Search results for: protein structure classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11771

Search results for: protein structure classification

10571 Speech Emotion Recognition: A DNN and LSTM Comparison in Single and Multiple Feature Application

Authors: Thiago Spilborghs Bueno Meyer, Plinio Thomaz Aquino Junior

Abstract:

Through speech, which privileges the functional and interactive nature of the text, it is possible to ascertain the spatiotemporal circumstances, the conditions of production and reception of the discourse, the explicit purposes such as informing, explaining, convincing, etc. These conditions allow bringing the interaction between humans closer to the human-robot interaction, making it natural and sensitive to information. However, it is not enough to understand what is said; it is necessary to recognize emotions for the desired interaction. The validity of the use of neural networks for feature selection and emotion recognition was verified. For this purpose, it is proposed the use of neural networks and comparison of models, such as recurrent neural networks and deep neural networks, in order to carry out the classification of emotions through speech signals to verify the quality of recognition. It is expected to enable the implementation of robots in a domestic environment, such as the HERA robot from the RoboFEI@Home team, which focuses on autonomous service robots for the domestic environment. Tests were performed using only the Mel-Frequency Cepstral Coefficients, as well as tests with several characteristics of Delta-MFCC, spectral contrast, and the Mel spectrogram. To carry out the training, validation and testing of the neural networks, the eNTERFACE’05 database was used, which has 42 speakers from 14 different nationalities speaking the English language. The data from the chosen database are videos that, for use in neural networks, were converted into audios. It was found as a result, a classification of 51,969% of correct answers when using the deep neural network, when the use of the recurrent neural network was verified, with the classification with accuracy equal to 44.09%. The results are more accurate when only the Mel-Frequency Cepstral Coefficients are used for the classification, using the classifier with the deep neural network, and in only one case, it is possible to observe a greater accuracy by the recurrent neural network, which occurs in the use of various features and setting 73 for batch size and 100 training epochs.

Keywords: emotion recognition, speech, deep learning, human-robot interaction, neural networks

Procedia PDF Downloads 170
10570 Safeguarding Product Quality through Pre-Qualification of Material Manufacturers: A Ship and Offshore Classification Society's Perspective

Authors: Sastry Y. Kandukuri, Isak Andersen

Abstract:

Despite recent advances in the manufacturing sector, quality issues remain a frequent occurrence, and can result in fatal accidents, equipment downtime, and loss of life. Adequate quality is of high importance in high-risk industries such as sea-going vessels and offshore installations in which third party quality assurance and product control play an important essential role in ensuring manufacturing quality of critical components. Classification societies play a vital role in mitigating risk in these industries by making sure that all the stakeholders i.e. manufacturers, builders, and end users are provided with adequate rules and standards that effectively ensures components produced at a high level of quality based on the area of application and risk of its failure. Quality issues have also been linked to the lack of competence or negligence of stakeholders in supply value chain. However, continued actions and regulatory reforms through modernization of rules and requirements has provided additional tools for purchasers and manufacturers to confront these issues. Included among these tools are updated ‘approval of manufacturer class programs’ aimed at developing and implementing a set of standardized manufacturing quality metrics for use by the manufacturer and verified by the classification society. The establishment and collection of manufacturing and testing requirements described in these programs could provide various stakeholders – from industry to vessel owners – with greater insight into the state of quality at a given manufacturing facility, and allow stakeholders to anticipate better and address quality issues while simultaneously reducing unnecessary failures that are costly to the industry. The publication introduces, explains and discusses critical manufacturing and testing requirements set in a leading class society’s approval of manufacturer regime and its rationale and some case studies.

Keywords: classification society, manufacturing, materials processing, materials testing, quality control

Procedia PDF Downloads 355
10569 Why Do We Need Hierachical Linear Models?

Authors: Mustafa Aydın, Ali Murat Sunbul

Abstract:

Hierarchical or nested data structures usually are seen in many research areas. Especially, in the field of education, if we examine most of the studies, we can see the nested structures. Students in classes, classes in schools, schools in cities and cities in regions are similar nested structures. In a hierarchical structure, students being in the same class, sharing the same physical conditions and similar experiences and learning from the same teachers, they demonstrate similar behaviors between them rather than the students in other classes.

Keywords: hierarchical linear modeling, nested data, hierarchical structure, data structure

Procedia PDF Downloads 652
10568 Acute Phase Proteins as Biomarkers of Urinary Tract Infection (UTI) in Dairy Cattle

Authors: Wael El-Deeb

Abstract:

The present study aimed to investigate the diagnostic importance of acute phase proteins in urinary tract infection (UTI) in cattle. We describe the clinical, bacteriological and biochemical findings in 99 lactating cows. Blood and urine samples from diseased (n=84) and control healthy cows (n=15) were submitted to laboratory investigations. The urine analysis revealed hematuria and pyuria in UTI group. The isolated bacteria were E.coli (43/84) Corynebacterium spp, (31/84), Proteus spp. (6/84) and Streptococcus spp (4/84). The concentrations of Haptoglobin (Hp), serum amyloid A (SAA), α1-Acid glycoprotein (AGP), fibrinogen (Fb), total protein, albumen, and globulin were higher in cows with UTI when compared to healthy ones. Fifty-one of 84 cows with UTI were successfully treated. The levels of Hp, SAA, AGP, total protein, and globulin were associated with the odds of treatment failure. Conclusively, acute phase proteins could be used as diagnostic and prognostic biomarkers in cows with UTI.

Keywords: cows, urinary, infections, haptoglobin, serum Amyloid A

Procedia PDF Downloads 724
10567 Transportation and Urban Land-Use System for the Sustainability of Cities, a Case Study of Muscat

Authors: Bader Eddin Al Asali, N. Srinivasa Reddy

Abstract:

Cities are dynamic in nature and are characterized by concentration of people, infrastructure, services and markets, which offer opportunities for production and consumption. Often growth and development in urban areas is not systematic, and is directed by number of factors like natural growth, land prices, housing availability, job locations-the central business district (CBD’s), transportation routes, distribution of resources, geographical boundaries, administrative policies, etc. One sided spatial and geographical development in cities leads to the unequal spatial distribution of population and jobs, resulting in high transportation activity. City development can be measured by the parameters such as urban size, urban form, urban shape, and urban structure. Urban Size is the city size and defined by the population of the city, and urban form is the location and size of the economic activity (CBD) over the geographical space. Urban shape is the geometrical shape of the city over which the distribution of population and economic activity occupied. And Urban Structure is the transport network within which the population and activity centers are connected by hierarchy of roads. Among the urban land-use systems transportation plays significant role and is one of the largest energy consuming sector. Transportation interaction among the land uses is measured in Passenger-Km and mean trip length, and is often used as a proxy for measurement of energy consumption in transportation sector. Among the trips generated in cities, work trips constitute more than 70 percent. Work trips are originated from the place of residence and destination to the place of employment. To understand the role of urban parameters on transportation interaction, theoretical cities of different size and urban specifications are generated through building block exercise using a specially developed interactive C++ programme and land use transportation modeling is carried. The land-use transportation modeling exercise helps in understanding the role of urban parameters and also to classify the cities for their urban form, structure, and shape. Muscat the capital city of Oman underwent rapid urbanization over the last four decades is taken as a case study for its classification. Also, a pilot survey is carried to capture urban travel characteristics. Analysis of land-use transportation modeling with field data classified Muscat as a linear city with polycentric CBD. Conclusions are drawn suggestion are given for policy making for the sustainability of Muscat City.

Keywords: land-use transportation, transportation modeling urban form, urban structure, urban rule parameters

Procedia PDF Downloads 270
10566 The Performance of Six Exotic Perennial Grass Species in the Central Region of Saudi Arabia

Authors: A. Alsoqeer

Abstract:

The establishment, dry matter production and feeding value of six perennial grasses were measured over two growing seasons in a field experiments. The experiments were conducted at the Agricultural and Veterinary Medicine Research Station, Faculty of Agriculture and Veterinary Medicine, Qassim University, Kingdom of Saudi Arabia in 2009 and 2010 seasons. The six perennial grasses were: creeping bluegrass (Bothriochloa insculpta cv. Bisset), digit grass (Digitaria smutsi), Jarra digit grass (Digitaria milanjiana), panic (Panicum coloratum cv. Bambatsii), Sabi grass (Urochloa mosambicensis) and setaria (Setaria sphacelata cv. Kazungula). The experimental design used was a completely randomized block design with four replications. The results revealed significant differences among plant species of all agronomic characters and quality traits in the first year, while in the second year, plant species differed significantly for quality traits only. D. smutsi had a superior performance for all agronomic characters, however, it had the lowest values in protein content in the two years comparing with other genotypes. D. milanjiana and U. mosambicensis showed high values in dry matter yield and protein content in the first year, but showed a very poor performance in the second year because most of plants were die due to the low temperatures in the winter. These two species appear to be suitable for annual cultivation. The other species tolerate the cold winter and were a highly productive in the second year.

Keywords: dry mater yield, grass species, cuts, quality traits, crude protein content

Procedia PDF Downloads 319
10565 Hybrid Approach for Software Defect Prediction Using Machine Learning with Optimization Technique

Authors: C. Manjula, Lilly Florence

Abstract:

Software technology is developing rapidly which leads to the growth of various industries. Now-a-days, software-based applications have been adopted widely for business purposes. For any software industry, development of reliable software is becoming a challenging task because a faulty software module may be harmful for the growth of industry and business. Hence there is a need to develop techniques which can be used for early prediction of software defects. Due to complexities in manual prediction, automated software defect prediction techniques have been introduced. These techniques are based on the pattern learning from the previous software versions and finding the defects in the current version. These techniques have attracted researchers due to their significant impact on industrial growth by identifying the bugs in software. Based on this, several researches have been carried out but achieving desirable defect prediction performance is still a challenging task. To address this issue, here we present a machine learning based hybrid technique for software defect prediction. First of all, Genetic Algorithm (GA) is presented where an improved fitness function is used for better optimization of features in data sets. Later, these features are processed through Decision Tree (DT) classification model. Finally, an experimental study is presented where results from the proposed GA-DT based hybrid approach is compared with those from the DT classification technique. The results show that the proposed hybrid approach achieves better classification accuracy.

Keywords: decision tree, genetic algorithm, machine learning, software defect prediction

Procedia PDF Downloads 329
10564 Fructose-Aided Cross-Linked Enzyme Aggregates of Laccase: An Insight on Its Chemical and Physical Properties

Authors: Bipasa Dey, Varsha Panwar, Tanmay Dutta

Abstract:

Laccase, a multicopper oxidase (EC 1.10.3.2) have been at the forefront as a superior industrial biocatalyst. They are versatile in terms of bestowing sustainable and ecological catalytic reactions such as polymerisation, xenobiotic degradation and bioremediation of phenolic and non-phenolic compounds. Regardless of the wide biotechnological applications, the critical limiting factors viz. reusability, retrieval, and storage stability still prevail. This can cause an impediment in their applicability. Crosslinked enzyme aggregates (CLEAs) have emerged as a promising technique that rehabilitates these essential facets, albeit at the expense of their enzymatic activity. The carrier free crosslinking method prevails over the carrier-bound immobilisation in conferring high productivity, low production cost owing to the absence of additional carrier and circumvent any non-catalytic ballast which could dilute the volumetric activity. To the best of our knowledge, the ε-amino group of lysyl residue is speculated as the best choice for forming Schiff’s base with glutaraldehyde. Despite being most preferrable, excess glutaraldehyde can bring about disproportionate and undesirable crosslinking within the catalytic site and hence could deliver undesirable catalytic losses. Moreover, the surface distribution of lysine residues in Trametes versicolor laccase is significantly less. Thus, to mitigate the adverse effect of glutaraldehyde in conjunction with scaling down the degradation or catalytic loss of the enzyme, crosslinking with inert substances like gelatine, collagen, Bovine serum albumin (BSA) or excess lysine is practiced. Analogous to these molecules, sugars have been well known as a protein stabiliser. It helps to retain the structural integrity, specifically secondary structure of the protein during aggregation by changing the solvent properties. They are comprehended to avert protein denaturation or enzyme deactivation during precipitation. We prepared crosslinked enzyme aggregates (CLEAs) of laccase from T. versicolor with the aid of sugars. The sugar CLEAs were compared with the classic BSA and glutaraldehyde laccase CLEAs concerning physico-chemical properties. The activity recovery for the fructose CLEAs were found to be ~20% higher than the non-sugar CLEA. Moreover, the 𝐾𝑐𝑎𝑡𝐾𝑚⁄ values of the CLEAs were two and three-fold higher than BSA-CLEA and GACLEA, respectively. The half-life (t1/2) deciphered by sugar-CLEA was higher than the t1/2 of GA-CLEAs and free enzyme, portraying more thermal stability. Besides, it demonstrated extraordinarily high pH stability, which was analogous to BSA-CLEA. The promising attributes of increased storage stability and recyclability (>80%) gives more edge to the sugar-CLEAs over conventional CLEAs of their corresponding free enzyme. Thus, sugar-CLEA prevails in furnishing the rudimentary properties required for a biocatalyst and holds many prospects.

Keywords: cross-linked enzyme aggregates, laccase immobilization, enzyme reusability, enzyme stability

Procedia PDF Downloads 102
10563 Curriculum for the Manufacturing and Engineering Course Programs in Industries

Authors: Muhammad Yasir Latif

Abstract:

Industrial Engineering and Management (IEM) is a continuous, adaptable, and dynamic branch of engineering. The purpose of this study is to use a knowledge-based course classification method to investigate four IEM educational programs in Europe. Furthermore, the relative weight of each sector was determined using the credit value of the courses. IEM-specific locations and pooled areas were the two related kinds of areas that were used. The results show that, among the four program curricula, Production Management is the specific area with the largest weight, while the specialism field of IEM has a similar weight. This method has proved to be useful for curriculum analysis. The results show that one characteristic of IEM curriculum programs is diversity in the knowledge domains related to IEM specialism. The research also highlights the importance of an organized structure for defining IEM applications, allowing benchmarking efforts, and promoting communication between academics and the IEM community.

Keywords: industrial engineering and management, knowledge areas, curriculum analysis, community

Procedia PDF Downloads 19
10562 Black-Box-Base Generic Perturbation Generation Method under Salient Graphs

Authors: Dingyang Hu, Dan Liu

Abstract:

DNN (Deep Neural Network) deep learning models are widely used in classification, prediction, and other task scenarios. To address the difficulties of generic adversarial perturbation generation for deep learning models under black-box conditions, a generic adversarial ingestion generation method based on a saliency map (CJsp) is proposed to obtain salient image regions by counting the factors that influence the input features of an image on the output results. This method can be understood as a saliency map attack algorithm to obtain false classification results by reducing the weights of salient feature points. Experiments also demonstrate that this method can obtain a high success rate of migration attacks and is a batch adversarial sample generation method.

Keywords: adversarial sample, gradient, probability, black box

Procedia PDF Downloads 104
10561 Proteolysis in Serbian Traditional Dry Fermented Sausage Petrovská Klobása as Influenced by Different Ripening Processes

Authors: P. M. Ikonić, T. A. Tasić, L. S. Petrović, S. B. Škaljac, M. R. Jokanović, V. M. Tomović, B. V. Šojić, N. R. Džinić, A. M. Torbica, B. B. Ikonić

Abstract:

The aim of the study was to determine how different ripening processes (traditional vs. industrial) influenced the proteolysis in traditional Serbian dry-fermented sausage Petrovská klobása. The obtained results indicated more intensive pH decline (0.7 units after 9 days) in industrially ripened products (I), what had a positive impact on drying process and proteolytic changes in these samples. Thus, moisture content in I sausages was lower at each sampling time, amounting 24.7% at the end of production period (90 days). Likewise, the process of proteolysis was more pronounced in I samples, resulting in higher contents of non-protein nitrogen (NPN) and free amino acids nitrogen (FAAN), as well as in faster and more intensive degradation of myosin (≈220 kDa), actin (≈45 kDa) and other polypeptides during processing. Consequently, the appearance and accumulation of several protein fragments were registered.

Keywords: dry-fermented sausage, Petrovská klobása, proteolysis, ripening process

Procedia PDF Downloads 332
10560 Inhibitory Effect of P2Y1R Agonist 1-Indolinoalkyl 2-Phenolic Derivative on Prostate Cancer Cell Proliferation via the MAPK Signalling

Authors: Hien Thi Thu Le, Nuno Rafael Candeias, Olli Yli-Harja, Meenakshisundaram Kandhavelu

Abstract:

Purinergic receptor 1 (P2Y1R) is the potential therapeutic target for inducing prostate cancer (PCa) cell death. Recently, 1-indolinoalkyl 2-phenolic derivative, HIC, was identified as a P2Y1R agonist that increases apoptosis and inhibits cell proliferation of PCa. However, the biological effects of HIC have not been extensively studied at the molecular level. In the present study, we have investigated the anticancer effects of HIC and the molecular mechanisms underlying in PCa cells. Half maximal inhibitory concentration (IC₅₀) of HIC was measured as 15.98 μM and 15.64 μM for DU145 and PC3 cells, respectively. In addition, we found that HIC inhibited cell growth and metastasis of PC3 and DU145 cells colonies, spheroid areas, and migrated cells. RNA seq analysis revealed significant changes of over 3000 genes (p value < 0.05) upon HIC treatment in PC3 and DU145 cells. Genes involved in DNA damage, apoptosis, cell cycle arrest at G1/S phase were modulated by HIC treatment. MAPK and NF-κB protein array revealed the increased expression of ERK1/2, JNK1/2, p53 phosphorylation, and p53 protein. ERK1/2 and JNK1/2 activations are known to increase the stabilization of p53, a tumor suppressor protein, which is required to arrest the cell cycle at G1/S phase and cause cell death of PCa cells. Overall, our results suggest that HIC can serve as a multi-dimensional chemotherapeutic agent possessing strong cytotoxic, anti-cancer, and anti-metastasis against PCa growth.

Keywords: prostate cancer, P2Y1 receptor, apoptosis, metastasis

Procedia PDF Downloads 133
10559 Novel Point of Care Test for Rapid Diagnosis of COVID-19 Using Recombinant Nanobodies against SARS-CoV-2 Spike1 (S1) Protein

Authors: Manal Kamel, Sara Maher, Hanan El Baz, Faten Salah, Omar Sayyouh, Zeinab Demerdash

Abstract:

In the recent COVID 19 pandemic, experts of public health have emphasized testing, tracking infected people, and tracing their contacts as an effective strategy to reduce the spread of the virus. Development of rapid and sensitive diagnostic assays to replace reverse transcription polymerase chain reaction (RT-PCR) is mandatory..Our innovative test strip relying on the application of nanoparticles conjugated to recombinant nanobodies for SARS-COV-2 spike protein (S1) & angiotensin-converting enzyme 2 (that is responsible for the virus entry into host cells) for rapid detection of SARS-COV-2 spike protein (S1) in saliva or sputum specimens. Comparative tests with RT-PCR will be held to estimate the significant effect of using COVID 19 nanobodies for the first time in the development of lateral flow test strip. The SARS-CoV-2 S1 (3 ng of recombinant proteins) was detected by our developed LFIA in saliva specimen of COVID-19 Patients No cross-reaction was detected with Middle East respiratory syndrome coronavirus (MERS-CoV) or SARS- CoV antigens..Our developed system revealed 96 % sensitivity and 100% specificity for saliva samples compared to 89 % and 100% sensitivity and specificity for nasopharyngeal swabs. providing a reliable alternative for the painful and uncomfortable nasopharyngeal swab process and the complexes, time consuming PCR test. An increase in testing compliances to be expected.

Keywords: COVID 19, diagnosis, LFIA, nanobodies, ACE2

Procedia PDF Downloads 136
10558 Resisting Adversarial Assaults: A Model-Agnostic Autoencoder Solution

Authors: Massimo Miccoli, Luca Marangoni, Alberto Aniello Scaringi, Alessandro Marceddu, Alessandro Amicone

Abstract:

The susceptibility of deep neural networks (DNNs) to adversarial manipulations is a recognized challenge within the computer vision domain. Adversarial examples, crafted by adding subtle yet malicious alterations to benign images, exploit this vulnerability. Various defense strategies have been proposed to safeguard DNNs against such attacks, stemming from diverse research hypotheses. Building upon prior work, our approach involves the utilization of autoencoder models. Autoencoders, a type of neural network, are trained to learn representations of training data and reconstruct inputs from these representations, typically minimizing reconstruction errors like mean squared error (MSE). Our autoencoder was trained on a dataset of benign examples; learning features specific to them. Consequently, when presented with significantly perturbed adversarial examples, the autoencoder exhibited high reconstruction errors. The architecture of the autoencoder was tailored to the dimensions of the images under evaluation. We considered various image sizes, constructing models differently for 256x256 and 512x512 images. Moreover, the choice of the computer vision model is crucial, as most adversarial attacks are designed with specific AI structures in mind. To mitigate this, we proposed a method to replace image-specific dimensions with a structure independent of both dimensions and neural network models, thereby enhancing robustness. Our multi-modal autoencoder reconstructs the spectral representation of images across the red-green-blue (RGB) color channels. To validate our approach, we conducted experiments using diverse datasets and subjected them to adversarial attacks using models such as ResNet50 and ViT_L_16 from the torch vision library. The autoencoder extracted features used in a classification model, resulting in an MSE (RGB) of 0.014, a classification accuracy of 97.33%, and a precision of 99%.

Keywords: adversarial attacks, malicious images detector, binary classifier, multimodal transformer autoencoder

Procedia PDF Downloads 113
10557 Identity Verification Using k-NN Classifiers and Autistic Genetic Data

Authors: Fuad M. Alkoot

Abstract:

DNA data have been used in forensics for decades. However, current research looks at using the DNA as a biometric identity verification modality. The goal is to improve the speed of identification. We aim at using gene data that was initially used for autism detection to find if and how accurate is this data for identification applications. Mainly our goal is to find if our data preprocessing technique yields data useful as a biometric identification tool. We experiment with using the nearest neighbor classifier to identify subjects. Results show that optimal classification rate is achieved when the test set is corrupted by normally distributed noise with zero mean and standard deviation of 1. The classification rate is close to optimal at higher noise standard deviation reaching 3. This shows that the data can be used for identity verification with high accuracy using a simple classifier such as the k-nearest neighbor (k-NN). 

Keywords: biometrics, genetic data, identity verification, k nearest neighbor

Procedia PDF Downloads 258
10556 Synthesis, Structure and Properties of NZP/NASICON Structured Materials

Authors: E. A. Asabina, V. I. Pet'kov, P. A. Mayorov, A. V. Markin, N. N. Smirnova, A. M. Kovalskii, A. A. Usenko

Abstract:

The purpose of this work was to synthesize and investigate phase formation, structure and thermophysical properties of the phosphates M0.5+xM'xZr2–x(PO4)3 (M – Cd, Sr, Pb; M' – Mg, Co, Mn). The compounds were synthesized by sol-gel method. The results showed formation of limited solid solutions of NZP/NASICON type. The crystal structures of triple phosphates of the compositions MMg0.5Zr1.5(PO4)3 were refined by the Rietveld method using XRD data. Heat capacity (8–660 K) of the phosphates Pb0.5+xMgxZr2-x(PO4)3 (x = 0, 0.5) was measured, and reversible polymorphic transitions were found at temperatures, close to the room temperature. The results of Rietveld structure refinement showed the polymorphism caused by disordering of lead cations in the cavities of NZP/NASICON structure. Thermal expansion (298−1073 K) of the phosphates MMg0.5Zr1.5(PO4)3 was studied by XRD method, and the compounds were found to belong to middle and low-expanding materials. Thermal diffusivity (298–573 K) of the ceramic samples of phosphates slightly decreased with temperature increasing. As was demonstrated, the studied phosphates are characterized by the better thermophysical characteristics than widespread fire-resistant materials, such as zirconia and etc.

Keywords: NASICON, NZP, phosphate, structure, synthesis, thermophysical properties

Procedia PDF Downloads 141
10555 Response of Buildings with Soil-Structure Interaction with Varying Soil Types

Authors: Shreya Thusoo, Karan Modi, Rajesh Kumar, Hitesh Madahar

Abstract:

Over the years, it has been extensively established that the practice of assuming a structure being fixed at base, leads to gross errors in evaluation of its overall response due to dynamic loadings and overestimations in design. The extent of these errors depends on a number of variables; soil type being one of the major factor. This paper studies the effect of Soil Structure Interaction (SSI) on multi-storey buildings with varying under-laying soil types after proper validation of the effect of SSI. Analysis for soft, stiff and very stiff base soils has been carried out, using a powerful Finite Element Method (FEM) software package ANSYS v14.5. Results lead to some very important conclusions regarding time period, deflection and acceleration responses.

Keywords: dynamic response, multi-storey building, soil-structure interaction, varying soil types

Procedia PDF Downloads 485
10554 Effect of Different Levels of Distillery Yeast Sludge on Immune Level, Egg Quality and Performance of Layers as a Substitute for Soybean Meal

Authors: Rana Bilal, Faiz-Ul-Hassan, Moazzam Jameel

Abstract:

There is a dire need to replace high-cost protein with more economical protein to overcome animal protein shortage in developing nations especially countries like Pakistan. In conjunction with these efforts, the current study was planned to evaluate the effects of various dried distillery yeast sludge (DYS) levels on the immune level, egg quality, and performance of layers by replacing soybean meal. The study was designed with two hundred layers of Hy-Line variety. Distillery yeast sludge was dried and ground for 2 mm mesh size and after this proximate and mineral analysis was determined. Five isocaloric and isonitrogeneous feeds were given containing C (control), 5, 10, 15, 20% distillery yeast sludge by replacing soybean meal. The trial was performed in the completely randomized design with five treatments, 4 replicates and 10 hen per replicate. Results demonstrated that feed intake, egg production, feed conversion ratio decreased (P < 0.05) with the increased dietary DYS. However, statistically significant decrease (P < 0.05) was found in hens having DYS20 diet than control. Layers on Diets C, DYS5 and DYS10 exerted a higher immune level than DYS15 and DYS20 diets. Egg weight, eggshell weight, eggshell thickness, egg albumen height as well as haugh unit score were affected significantly by the increased level of DYS. In general, results of this study demonstrated that inclusion of DYS up to 10% showed no adverse effects on health and performance of layers.

Keywords: egg quality, immunity, layers, performance

Procedia PDF Downloads 233
10553 The Impact of Cryptocurrency Classification on Money Laundering: Analyzing the Preferences of Criminals for Stable Coins, Utility Coins, and Privacy Tokens

Authors: Mohamed Saad, Huda Ismail

Abstract:

The purpose of this research is to examine the impact of cryptocurrency classification on money laundering crimes and to analyze how the preferences of criminals differ according to the type of digital currency used. Specifically, we aim to explore the roles of stablecoins, utility coins, and privacy tokens in facilitating or hindering money laundering activities and to identify the key factors that influence the choices of criminals in using these cryptocurrencies. To achieve our research objectives, we used a dataset for the most highly traded cryptocurrencies (32 currencies) that were published on the coin market cap for 2022. In addition to conducting a comprehensive review of the existing literature on cryptocurrency and money laundering, with a focus on stablecoins, utility coins, and privacy tokens, Furthermore, we conducted several Multivariate analyses. Our study reveals that the classification of cryptocurrency plays a significant role in money laundering activities, as criminals tend to prefer certain types of digital currencies over others, depending on their specific needs and goals. Specifically, we found that stablecoins are more commonly used in money laundering due to their relatively stable value and low volatility, which makes them less risky to hold and transfer. Utility coins, on the other hand, are less frequently used in money laundering due to their lack of anonymity and limited liquidity. Finally, privacy tokens, such as Monero and Zcash, are increasingly becoming a preferred choice among criminals due to their high degree of privacy and untraceability. In summary, our study highlights the importance of understanding the nuances of cryptocurrency classification in the context of money laundering and provides insights into the preferences of criminals in using digital currencies for illegal activities. Based on our findings, our recommendation to the policymakers is to address the potential misuse of cryptocurrencies for money laundering. By implementing measures to regulate stable coins, strengthening cross-border cooperation, fostering public-private partnerships, and increasing cooperation, policymakers can help prevent and detect money laundering activities involving digital currencies.

Keywords: crime, cryptocurrency, money laundering, tokens.

Procedia PDF Downloads 87
10552 Streptavidin-Biotin Attachment on Modified Silicon Nanowires

Authors: Shalini Singh, Sanjay K. Srivastava, Govind, Mukhtar. A. Khan, P. K. Singh

Abstract:

Nanotechnology is revolutionizing the development of biosensors. Nanomaterials and nanofabrication technologies are increasingly being used to design novel biosensors. Sensitivity and other attributes of biosensors can be improved by using nanomaterials with unique chemical, physical, and mechanical properties in their construction. Silicon is a promising biomaterial that is non-toxic and biodegradable and can be exploited in chemical and biological sensing. Present study demonstrated the streptavidin–biotin interaction on silicon surfaces with different topographies such as flat and nanostructured silicon (nanowires) surfaces. Silicon nanowires with wide range of surface to volume ratio were prepared by electrochemical etching of silicon wafer. The large specific surface of silicon nanowires can be chemically modified to link different molecular probes (DNA strands, enzymes, proteins and so on), which recognize the target analytes, in order to enhance the selectivity and specificity of the sensor device. The interaction of streptavidin with biotin was carried out on 3-aminopropyltriethoxysilane (APTS) functionalized silicon surfaces. Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS) studies have been performed to characterize the surface characteristics to ensure the protein attachment. Silicon nanowires showed the enhance protein attachment, as compared to flat silicon surface due to its large surface area and good molecular penetration to its surface. The methodology developed herein could be generalized to a wide range of protein-ligand interactions, since it is relatively easy to conjugate biotin with diverse biomolecules such as antibodies, enzymes, peptides, and nucleotides.

Keywords: FTIR, silicon nanowires, streptavidin-biotin, XPS

Procedia PDF Downloads 417
10551 Post-Earthquake Road Damage Detection by SVM Classification from Quickbird Satellite Images

Authors: Moein Izadi, Ali Mohammadzadeh

Abstract:

Detection of damaged parts of roads after earthquake is essential for coordinating rescuers. In this study, an approach is presented for the semi-automatic detection of damaged roads in a city using pre-event vector maps and both pre- and post-earthquake QuickBird satellite images. Damage is defined in this study as the debris of damaged buildings adjacent to the roads. Some spectral and texture features are considered for SVM classification step to detect damages. Finally, the proposed method is tested on QuickBird pan-sharpened images from the Bam City earthquake and the results show that an overall accuracy of 81% and a kappa coefficient of 0.71 are achieved for the damage detection. The obtained results indicate the efficiency and accuracy of the proposed approach.

Keywords: SVM classifier, disaster management, road damage detection, quickBird images

Procedia PDF Downloads 623
10550 Land Cover Mapping Using Sentinel-2, Landsat-8 Satellite Images, and Google Earth Engine: A Study Case of the Beterou Catchment

Authors: Ella Sèdé Maforikan

Abstract:

Accurate land cover mapping is essential for effective environmental monitoring and natural resources management. This study focuses on assessing the classification performance of two satellite datasets and evaluating the impact of different input feature combinations on classification accuracy in the Beterou catchment, situated in the northern part of Benin. Landsat-8 and Sentinel-2 images from June 1, 2020, to March 31, 2021, were utilized. Employing the Random Forest (RF) algorithm on Google Earth Engine (GEE), a supervised classification categorized the land into five classes: forest, savannas, cropland, settlement, and water bodies. GEE was chosen due to its high-performance computing capabilities, mitigating computational burdens associated with traditional land cover classification methods. By eliminating the need for individual satellite image downloads and providing access to an extensive archive of remote sensing data, GEE facilitated efficient model training on remote sensing data. The study achieved commendable overall accuracy (OA), ranging from 84% to 85%, even without incorporating spectral indices and terrain metrics into the model. Notably, the inclusion of additional input sources, specifically terrain features like slope and elevation, enhanced classification accuracy. The highest accuracy was achieved with Sentinel-2 (OA = 91%, Kappa = 0.88), slightly surpassing Landsat-8 (OA = 90%, Kappa = 0.87). This underscores the significance of combining diverse input sources for optimal accuracy in land cover mapping. The methodology presented herein not only enables the creation of precise, expeditious land cover maps but also demonstrates the prowess of cloud computing through GEE for large-scale land cover mapping with remarkable accuracy. The study emphasizes the synergy of different input sources to achieve superior accuracy. As a future recommendation, the application of Light Detection and Ranging (LiDAR) technology is proposed to enhance vegetation type differentiation in the Beterou catchment. Additionally, a cross-comparison between Sentinel-2 and Landsat-8 for assessing long-term land cover changes is suggested.

Keywords: land cover mapping, Google Earth Engine, random forest, Beterou catchment

Procedia PDF Downloads 63
10549 Scattering Operator and Spectral Clustering for Ultrasound Images: Application on Deep Venous Thrombi

Authors: Thibaud Berthomier, Ali Mansour, Luc Bressollette, Frédéric Le Roy, Dominique Mottier, Léo Fréchier, Barthélémy Hermenault

Abstract:

Deep Venous Thrombosis (DVT) occurs when a thrombus is formed within a deep vein (most often in the legs). This disease can be deadly if a part or the whole thrombus reaches the lung and causes a Pulmonary Embolism (PE). This disorder, often asymptomatic, has multifactorial causes: immobilization, surgery, pregnancy, age, cancers, and genetic variations. Our project aims to relate the thrombus epidemiology (origins, patient predispositions, PE) to its structure using ultrasound images. Ultrasonography and elastography were collected using Toshiba Aplio 500 at Brest Hospital. This manuscript compares two classification approaches: spectral clustering and scattering operator. The former is based on the graph and matrix theories while the latter cascades wavelet convolutions with nonlinear modulus and averaging operators.

Keywords: deep venous thrombosis, ultrasonography, elastography, scattering operator, wavelet, spectral clustering

Procedia PDF Downloads 479
10548 A Case-Based Reasoning-Decision Tree Hybrid System for Stock Selection

Authors: Yaojun Wang, Yaoqing Wang

Abstract:

Stock selection is an important decision-making problem. Many machine learning and data mining technologies are employed to build automatic stock-selection system. A profitable stock-selection system should consider the stock’s investment value and the market timing. In this paper, we present a hybrid system including both engage for stock selection. This system uses a case-based reasoning (CBR) model to execute the stock classification, uses a decision-tree model to help with market timing and stock selection. The experiments show that the performance of this hybrid system is better than that of other techniques regarding to the classification accuracy, the average return and the Sharpe ratio.

Keywords: case-based reasoning, decision tree, stock selection, machine learning

Procedia PDF Downloads 420
10547 Investigation of Interaction between Interferons and Polyethylene Glycol Using Molecular Dynamics Simulation

Authors: M. Dehestani, F. Kamali, M. Klantari Pour, L. Zeidabadi-Nejad

Abstract:

Chemical bonding between polyethylene glycol (PEG) with pharmaceutical proteins called pegylation is one of the most effective methods of improving the pharmacological properties. The covalent attachment of polyethylene glycol (PEG) to proteins will increase their pharmacologic properties. For the formation of a combination of pegylated protein should first be activated PEG and connected to the protein. Interferons(IFNs) are a family of cytokines which show antiviral effects in front of the biological and are responsible for setting safety system. In this study, the nature and properties of the interaction between active positions of IFNs and polyethylene glycol have been investigated using molecular dynamics simulation. The main aspect of this theoretical work focuses on the achievement of valuable data on the reaction pathways of PEG-IFNs and the transition state energy. Our results provide a new perspective on the interactions, chemical properties and reaction pathways between IFNs and PEG.

Keywords: interaction, interferons, molecular dynamics simulation, polyethylene glycol

Procedia PDF Downloads 241
10546 Identifying Unknown Dynamic Forces Applied on Two Dimensional Frames

Authors: H. Katkhuda

Abstract:

A time domain approach is used in this paper to identify unknown dynamic forces applied on two dimensional frames using the measured dynamic structural responses for a sub-structure in the two dimensional frame. In this paper a sub-structure finite element model with short length of measurement from only three or four accelerometers is required, and an iterative least-square algorithm is used to identify the unknown dynamic force applied on the structure. Validity of the method is demonstrated with numerical examples using noise-free and noise-contaminated structural responses. Both harmonic and impulsive forces are studied. The results show that the proposed approach can identify unknown dynamic forces within very limited iterations with high accuracy and shows its robustness even noise- polluted dynamic response measurements are utilized.

Keywords: dynamic force identification, dynamic responses, sub-structure, time domain

Procedia PDF Downloads 361
10545 Multi-Labeled Aromatic Medicinal Plant Image Classification Using Deep Learning

Authors: Tsega Asresa, Getahun Tigistu, Melaku Bayih

Abstract:

Computer vision is a subfield of artificial intelligence that allows computers and systems to extract meaning from digital images and video. It is used in a wide range of fields of study, including self-driving cars, video surveillance, medical diagnosis, manufacturing, law, agriculture, quality control, health care, facial recognition, and military applications. Aromatic medicinal plants are botanical raw materials used in cosmetics, medicines, health foods, essential oils, decoration, cleaning, and other natural health products for therapeutic and Aromatic culinary purposes. These plants and their products not only serve as a valuable source of income for farmers and entrepreneurs but also going to export for valuable foreign currency exchange. In Ethiopia, there is a lack of technologies for the classification and identification of Aromatic medicinal plant parts and disease type cured by aromatic medicinal plants. Farmers, industry personnel, academicians, and pharmacists find it difficult to identify plant parts and disease types cured by plants before ingredient extraction in the laboratory. Manual plant identification is a time-consuming, labor-intensive, and lengthy process. To alleviate these challenges, few studies have been conducted in the area to address these issues. One way to overcome these problems is to develop a deep learning model for efficient identification of Aromatic medicinal plant parts with their corresponding disease type. The objective of the proposed study is to identify the aromatic medicinal plant parts and their disease type classification using computer vision technology. Therefore, this research initiated a model for the classification of aromatic medicinal plant parts and their disease type by exploring computer vision technology. Morphological characteristics are still the most important tools for the identification of plants. Leaves are the most widely used parts of plants besides roots, flowers, fruits, and latex. For this study, the researcher used RGB leaf images with a size of 128x128 x3. In this study, the researchers trained five cutting-edge models: convolutional neural network, Inception V3, Residual Neural Network, Mobile Network, and Visual Geometry Group. Those models were chosen after a comprehensive review of the best-performing models. The 80/20 percentage split is used to evaluate the model, and classification metrics are used to compare models. The pre-trained Inception V3 model outperforms well, with training and validation accuracy of 99.8% and 98.7%, respectively.

Keywords: aromatic medicinal plant, computer vision, convolutional neural network, deep learning, plant classification, residual neural network

Procedia PDF Downloads 187
10544 Structure Design of Vacuum Vessel with Large Openings for Spacecraft Thermal Vacuum Test

Authors: Han Xiao, Ruan Qi, Zhang Lei, Qi Yan

Abstract:

Space environment simulator is a facility used to conduct thermal test for spacecraft, and vacuum vessel is the main body of it. According to the requirements for thermal tests of the spacecraft and its solar array panels, the primary vessel and the side vessels are designed to be a combinative structure connected with aperture, which ratio reaches 0.7. Since the vacuum vessel suffers 0.1MPa external pressure during the process of thermal test, in order to ensure the simulator’s reliability and safety, it’s necessary to calculate the vacuum vessel’s intensity and stability. Based on the impact of large openings to vacuum vessel structure, this paper explored the reinforce design and analytical way of vacuum vessel with large openings, using a large space environment simulator’s vacuum vessel design as an example. Tests showed that the reinforce structure is effective to fulfill the requirements of external pressure and the gravity. This ensured the reliability of the space environment simulator, providing a guarantee for developing the spacecraft.

Keywords: vacuum vessel, large opening, space environment simulator, structure design

Procedia PDF Downloads 535
10543 Structure-Constructivism in the Philosophy of Mathematics

Authors: Jeansou Moun

Abstract:

This study argues that constructivism and structuralism, which have been the two important schools of mathematical philosophy since the mid-19th century, can and should be synthesized into structure-constructivism. In fact, the philosophy of mathematics is divided into more than ten schools depending on the point of view. However, the biggest trend is Platonism which claims that mathematical objects are "abstract entities" that exists independently of the human mind and material objects. Its opposite is constructivism. According to the latter, mathematical objects are products of the construction of the human mind. However, whether the basis of the construction is a logical device, a symbolic system, or an empirical perception, it is subdivided into logicism, formalism, and intuitionism. However, these three schools themselves are further subdivided into various variants, and among them, structuralism, which emerged in the mid-20th century, is receiving the most attention. On the other hand, structuralism which emphasizes structure instead of individual objects, is divided into non-eliminative structuralism, which supports the a priori of structure, and non-eliminative structuralism, which rejects any abstract entity. In this context, it is believed that the structure itself is not an a priori entity but a result of the construction of the cognitive subject and that no object has ever been given to us in its full meaning from the outset. In other words, concepts are progressively structured through a dialectical cycle between sensory perception, imagination (abstraction), concepts, judgments, and reasoning. Symbols are needed for formal operation. However, without concrete manipulation, the formal operation cannot have any meaning. However, when formal structurization is achieved, the reality (object) itself is also newly structured. This is the "structure-constructivism".

Keywords: philosophy of mathematics, platonism, logicism, formalism, constructivism, structuralism, structure-constructivism

Procedia PDF Downloads 97
10542 Development of a Computer Aided Diagnosis Tool for Brain Tumor Extraction and Classification

Authors: Fathi Kallel, Abdulelah Alabd Uljabbar, Abdulrahman Aldukhail, Abdulaziz Alomran

Abstract:

The brain is an important organ in our body since it is responsible about the majority actions such as vision, memory, etc. However, different diseases such as Alzheimer and tumors could affect the brain and conduct to a partial or full disorder. Regular diagnosis are necessary as a preventive measure and could help doctors to early detect a possible trouble and therefore taking the appropriate treatment, especially in the case of brain tumors. Different imaging modalities are proposed for diagnosis of brain tumor. The powerful and most used modality is the Magnetic Resonance Imaging (MRI). MRI images are analyzed by doctor in order to locate eventual tumor in the brain and describe the appropriate and needed treatment. Diverse image processing methods are also proposed for helping doctors in identifying and analyzing the tumor. In fact, a large Computer Aided Diagnostic (CAD) tools including developed image processing algorithms are proposed and exploited by doctors as a second opinion to analyze and identify the brain tumors. In this paper, we proposed a new advanced CAD for brain tumor identification, classification and feature extraction. Our proposed CAD includes three main parts. Firstly, we load the brain MRI. Secondly, a robust technique for brain tumor extraction is proposed. This technique is based on both Discrete Wavelet Transform (DWT) and Principal Component Analysis (PCA). DWT is characterized by its multiresolution analytic property, that’s why it was applied on MRI images with different decomposition levels for feature extraction. Nevertheless, this technique suffers from a main drawback since it necessitates a huge storage and is computationally expensive. To decrease the dimensions of the feature vector and the computing time, PCA technique is considered. In the last stage, according to different extracted features, the brain tumor is classified into either benign or malignant tumor using Support Vector Machine (SVM) algorithm. A CAD tool for brain tumor detection and classification, including all above-mentioned stages, is designed and developed using MATLAB guide user interface.

Keywords: MRI, brain tumor, CAD, feature extraction, DWT, PCA, classification, SVM

Procedia PDF Downloads 250