mixed method design was used to investigate accounting classroom conditions in the Further Education and Training (FET) Phase in South Africa. A descriptive survey research study with a heterogeneous group of learners and teachers was conducted in the first phase. In the qualitative phase, semi-structured individual interviews with learners and teachers, as well as observations in the accounting classroom, were employed to gain more in depth understanding of the learning conditions in the accounting classroom. The findings of the empirical research informed the development of a model for teachers in accounting, supporting them to use more effective teaching methods and create positive learning conditions for all learners to experience successful learning. A model towards creating positive Accounting classroom conditions that support successful learning was developed and recommended for education policy and decision-makers for use as a classroom intervention capacity building tool. The model identifies and delineates classroom practices that exert significant effect on learner attainment of quality education.

Keywords: accounting classroom conditions, positive education, successful learning, teaching accounting

Procedia PDF Downloads 146
4680 A Distinct Reversed-Phase High-Performance Liquid Chromatography Method for Simultaneous Quantification of Evogliptin Tartrate and Metformin HCl in Pharmaceutical Dosage Forms

Authors: Rajeshkumar Kanubhai Patel, Neha Sudhirkumar Mochi

Abstract:

A simple and accurate stability-indicating, reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed and validated for the simultaneous quantitation of Evogliptin tartrate and Metformin HCl in pharmaceutical dosage forms, following ICH guidelines. Forced degradation was performed under various stress conditions including acid, base, oxidation, thermal, and photodegradation. The method utilized an Eclipse C18 column (250 mm × 4.6 mm, 5 µm) with a mobile phase of 5 mM 1-hexane sulfonic acid sodium salt in water and 0.2% v/v TEA (45:55 %v/v), adjusted to pH 3.0 with OPA, at a flow rate of 1.0 mL/min. Detection at 254.4 nm using a PDA detector showed good resolution of degradation products and both drugs. Linearity was observed within 1-5 µg/mL for Evogliptin tartrate and 100-500 µg/mL for Metformin HCl, with % recovery between 99-100% and precision within acceptable limits (%RSD < 2%). The method proved to be specific, precise, accurate, and robust for routine analysis of these drugs.

Keywords: stability indicating RP-HPLC, evogliptin tartrate, metformin HCl, validation

Procedia PDF Downloads 28
4679 Mechanical Properties of Ancient Timber Structure Based on the Non Destructive Test Method: A Study to Feiyun Building, Shanxi, China

Authors: Annisa Dewanti Putri, Wang Juan, Y. Qing Shan

Abstract:

The structural assessment is one of a crucial part for ancient timber structure, in which this phase will be the reference for the maintenance and preservation phase. The mechanical properties of a structure are one of an important component of the structural assessment of building. Feiyun as one of the particular preserved building in China will become one of the Pioneer of Timber Structure Building Assessment. The 3-storey building which is located in Shanxi Province consists of complex ancient timber structure. Due to condition and preservation purpose, assessments (visual inspections, Non-Destructive Test and a Semi Non-Destructive test) were conducted. The stress wave measurement, moisture content analyzer, and the micro-drilling resistance meter data will overview the prediction of Mechanical Properties. As a result, the mechanical properties can be used for the next phase as reference for structural damage solutions.

Keywords: ancient structure, mechanical properties, non destructive test, stress wave, structural assessment, timber structure

Procedia PDF Downloads 474
4678 3D Codes for Unsteady Interaction Problems of Continuous Mechanics in Euler Variables

Authors: M. Abuziarov

Abstract:

The designed complex is intended for the numerical simulation of fast dynamic processes of interaction of heterogeneous environments susceptible to the significant formability. The main challenges in solving such problems are associated with the construction of the numerical meshes. Currently, there are two basic approaches to solve this problem. One is using of Lagrangian or Lagrangian Eulerian grid associated with the boundaries of media and the second is associated with the fixed Eulerian mesh, boundary cells of which cut boundaries of the environment medium and requires the calculation of these cut volumes. Both approaches require the complex grid generators and significant time for preparing the code’s data for simulation. In this codes these problems are solved using two grids, regular fixed and mobile local Euler Lagrange - Eulerian (ALE approach) accompanying the contact and free boundaries, the surfaces of shock waves and phase transitions, and other possible features of solutions, with mutual interpolation of integrated parameters. For modeling of both liquids and gases, and deformable solids the Godunov scheme of increased accuracy is used in Lagrangian - Eulerian variables, the same for the Euler equations and for the Euler- Cauchy, describing the deformation of the solid. The increased accuracy of the scheme is achieved by using 3D spatial time dependent solution of the discontinuity problem (3D space time dependent Riemann's Problem solver). The same solution is used to calculate the interaction at the liquid-solid surface (Fluid Structure Interaction problem). The codes does not require complex 3D mesh generators, only the surfaces of the calculating objects as the STL files created by means of engineering graphics are given by the user, which greatly simplifies the preparing the task and makes it convenient to use directly by the designer at the design stage. The results of the test solutions and applications related to the generation and extension of the detonation and shock waves, loading the constructions are presented.

Keywords: fluid structure interaction, Riemann's solver, Euler variables, 3D codes

Procedia PDF Downloads 439
4677 Implication of the Exchange-Correlation on Electromagnetic Wave Propagation in Single-Wall Carbon Nanotubes

Authors: A. Abdikian

Abstract:

Using the linearized quantum hydrodynamic model (QHD) and by considering the role of quantum parameter (Bohm’s potential) and electron exchange-correlation potential in conjunction with Maxwell’s equations, electromagnetic wave propagation in a single-walled carbon nanotubes was studied. The electronic excitations are described. By solving the mentioned equations with appropriate boundary conditions and by assuming the low-frequency electromagnetic waves, two general expressions of dispersion relations are derived for the transverse magnetic (TM) and transverse electric (TE) modes, respectively. The dispersion relations are analyzed numerically and it was found that the dependency of dispersion curves with the exchange-correlation effects (which have been ignored in previous works) in the low frequency would be limited. Moreover, it has been realized that asymptotic behaviors of the TE and TM modes are similar in single wall carbon nanotubes (SWCNTs). The results show that by adding the function of electron exchange-correlation potential lead to the phenomena and make to extend the validity range of QHD model. The results can be important in the study of collective phenomena in nanostructures.

Keywords: transverse magnetic, transverse electric, quantum hydrodynamic model, electron exchange-correlation potential, single-wall carbon nanotubes

Procedia PDF Downloads 453
4676 Insights on the Social-Economic Implications of the Blue Economy Concept on Coastal Tourism in Tonga

Authors: Amelia Faotusia

Abstract:

The blue economy concept was coined by Pacific nations in recognition of the importance of sustainably managing their extensive marine territories. This is especially important for major ocean-based economic sectors of Pacific economies, such as coastal tourism. There is an absence of research, however, on the key ways in which the blue economy concept has emerged in discourse and public policy in Pacific countries, as well as how it articulates with coastal tourism. This research helps to fill such a gap with a specific focus on Tonga through the application of a post-positivist research approach to conduct a desktop study of relevant national documents and qualitative interviews with relevant government staff, civil society organizations, and tourism operators. The findings of the research reflect the importance of institutional integration and partnerships for a successful blue economy transition and are presented in the form of two case studies corresponding to two sub-sectors of Tonga’s coastal tourism sector: (i) the whale-watching and swimming industry, and (ii) beach resorts and restaurants. A thematic analysis applied to the interview data of both cases then enabled the identification of key areas and issues for socio-economic policy intervention and recommendations in support of blue economy transitions in Tonga’s coastal tourism sector. Examples of the relevant areas and issues that emerged included the importance of foreign direct investment, local market access, community-based special management areas, as well as the need to address the anthropogenic impacts of tropical cyclones, whale tourism, plastic litter on coastal assets, and ecosystems. Policy and practical interventions in support of addressing such issues include a proposed restructuring of the whale-watching and swimming licensing system; integration of climate resilience, adaptation, and capacity building as priorities of local blue economy interventions; as well as strengthening of the economic sustainability dimension of blue economy policies. Finally, this research also revealed the need for further specificity and research on the influence and value of local Tongan culture and traditional knowledge, particularly within existing customary marine tenure systems, on Tonga’s national and sectoral blue economy policies and transitions.

Keywords: blue economy, coastal tourism, integrated ocean management, ecosystem resilience

Procedia PDF Downloads 93
4675 Single Phase Fluid Flow in Series of Microchannel Connected via Converging-Diverging Section with or without Throat

Authors: Abhishek Kumar Chandra, Kaushal Kishor, Wasim Khan, Dhananjay Singh, M. S. Alam

Abstract:

Single phase fluid flow through series of uniform microchannels connected via transition section (converging-diverging section with or without throat) was analytically and numerically studied to characterize the flow within the channel and in the transition sections. Three sets of microchannels of diameters 100, 184, and 249 μm were considered for investigation. Each set contains 10 numbers of microchannels of length 20 mm, connected to each other in series via transition sections. Transition section consists of either converging-diverging section with throat or without throat. The effect of non-uniformity in microchannels on pressure drop was determined by passing water/air through the set of channels for Reynolds number 50 to 1000. Compressibility and rarefaction effects in transition sections were also tested analytically and numerically for air flow. The analytical and numerical results show that these configurations can be used in enhancement of transport processes. However, converging-diverging section without throat shows superior performance over with throat configuration.

Keywords: contraction-expansion flow, integrated microchannel, microchannel network, single phase flow

Procedia PDF Downloads 282
4674 Parkinson's Disease Gene Identification Using Physicochemical Properties of Amino Acids

Authors: Priya Arora, Ashutosh Mishra

Abstract:

Gene identification, towards the pursuit of mutated genes, leading to Parkinson’s disease, puts forward a challenge towards proactive cure of the disorder itself. Computational analysis is an effective technique for exploring genes in the form of protein sequences, as the theoretical and manual analysis is infeasible. The limitations and effectiveness of a particular computational method are entirely dependent on the previous data that is available for disease identification. The article presents a sequence-based classification method for the identification of genes responsible for Parkinson’s disease. During the initiation phase, the physicochemical properties of amino acids transform protein sequences into a feature vector. The second phase of the method employs Jaccard distances to select negative genes from the candidate population. The third phase involves artificial neural networks for making final predictions. The proposed approach is compared with the state of art methods on the basis of F-measure. The results confirm and estimate the efficiency of the method.

Keywords: disease gene identification, Parkinson’s disease, physicochemical properties of amino acid, protein sequences

Procedia PDF Downloads 141
4673 Observations of Magnetospheric Ulf Waves in Connection to the Kelvin-Helmholtz Instability at Mercury

Authors: Elisabet Liljeblad, Tomas Karlsson, Torbjorn Sundberg, Anita Kullen

Abstract:

The magnetospheric magnetic field data from the MESSENGER spacecraft is investigated to establish the presence of ultra-low frequency (ULF) waves in connection to 131 previously observed nonlinear Kelvin-Helmholtz waves (KHWs) at Mercury. Distinct ULF signatures are detected in 44 out of the 131 magnetospheric traversals prior to or after observing a KHW. In particular, 39 of these 44 ULF events are highly coherent at the frequency of maximum power spectral density. The waves observed at the dayside, which appears mainly at the duskside and naturally following the KHW occurrence asymmetry, are significantly different to the events behind the dawn-dusk terminator and have the following distinct wave characteristics: they oscillate clearly in the perpendicular (azimuthal) direction to the mean magnetic field with a wave normal angle more in the parallel than the perpendicular direction, increase in absolute ellipticity with distance from noon, are almost exclusively right-hand polarized, and are observed mainly for frequencies in the range 0.02-0.04 Hz. These results indicate that the dayside ULF waves are likely to shear Alfvén waves driven by KHWs at the magnetopause, which in turn manifests the importance of the Kelvin-Helmholtz instability in terms of mass transport throughout the Mercury magnetosphere.

Keywords: ultra-low frequency waves, kelvin-Helmholtz instability, magnetospheric processes, mercury, messenger, energy and momentum transfer in planetary environments

Procedia PDF Downloads 240
4672 Effects of Magnetization Patterns on Characteristics of Permanent Magnet Linear Synchronous Generator for Wave Energy Converter Applications

Authors: Sung-Won Seo, Jang-Young Choi

Abstract:

The rare earth magnets used in synchronous generators offer many advantages, including high efficiency, greatly reduced the size, and weight. The permanent magnet linear synchronous generator (PMLSG) allows for direct drive without the need for a mechanical device. Therefore, the PMLSG is well suited to translational applications, such as wave energy converters and free piston energy converters. This manuscript compares the effects of different magnetization patterns on the characteristics of double-sided PMLSGs in slotless stator structures. The Halbach array has a higher flux density in air-gap than the Vertical array, and the advantages of its performance and efficiency are widely known. To verify the advantage of Halbach array, we apply a finite element method (FEM) and analytical method. In general, a FEM and an analytical method are used in the electromagnetic analysis for determining model characteristics, and the FEM is preferable to magnetic field analysis. However, the FEM is often slow and inflexible. On the other hand, the analytical method requires little time and produces accurate analysis of the magnetic field. Therefore, the flux density in air-gap and the Back-EMF can be obtained by FEM. In addition, the results from the analytical method correspond well with the FEM results. The model of the Halbach array reveals less copper loss than the model of the Vertical array, because of the Halbach array’s high output power density. The model of the Vertical array is lower core loss than the model of Halbach array, because of the lower flux density in air-gap. Therefore, the current density in the Vertical model is higher for identical power output. The completed manuscript will include the magnetic field characteristics and structural features of both models, comparing various results, and specific comparative analysis will be presented for the determination of the best model for application in a wave energy converting system.

Keywords: wave energy converter, permanent magnet linear synchronous generator, finite element method, analytical method

Procedia PDF Downloads 304
4671 Anaerobic Co-digestion in Two-Phase TPAD System of Sewage Sludge and Fish Waste

Authors: Rocio López, Miriam Tena, Montserrat Pérez, Rosario Solera

Abstract:

Biotransformation of organic waste into biogas is considered an interesting alternative for the production of clean energy from renewable sources by reducing the volume and organic content of waste Anaerobic digestion is considered one of the most efficient technologies to transform waste into fertilizer and biogas in order to obtain electrical energy or biofuel within the concept of the circular economy. Currently, three types of anaerobic processes have been developed on a commercial scale: (1) single-stage process where sludge bioconversion is completed in a single chamber, (2) two-stage process where the acidogenic and methanogenic stages are separated into two chambers and, finally, (3) temperature-phase sequencing (TPAD) process that combines a thermophilic pretreatment unit prior to mesophilic anaerobic digestion. Two-stage processes can provide hydrogen and methane with easier control of the first and second stage conditions producing higher total energy recovery and substrate degradation than single-stage processes. On the other hand, co-digestion is the simultaneous anaerobic digestion of a mixture of two or more substrates. The technology is similar to anaerobic digestion but is a more attractive option as it produces increased methane yields due to the positive synergism of the mixtures in the digestion medium thus increasing the economic viability of biogas plants. The present study focuses on the energy recovery by anaerobic co-digestion of sewage sludge and waste from the aquaculture-fishing sector. The valorization is approached through the application of a temperature sequential phase process or TPAD technology (Temperature - Phased Anaerobic Digestion). Moreover, two-phase of microorganisms is considered. Thus, the selected process allows the development of a thermophilic acidogenic phase followed by a mesophilic methanogenic phase to obtain hydrogen (H₂) in the first stage and methane (CH₄) in the second stage. The combination of these technologies makes it possible to unify all the advantages of these anaerobic digestion processes individually. To achieve these objectives, a sequential study has been carried out in which the biochemical potential of hydrogen (BHP) is tested followed by a BMP test, which will allow checking the feasibility of the two-stage process. The best results obtained were high total and soluble COD yields (59.8% and 82.67%, respectively) as well as H₂ production rates of 12LH₂/kg SVadded and methane of 28.76 L CH₄/kg SVadded for TPAD.

Keywords: anaerobic co-digestion, TPAD, two-phase, BHP, BMP, sewage sludge, fish waste

Procedia PDF Downloads 156
4670 Removal of Per- and Polyfluoroalkyl Substances (PFASs) Contaminants from the Aqueous Phase Using Chitosan Beads

Authors: Rahim Shahrokhi, Junboum Park

Abstract:

Per- and Polyfluoroalkyl Substances (PFASs) are environmentally persistent halogenated hydrocarbons that have been widely used in many industrial and commercial applications. Recently, contaminating the soil and groundwater due to the ubiquity of PFAS in environments has raised great concern. Adsorption technology is one of the most promising methods for PFAS removal. Chitosan is a biopolymer substance with abundant amine and hydroxyl functional groups, which render it a good adsorbent. This study has tried to enhance the adsorption capacity of chitosan by grafting more amine functional groups on its surface for the removal of two long (PFOA and PFOS) and two short-chain (PFBA, PFBS) PFAS substances from the aqueous phase. A series of batch adsorption tests have been performed to evaluate the adsorption capacity of the used sorbent. Also, the sorbent was analyzed by SEM, FT-IR, zeta potential, and XRD tests. The results demonstrated that both chitosan beads have good potential for adsorbing short and long-chain PFAS from the aqueous phase.

Keywords: PFAS, chitosan beads, adsorption, grafted chitosan

Procedia PDF Downloads 65
4669 A Two-Step Framework for Unsupervised Speaker Segmentation Using BIC and Artificial Neural Network

Authors: Ahmad Alwosheel, Ahmed Alqaraawi

Abstract:

This work proposes a new speaker segmentation approach for two speakers. It is an online approach that does not require a prior information about speaker models. It has two phases, a conventional approach such as unsupervised BIC-based is utilized in the first phase to detect speaker changes and train a Neural Network, while in the second phase, the output trained parameters from the Neural Network are used to predict next incoming audio stream. Using this approach, a comparable accuracy to similar BIC-based approaches is achieved with a significant improvement in terms of computation time.

Keywords: artificial neural network, diarization, speaker indexing, speaker segmentation

Procedia PDF Downloads 505
4668 Pressure Gradient Prediction of Oil-Water Two Phase Flow through Horizontal Pipe

Authors: Ahmed I. Raheem

Abstract:

In this thesis, stratified and stratified wavy flow regimes have been investigated numerically for the oil (1.57 mPa s viscosity and 780 kg/m3 density) and water twophase flow in small and large horizontal steel pipes with a diameter between 0.0254 to 0.508 m by ANSYS Fluent software. Volume of fluid (VOF) with two phases flows using two equations family models (Realizable k-

Keywords: CFD, two-phase flow, pressure gradient, volume of fluid, large diameter, horizontal pipe, oil-water stratified and stratified wavy flow

Procedia PDF Downloads 434
4667 Nonreciprocal Optical Effects in Plasmonic Nanoparticle Aggregates

Authors: Ward Brullot, Thierry Verbiest

Abstract:

Nonreciprocal optical effects, such as Faraday rotation or magnetic circular dichroism, are very useful both for fundamental studies as for applications such as magnetic field sensors or optical isolators. In this study, we developed layer-by-layer deposited 20nm thick plasmonic nanoparticle aggregates consisting of gold, silver and magnetite nanoparticles that show broadband nonreciprocal asymmetric transmission. As such, the optical transmittance, or absorbance, depends on the direction of light propagation in the material, which means that looking from one direction or the other, more or less light passes through the sample. Theoretical analysis showed that strong electric quadrupole fields, which are electric field gradients, occur in the aggregates and that these quadrupole fields are responsible for the observed asymmetric transmission and the nonreciprocity of the effect. Apart from nonreciprocal asymmetric transmission, also other effects such as, but not limited to, optical rotation, circular dichroism or nonlinear optical responses were measured in the plasmonic nanoparticle aggregates and the influences of the intense electric quadrupole fields determined. In conclusion, the presence of strong electric quadrupole fields make the developed plasmonic nanoparticle aggregates ideal candidates for the study and application of various nonreciprocal optical effects.

Keywords: asymmetric transmission, electric quadrupoles, nanoparticle aggregates, nonreciprocity

Procedia PDF Downloads 425
4666 Characterization of Printed Reflectarray Elements on Variable Substrate Thicknesses

Authors: M. Y. Ismail, Arslan Kiyani

Abstract:

Narrow bandwidth and high loss performance limits the use of reflectarray antennas in some applications. This article reports on the feasibility of employing strategic reflectarray resonant elements to characterize the reflectivity performance of reflectarrays in X-band frequency range. Strategic reflectarray resonant elements incorporating variable substrate thicknesses ranging from 0.016λ to 0.052λ have been analyzed in terms of reflection loss and reflection phase performance. The effect of substrate thickness has been validated by using waveguide scattering parameter technique. It has been demonstrated that as the substrate thickness is increased from 0.508mm to 1.57mm the measured reflection loss of dipole element decreased from 5.66dB to 3.70dB with increment in 10% bandwidth of 39MHz to 64MHz. Similarly the measured reflection loss of triangular loop element is decreased from 20.25dB to 7.02dB with an increment in 10% bandwidth of 12MHz to 23MHz. The results also show a significant decrease in the slope of reflection phase curve as well. A Figure of Merit (FoM) has also been defined for the comparison of static phase range of resonant elements under consideration. Moreover, a novel numerical model based on analytical equations has been established incorporating the material properties of dielectric substrate and electrical properties of different reflectarray resonant elements to obtain the progressive phase distribution for each individual reflectarray resonant element.

Keywords: numerical model, reflectarray resonant elements, scattering parameter measurements, variable substrate thickness

Procedia PDF Downloads 275
4665 A Phase Field Approach to Model Crack Interface Interaction in Ceramic Matrix Composites

Authors: Dhaladhuli Pranavi, Amirtham Rajagopal

Abstract:

There are various failure modes in ceramic matrix composites; notable ones are fiber breakage, matrix cracking and fiber matrix debonding. Crack nucleation and propagation in microstructure of such composites requires an understanding of interaction of crack with the multiple inclusion heterogeneous system and interfaces. In order to assess structural integrity, the material parameters especially of the interface that governs the crack growth should be determined. In the present work, a nonlocal phase field approach is proposed to model the crack interface interaction in such composites. Nonlocal approaches help in understanding the complex mechanisms of delamination growth and mitigation and operates at a material length scale. The performance of the proposed formulation is illustrated through representative numerical examples. The model proposed is implemented in the framework of the finite element method. Several parametric studies on interface crack interaction are conducted. The proposed model is easy and simple to implement and works very well in modeling fracture in composite systems.

Keywords: composite, interface, nonlocal, phase field

Procedia PDF Downloads 142
4664 Some Fundamental Physical Properties of BiGaO₃ Cubic Perovskite

Authors: B. Gueridi, T. Chihi, M. Fatmi, A. Faci

Abstract:

Some fundamental physical properties of BiGaO₃ were investigated under pressure and temperature effect using generalized gradient approximation and local density approximation approaches. The effect of orientation on Debye temperature and sound waves velocities were estimated from elastic constants. The value of the bulk modulus of BiGaO₃ is a sign of its high hardness because it is linked to an isotropic deformation. BiGaO₃ is a semiconductor and ductile material with covalent bonding (Ga–O), and the Bi-O bonding is ionic. The optical transitions were observed when electrons pass from the top of the valence band (O-2p) to the bottom of the conduction band (Ga-4p or Bi-6p). The thermodynamic parameters are determined in temperature and pressure ranging from 0 to 1800 K and 0 to 50 GPa.

Keywords: BiGaO₃ perovskite, optical absorption, first principle, band structure

Procedia PDF Downloads 133
4663 A Study on Fatigue Performance of Asphalt Using AMPT

Authors: Yuan Jie Kelvin Lu, Amin Chegenizadeh

Abstract:

Asphalt pavement itself is a mixture made up of mainly aggregates, binders, and fillers that acts as a composition used for pavement construction. An experimental program was setup to determine the fatigue performance test of Asphalt with three different grades of conventional binders. Asphalt specimen has achieved the maximum optimum bulk density and air voids with a consistent bulk density of 2.3 t/m3, with an air void of 5% ± 0.5, before loading into the Asphalt Mixture Performance Tested (AMPT) for fatigue test. The number of cycles is defined as the point where phase angle drops, which is caused by the formation of cracks due to the increasing micro cracks when asphalt is undergoing repeated cycles of loading. Thus, the data collected are analyzed using the drop of phase angle as failure criteria. Based in the data analyzed, it is evident that the fatigue life of asphalt lies on the grade of binder. The result obtained shows that all specimens do experience a drop in phase angle due to macro cracks in the asphalt specimen.

Keywords: asphalt binder, AMPT, CX test, simplified – viscoelastic continuum damage (S-VECD)

Procedia PDF Downloads 356
4662 The Application of Artificial Neural Networks for the Performance Prediction of Evacuated Tube Solar Air Collector with Phase Change Material

Authors: Sukhbir Singh

Abstract:

This paper describes the modeling of novel solar air collector (NSAC) system by using artificial neural network (ANN) model. The objective of the study is to demonstrate the application of the ANN model to predict the performance of the NSAC with acetamide as a phase change material (PCM) storage. Input data set consist of time, solar intensity and ambient temperature wherever as outlet air temperature of NSAC was considered as output. Experiments were conducted between 9.00 and 24.00 h in June and July 2014 underneath the prevailing atmospheric condition of Kurukshetra (city of the India). After that, experimental results were utilized to train the back propagation neural network (BPNN) to predict the outlet air temperature of NSAC. The results of proposed algorithm show that the BPNN is effective tool for the prediction of responses. The BPNN predicted results are 99% in agreement with the experimental results.

Keywords: Evacuated tube solar air collector, Artificial neural network, Phase change material, solar air collector

Procedia PDF Downloads 122
4661 Microwave Assisted Sol-gel Synthesis And Characterization Of Nanocrystalline Zirconia

Authors: Farzana Majid, Mahwish Bashir, Ammara, Attia Falak

Abstract:

Zirconia nanoparticles have gained significant attention due to their excellent mechanical strength, thermal properties, biocompatibility, and catalytic activity. Tetragonal zirconia holds the greatest efficacy for surgical implants and coatings when it comes to the three zirconia phases (monoclinic, tetragonal, and cubic). However, its stability at higher temperatures and transformation to the monoclinic phase upon cooling are challenging. In this research, zirconia nanoparticles were prepared using microwave-assisted sol-gel method with varying microwave powers (100 W, 300 W, 500 W, 700 W, & 900 W). Organic stabilizing agent, i.e., eggshell powder, was used to stabilize the tetragonal phase. Fourier transform infrared spectroscopy (FTIR) confirmed the phase-pure tetragonal zirconia, corroborating the XRD data. Optical properties, including the optical bandgap, were studied using UV/Visible and PL spectroscopies. The synthesized ZrO2 nanoparticles exhibited excellent photocatalytic degradation efficiency in the degradation of methylene blue (MB) dye under UV irradiation. The findings demonstrate the potential of these ZrO2 nanoparticles as a viable alternative photocatalyst for the efficient degradation of various dyes in contaminated water.

Keywords: zirconia nanoparticles, sol-gel, photocataylsis, wter purification

Procedia PDF Downloads 79
4660 Analysis of Two-Phase Flow Instabilities in Conventional Channel of Nuclear Power Reactor

Authors: M. Abdur Rashid Sarkar, Riffat Mahmud

Abstract:

Boiling heat transfer plays a crucial role in cooling nuclear reactor for safe electricity generation. A two phase flow is susceptible to thermal-hydrodynamic instabilities, which may cause flow oscillations of constant amplitude or diverging amplitude. These oscillations may induce boiling crisis, disturb control systems, or cause mechanical damage. Based on their mechanisms, various types of instabilities can be classified for a nuclear reactor. From a practical engineering point of view one of the major design difficulties in dealing with multiphase flow is that the mass, momentum, and energy transfer rates and processes may be quite sensitive to the geometric configuration of the heat transfer surface. Moreover, the flow within each phase or component will clearly depend on that geometric configuration. The complexity of this two-way coupling presents a major challenge in the study of multiphase flows and there is much that remains to be done. Yet, the parametric effects on flow instability such as the effect of aspect ratio, pressure drop, channel length, its orientation inlet subcooling and surface roughness etc. have been analyzed. Another frequently occurring instability, known as the Kelvin–Helmholtz instability has been briefly reviewed. Various analytical techniques for predicting parametric effect on the instability are analyzed in terms of their applicability and accuracy.

Keywords: two phase flows, boiling crisis, thermal-hydrodynamic instabilities, water cooled nuclear reactors, kelvin–helmholtz instability

Procedia PDF Downloads 400
4659 Coarse-Grained Molecular Simulations to Estimate Thermophysical Properties of Phase Equilibria

Authors: Hai Hoang, Thanh Xuan Nguyen Thi, Guillaume Galliero

Abstract:

Coarse-Grained (CG) molecular simulations have shown to be an efficient way to estimate thermophysical (static and dynamic) properties of fluids. Several strategies have been developed and reported in the literature for defining CG molecular models. Among them, those based on a top-down strategy (i.e. CG molecular models related to macroscopic observables), despite being heuristic, have increasingly gained attention. This is probably due to its simplicity in implementation and its ability to provide reasonable results for not only simple but also complex systems. Regarding simple Force-Fields associated with these CG molecular models, it has been found that the four parameters Mie chain model is one of the best compromises to describe thermophysical static properties (e.g. phase diagram, saturation pressure). However, parameterization procedures of these Mie-chain GC molecular models given in literature are generally insufficient to simultaneously provide static and dynamic (e.g. viscosity) properties. To deal with such situations, we have extended the corresponding states by using a quantity associated with the liquid viscosity. Results obtained from molecular simulations have shown that our approach is able to yield good estimates for both static and dynamic thermophysical properties for various real non-associating fluids. In addition, we will show that on simple (e.g. phase diagram, saturation pressure) and complex (e.g. thermodynamic response functions, thermodynamic energy potentials) static properties, results of our scheme generally provides improved results compared to existing approaches.

Keywords: coarse-grained model, mie potential, molecular simulations, thermophysical properties, phase equilibria

Procedia PDF Downloads 336