Search results for: post classification change detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15575

Search results for: post classification change detection

14375 Local Directional Encoded Derivative Binary Pattern Based Coral Image Classification Using Weighted Distance Gray Wolf Optimization Algorithm

Authors: Annalakshmi G., Sakthivel Murugan S.

Abstract:

This paper presents a local directional encoded derivative binary pattern (LDEDBP) feature extraction method that can be applied for the classification of submarine coral reef images. The classification of coral reef images using texture features is difficult due to the dissimilarities in class samples. In coral reef image classification, texture features are extracted using the proposed method called local directional encoded derivative binary pattern (LDEDBP). The proposed approach extracts the complete structural arrangement of the local region using local binary batten (LBP) and also extracts the edge information using local directional pattern (LDP) from the edge response available in a particular region, thereby achieving extra discriminative feature value. Typically the LDP extracts the edge details in all eight directions. The process of integrating edge responses along with the local binary pattern achieves a more robust texture descriptor than the other descriptors used in texture feature extraction methods. Finally, the proposed technique is applied to an extreme learning machine (ELM) method with a meta-heuristic algorithm known as weighted distance grey wolf optimizer (GWO) to optimize the input weight and biases of single-hidden-layer feed-forward neural networks (SLFN). In the empirical results, ELM-WDGWO demonstrated their better performance in terms of accuracy on all coral datasets, namely RSMAS, EILAT, EILAT2, and MLC, compared with other state-of-the-art algorithms. The proposed method achieves the highest overall classification accuracy of 94% compared to the other state of art methods.

Keywords: feature extraction, local directional pattern, ELM classifier, GWO optimization

Procedia PDF Downloads 164
14374 Open Joint Surgery for Temporomandibular Joint Internal Derangement: Wilkes Stages III-V

Authors: T. N. Goh, M. Hashmi, O. Hussain

Abstract:

Temporomandibular joint (TMJ) dysfunction (TMD) is a condition that may affect patients via restricted mouth opening, significant pain during normal functioning, and/or reproducible joint noise. TMD includes myofascial pain, TMJ functional derangements (internal derangement, dislocation), and TMJ degenerative/inflammatory joint disease. Internal derangement (ID) is the most common cause of TMD-related clicking and locking. These patients are managed in a stepwise approach, from patient education (homecare advice and analgesia), splint therapy, physiotherapy, botulinum toxin treatment, to arthrocentesis. Arthrotomy is offered when the aforementioned treatment options fail to alleviate symptoms and improve quality of life. The aim of this prospective study was to review the outcomes of jaw joint open surgery in TMD patients. Patients who presented from 2015-2022 at the Oral and Maxillofacial Surgery Department in the Doncaster NHS Foundation Trust, UK, with a Wilkes classification of III -V were included. These patients underwent either i) discopexy with bone-anchoring suture (9); ii) intrapositional temporalis flap (ITF) with bone-anchoring suture (3); iii) eminoplasty and discopexy with suturing to the capsule (3); iii) discectomy + ITF with bone-anchoring suture (1); iv) discoplasty + bone-anchoring suture (1); v) ITF (1). Maximum incisal opening (MIO) was assessed pre-operatively and at each follow-up. Pain score, determined via the visual analogue scale (VAS, with 0 being no pain and 10 being the worst pain), was also recorded. A total of 18 eligible patients were identified with a mean age of 45 (range 22 - 79), of which 16 were female. The patients were scored by Wilkes Classification as III (14), IV (1), or V (4). Twelve patients had anterior disc displacement without reduction (66%) and six had degenerative/arthritic changes (33%) to the TMJ. The open joint procedure resulted in an increase in MIO and reduction in pain VAS and for the majority of patients, across all Wilkes Classifications. Pre-procedural MIO was 22.9 ± 7.4 mm and VAS was 7.8 ± 1.5. At three months post-procedure there was an increase in MIO to 34.4 ± 10.4 mm (p < 0.01) and a decrease in the VAS to 1.5 ± 2.9 (p < 0.01). Three patients were lost to follow-up prior to six months. Six were discharged at six month review and five patients were discharged at 12 months review as they were asymptomatic with good mouth opening. Four patients are still attending for annual botulinum toxin treatment. Two patients (Wilkes III and V) subsequently underwent TMJ replacement (11%). One of these patients (Wilkes III) had improvement initially to MIO of 40 mm, but subsequently relapsed to less than 20 mm due to lack of compliance with jaw rehabilitation device post-operatively. Clinical improvements in 89% of patients within the study group were found, with a return to near normal MIO range and reduced pain score. Intraoperatively, the operator found bone-anchoring suture used for discopexy/discoplasty more secure than the soft tissue anchoring suturing technique.

Keywords: bone anchoring suture, open temporomandibular joint surgery, temporomandibular joint, temporomandibular joint dysfunction

Procedia PDF Downloads 106
14373 Simulation Based Analysis of Gear Dynamic Behavior in Presence of Multiple Cracks

Authors: Ahmed Saeed, Sadok Sassi, Mohammad Roshun

Abstract:

Gears are important components with a vital role in many rotating machines. One of the common gear failure causes is tooth fatigue crack; however, its early detection is still a challenging task. The objective of this study is to develop a numerical model that simulates the effect of teeth cracks on the resulting gears vibrations and permits consequently to perform an early fault detection. In contrast to other published papers, this work incorporates the possibility of multiple simultaneous cracks with different depths. As cracks alter significantly the stiffness of the tooth, finite element software is used to determine the stiffness variation with respect to the angular position, for different combinations of crack orientation and depth. A simplified six degrees of freedom nonlinear lumped parameter model of a one-stage spur gear system is proposed to study the vibration with and without cracks. The model developed for calculating the stiffness with the crack permitted to update the physical parameters of the second-degree-of-freedom equations of motions describing the vibration of the gearbox. The vibration simulation results of the gearbox were by obtained using Simulink/Matlab. The effect of one crack with different levels was studied thoroughly. The change in the mesh stiffness and the vibration response were found to be consistent with previously published works. In addition, various statistical time domain parameters were considered. They showed different degrees of sensitivity toward the crack depth. Multiple cracks were also introduced at different locations and the vibration response along with the statistical parameters were obtained again for a general case of degradation (increase in crack depth, crack number and crack locations). It was found that although some parameters increase in value as the deterioration level increases, they show almost no change or even decrease when the number of cracks increases. Therefore, the use of any statistical parameters could be misleading if not considered in an appropriate way.

Keywords: Spur gear, cracked tooth, numerical simulation, time-domain parameters

Procedia PDF Downloads 267
14372 Energy Absorption of Circular Thin-Walled Tube with Curved-Crease Patterns under Axial Crushing

Authors: Grzegorz Dolzyk, Sungmoon Jung

Abstract:

Thin-walled tubes are commonly used as energy absorption devices for their excellent mechanical properties and high manufacturability. Techniques such as grooving and pre-folded origami shapes were introduced to circular and polygonal tubes to improve its energy absorption efficiency. This paper examines the energy absorption characteristics of circular tubes with pre-embedded curved-crease pattern. Set of numerical analyzes were conducted with different grooving patterns for tubes with various diameter (D) to thickness (t) ratio. It has been found that even very shallow grooving can positively affect thin wall tubes, leading to increased energy absorption and higher crushing load efficiency. The phenomenon is associated with nonsymmetric deformation that is usually observed for tubes with a high D/t ratio ( > 90). Grooving can redirect a natural mode of post-buckling deformation to a one with a higher number of lobes such that its beneficial and more stable. Also, the opposite effect can be achieved, and highly disrupted deformation can be a cause of reduced energy absorption capabilities. Curved-crease engraved patterns can be used to stabilize and change a form of hazardous post-buckling deformation.

Keywords: axial crushing, energy absorption, grooving, thin-wall structures

Procedia PDF Downloads 146
14371 Topology-Based Character Recognition Method for Coin Date Detection

Authors: Xingyu Pan, Laure Tougne

Abstract:

For recognizing coins, the graved release date is important information to identify precisely its monetary type. However, reading characters in coins meets much more obstacles than traditional character recognition tasks in the other fields, such as reading scanned documents or license plates. To address this challenging issue in a numismatic context, we propose a training-free approach dedicated to detection and recognition of the release date of the coin. In the first step, the date zone is detected by comparing histogram features; in the second step, a topology-based algorithm is introduced to recognize coin numbers with various font types represented by binary gradient map. Our method obtained a recognition rate of 92% on synthetic data and of 44% on real noised data.

Keywords: coin, detection, character recognition, topology

Procedia PDF Downloads 254
14370 Ramadan as a Model of Intermittent Fasting: Effects on Gut Hormones, Appetite and Body Composition in Diabetes vs. Controls

Authors: Turki J. Alharbi, Jencia Wong, Dennis Yue, Tania P. Markovic, Julie Hetherington, Ted Wu, Belinda Brooks, Radhika Seimon, Alice Gibson, Stephanie L. Silviera, Amanda Sainsbury, Tanya J. Little

Abstract:

Fasting has been practiced for centuries and is incorporated into the practices of different religions including Islam, whose followers intermittently fast throughout the month of Ramadan. Thus, Ramadan presents a unique model of prolonged intermittent fasting (IF). Despite a growing body of evidence for a cardio-metabolic and endocrine benefit of IF, detailed studies of the effects of IF on these indices in type 2 diabetes are scarce. We studied 5 subjects with type 2 diabetes (T2DM) and 7 healthy controls (C) at baseline (pre), and in the last week of Ramadan (post). Fasting circulating levels of glucose, HbA1c and lipids, as well as body composition (with DXA) and resting energy expenditure (REE) were measured. Plasma gut hormone levels and appetite responses to a mixed meal were also studied. Data are means±SEM. Ramadan decreased total fat mass (-907±92 g, p=0.001) and trunk fat (-778±190 g, p=0.014) in T2DM but not in controls, without any reductions in lean mass or REE. There was a trend towards a decline in plasma FFA in both groups. Ramadan had no effect on body weight, glycemia, blood pressure, or plasma lipids in either group. In T2DM only, the area under the curve for post-meal plasma ghrelin concentrations increased after Ramadan (pre:6632±1737 vs. post:9025±2518 pg/ml.min-1, p=0.045). Despite this increase in orexigenic ghrelin, subjective appetite scores were not altered by Ramadan. Meal-induced plasma concentrations of the satiety hormone pancreatic polypeptide did not change during Ramadan, but were higher in T2DM compared to controls (post: C: 23486±6677 vs. T2DM: 62193±6880 pg/ml.min-1, p=0.003. In conclusion, Ramadan, as a model for IF appears to have more favourable effects on body composition in T2DM, without adverse effects on metabolic control or subjective appetite. These data suggest that IF may be particularly beneficial in T2DM as a nutritional intervention. Larger studies are warranted.

Keywords: type 2 diabetes, obesity, intermittent fasting, appetite regulating hormones

Procedia PDF Downloads 312
14369 Excitonic Refractive Index Change in High Purity GaAs Modulator at Room Temperature for Optical Fiber Communication Network

Authors: Durga Prasad Sapkota, Madhu Sudan Kayastha, Koichi Wakita

Abstract:

In this paper, we have compared and analyzed the electron absorption properties between with and without excitonic effect bulk in high purity GaAs spatial light modulator for an optical fiber communication network. The electroabsorption properties such as absorption spectra, change in absorption spectra, change in refractive index and extinction ratio have been calculated. We have also compared the result of absorption spectra and change in absorption spectra with the experimental results and found close agreement with experimental results.

Keywords: exciton, refractive index change, extinction ratio, GaAs

Procedia PDF Downloads 576
14368 Kannada HandWritten Character Recognition by Edge Hinge and Edge Distribution Techniques Using Manhatan and Minimum Distance Classifiers

Authors: C. V. Aravinda, H. N. Prakash

Abstract:

In this paper, we tried to convey fusion and state of art pertaining to SIL character recognition systems. In the first step, the text is preprocessed and normalized to perform the text identification correctly. The second step involves extracting relevant and informative features. The third step implements the classification decision. The three stages which involved are Data acquisition and preprocessing, Feature extraction, and Classification. Here we concentrated on two techniques to obtain features, Feature Extraction & Feature Selection. Edge-hinge distribution is a feature that characterizes the changes in direction of a script stroke in handwritten text. The edge-hinge distribution is extracted by means of a windowpane that is slid over an edge-detected binary handwriting image. Whenever the mid pixel of the window is on, the two edge fragments (i.e. connected sequences of pixels) emerging from this mid pixel are measured. Their directions are measured and stored as pairs. A joint probability distribution is obtained from a large sample of such pairs. Despite continuous effort, handwriting identification remains a challenging issue, due to different approaches use different varieties of features, having different. Therefore, our study will focus on handwriting recognition based on feature selection to simplify features extracting task, optimize classification system complexity, reduce running time and improve the classification accuracy.

Keywords: word segmentation and recognition, character recognition, optical character recognition, hand written character recognition, South Indian languages

Procedia PDF Downloads 497
14367 Music Genre Classification Based on Non-Negative Matrix Factorization Features

Authors: Soyon Kim, Edward Kim

Abstract:

In order to retrieve information from the massive stream of songs in the music industry, music search by title, lyrics, artist, mood, and genre has become more important. Despite the subjectivity and controversy over the definition of music genres across different nations and cultures, automatic genre classification systems that facilitate the process of music categorization have been developed. Manual genre selection by music producers is being provided as statistical data for designing automatic genre classification systems. In this paper, an automatic music genre classification system utilizing non-negative matrix factorization (NMF) is proposed. Short-term characteristics of the music signal can be captured based on the timbre features such as mel-frequency cepstral coefficient (MFCC), decorrelated filter bank (DFB), octave-based spectral contrast (OSC), and octave band sum (OBS). Long-term time-varying characteristics of the music signal can be summarized with (1) the statistical features such as mean, variance, minimum, and maximum of the timbre features and (2) the modulation spectrum features such as spectral flatness measure, spectral crest measure, spectral peak, spectral valley, and spectral contrast of the timbre features. Not only these conventional basic long-term feature vectors, but also NMF based feature vectors are proposed to be used together for genre classification. In the training stage, NMF basis vectors were extracted for each genre class. The NMF features were calculated in the log spectral magnitude domain (NMF-LSM) as well as in the basic feature vector domain (NMF-BFV). For NMF-LSM, an entire full band spectrum was used. However, for NMF-BFV, only low band spectrum was used since high frequency modulation spectrum of the basic feature vectors did not contain important information for genre classification. In the test stage, using the set of pre-trained NMF basis vectors, the genre classification system extracted the NMF weighting values of each genre as the NMF feature vectors. A support vector machine (SVM) was used as a classifier. The GTZAN multi-genre music database was used for training and testing. It is composed of 10 genres and 100 songs for each genre. To increase the reliability of the experiments, 10-fold cross validation was used. For a given input song, an extracted NMF-LSM feature vector was composed of 10 weighting values that corresponded to the classification probabilities for 10 genres. An NMF-BFV feature vector also had a dimensionality of 10. Combined with the basic long-term features such as statistical features and modulation spectrum features, the NMF features provided the increased accuracy with a slight increase in feature dimensionality. The conventional basic features by themselves yielded 84.0% accuracy, but the basic features with NMF-LSM and NMF-BFV provided 85.1% and 84.2% accuracy, respectively. The basic features required dimensionality of 460, but NMF-LSM and NMF-BFV required dimensionalities of 10 and 10, respectively. Combining the basic features, NMF-LSM and NMF-BFV together with the SVM with a radial basis function (RBF) kernel produced the significantly higher classification accuracy of 88.3% with a feature dimensionality of 480.

Keywords: mel-frequency cepstral coefficient (MFCC), music genre classification, non-negative matrix factorization (NMF), support vector machine (SVM)

Procedia PDF Downloads 303
14366 Multimedia Data Fusion for Event Detection in Twitter by Using Dempster-Shafer Evidence Theory

Authors: Samar M. Alqhtani, Suhuai Luo, Brian Regan

Abstract:

Data fusion technology can be the best way to extract useful information from multiple sources of data. It has been widely applied in various applications. This paper presents a data fusion approach in multimedia data for event detection in twitter by using Dempster-Shafer evidence theory. The methodology applies a mining algorithm to detect the event. There are two types of data in the fusion. The first is features extracted from text by using the bag-ofwords method which is calculated using the term frequency-inverse document frequency (TF-IDF). The second is the visual features extracted by applying scale-invariant feature transform (SIFT). The Dempster - Shafer theory of evidence is applied in order to fuse the information from these two sources. Our experiments have indicated that comparing to the approaches using individual data source, the proposed data fusion approach can increase the prediction accuracy for event detection. The experimental result showed that the proposed method achieved a high accuracy of 0.97, comparing with 0.93 with texts only, and 0.86 with images only.

Keywords: data fusion, Dempster-Shafer theory, data mining, event detection

Procedia PDF Downloads 411
14365 A Possible Connection Between Taste Change and Zinc Deficiency after Bariatric Surgery: A Literature Review

Authors: Boshra Mozaffar, Iskandar Idris

Abstract:

Taste change is a common complication after Bariatric surgery (BS). However, the cause of this is still not clear. Since zinc is important fortaste perception, zinc deficiency, which is common after BS, may play an important role for taste change after BS. In this review, we aimto collate evidence relating to taste change and zinc deficiencyin relation to BS; effects of zinc replacement on taste perception in general and thereafter discuss the possible role of zinc deficiency to induce taste change after BS. A literature search was conducted, using four electronic bibliographical databases—EMBASE, PubMed, AMED and MEDLINE. We identified all available and relevant articles published before 30th February 2021.In total, 33 studies were included. The total number of participants analysed was N= 3264. We showed that taste change is a frequent complication after BS, especially after Roux-en-Y gastric bypass RYGBP comparing to other types of procedures. Patients' taste sensitivity differs among studies, but the most important decline in taste preference was observed for sweet food. Twelve studies investigating zinc deficiency following BS showed a significant decrease in zinc levels at six months after surgery. Supplementation with 45–50 mg of zinc sulphate was effective in improving taste, except in cancer patients, who showed no improvement in taste following zinc supplementation. Zinc deficiency appears to be associated with taste change after BS. Supplementation with much higher levels of zinc, at 45–50 mg, was effective in taste change treatment for many cases of taste disorder. The currently recommended levels of zinc replacements currently prescribed to patients following BS were not effective for avoiding zinc deficiency after BS—and thus not effective for averting taste change. It is therefore suggested that taste change following BS is closely related to zinc deficiency induced by the surgery.

Keywords: taste change, taste disorder, bariatric surgery, zinc, zinc sulphate or Zn, deficiency, supplementation, and micro-nutrient deficiencies

Procedia PDF Downloads 191
14364 Social Change and Cultural Sustainability in the Wake of Digital Media Revolution in South Asia

Authors: Binod C. Agrawal

Abstract:

In modern history, industrial and media merchandising in South Asia from East Asia, Europe, United States and other countries of the West is over 200 years old. Hence, continued external technology and media exposure is not a new experience in multi-lingual and multi religious South Asia which evolved cultural means to withstand structural change. In the post-World War II phase, media exposure especially of telecommunication, film, Internet, radio, print media and television have increased manifold. South Asia did not lose any time in acquiring and adopting digital media accelerated by chip revolution, computer and satellite communication. The penetration of digital media and utilization are exceptionally high though the spread has an unequal intensity, use and effects. The author argues that industrial and media products are “cultural products” apart from being “technological products”; hence their influences are most felt in the cultural domain which may lead to blunting of unique cultural specifics in the multi-cultural, multi-lingual and multi religious South Asia. Social scientists, political leaders and parents have voiced concern of “Cultural domination”, “Digital media colonization” and “Westernization”. Increased digital media access has also opened up doors of pornography and other harmful information that have sparked fresh debates and discussions about serious negative, harmful, and undesirable social effects especially among youth. Within ‘techno-social’ perspective, based on recent research studies, the paper aims to describe and analyse possible socio-economic change due to digital media penetration. Further, analysis supports the view that the ancient multi-lingual and multi-religious cultures of South Asia due to inner cultural strength may sustain without setting in a process of irreversible structural changes in South Asia.

Keywords: cultural sustainability, digital media effects, digital media impact in South Asia, social change in South Asia

Procedia PDF Downloads 358
14363 Decision Making System for Clinical Datasets

Authors: P. Bharathiraja

Abstract:

Computer Aided decision making system is used to enhance diagnosis and prognosis of diseases and also to assist clinicians and junior doctors in clinical decision making. Medical Data used for decision making should be definite and consistent. Data Mining and soft computing techniques are used for cleaning the data and for incorporating human reasoning in decision making systems. Fuzzy rule based inference technique can be used for classification in order to incorporate human reasoning in the decision making process. In this work, missing values are imputed using the mean or mode of the attribute. The data are normalized using min-ma normalization to improve the design and efficiency of the fuzzy inference system. The fuzzy inference system is used to handle the uncertainties that exist in the medical data. Equal-width-partitioning is used to partition the attribute values into appropriate fuzzy intervals. Fuzzy rules are generated using Class Based Associative rule mining algorithm. The system is trained and tested using heart disease data set from the University of California at Irvine (UCI) Machine Learning Repository. The data was split using a hold out approach into training and testing data. From the experimental results it can be inferred that classification using fuzzy inference system performs better than trivial IF-THEN rule based classification approaches. Furthermore it is observed that the use of fuzzy logic and fuzzy inference mechanism handles uncertainty and also resembles human decision making. The system can be used in the absence of a clinical expert to assist junior doctors and clinicians in clinical decision making.

Keywords: decision making, data mining, normalization, fuzzy rule, classification

Procedia PDF Downloads 519
14362 Analysis of the Influence of Fiber Volume and Fiber Orientation on Post-Cracking Behavior of Steel Fiber Reinforced Concrete

Authors: Marilia M. Camargo, Luisa A. Gachet-Barbosa, Rosa C. C. Lintz

Abstract:

The addition of fibers into concrete matrix can enhance some properties of the composite, such as tensile, flexural and impact strengths, toughness, deformation capacity and post-cracking ductility. Many factors affect the mechanical behavior of fiber reinforced concrete, such as concrete matrix (concrete strength, additions, aggregate diameter, etc.), characteristics of the fiber (geometry, type, aspect ratio, volume, orientation, distribution, strength, stiffness, etc.), specimen (size, geometry, method of preparation and loading rate). This research investigates the effects of fiber volume and orientation on the post-cracking behavior of steel fiber reinforced concrete (SFRC). Hooked-end steel fibers with aspect ratios of 45 were added into concrete with volume of 0,32%, 0,64%, 0,94%. The post-cracking behaviour was assessed by double punch test of cubic specimens and the actual volume and orientation of the fibers were determined by non-destructive tests by means of electromagnetic induction. The results showed that the actual volume of fibers in each sample differs in a small amount from the dosed volume of fibers and that the deformation and toughness of the concrete increase with the increase in the actual volume of fibers. In determining the orientation of the fibers, it was found that they tend to distribute more in the X and Y axes due to the influence of the walls of the mold. In addition, it was concluded that the orientation of the fibers is important in the post-cracking behaviour of FRC when analyzed together with the actual volume of fibers, since the greater the volume of fibers, the greater the number of fibers oriented orthogonally to the application of loadings and, consequently, there is a better mechanical behavior of the composite. These results provide a better understanding of the influence of volume and fiber orientation on the post-cracking behavior of the FRC.

Keywords: fiber reinforced concrete, steel fibers, volume of fibers, orientation of fibers, post-cracking behaviour

Procedia PDF Downloads 181
14361 Dual-Channel Reliable Breast Ultrasound Image Classification Based on Explainable Attribution and Uncertainty Quantification

Authors: Haonan Hu, Shuge Lei, Dasheng Sun, Huabin Zhang, Kehong Yuan, Jian Dai, Jijun Tang

Abstract:

This paper focuses on the classification task of breast ultrasound images and conducts research on the reliability measurement of classification results. A dual-channel evaluation framework was developed based on the proposed inference reliability and predictive reliability scores. For the inference reliability evaluation, human-aligned and doctor-agreed inference rationals based on the improved feature attribution algorithm SP-RISA are gracefully applied. Uncertainty quantification is used to evaluate the predictive reliability via the test time enhancement. The effectiveness of this reliability evaluation framework has been verified on the breast ultrasound clinical dataset YBUS, and its robustness is verified on the public dataset BUSI. The expected calibration errors on both datasets are significantly lower than traditional evaluation methods, which proves the effectiveness of the proposed reliability measurement.

Keywords: medical imaging, ultrasound imaging, XAI, uncertainty measurement, trustworthy AI

Procedia PDF Downloads 103
14360 Defect Detection for Nanofibrous Images with Deep Learning-Based Approaches

Authors: Gaokai Liu

Abstract:

Automatic defect detection for nanomaterial images is widely required in industrial scenarios. Deep learning approaches are considered as the most effective solutions for the great majority of image-based tasks. In this paper, an edge guidance network for defect segmentation is proposed. First, the encoder path with multiple convolution and downsampling operations is applied to the acquisition of shared features. Then two decoder paths both are connected to the last convolution layer of the encoder and supervised by the edge and segmentation labels, respectively, to guide the whole training process. Meanwhile, the edge and encoder outputs from the same stage are concatenated to the segmentation corresponding part to further tune the segmentation result. Finally, the effectiveness of the proposed method is verified via the experiments on open nanofibrous datasets.

Keywords: deep learning, defect detection, image segmentation, nanomaterials

Procedia PDF Downloads 151
14359 Farmers Perception and Awareness to Climate Change in Some Selected Local Government Areas in Jigawa State, Nigeria

Authors: M. M. Ubayo, U. S. Babuga, A. Garba

Abstract:

The study examined the level of climate change awareness and perception by rice farmers in Jigawa State, Nigeria. A multi-stage and purposive sampling technique was used to select respondents. The state is divided into four agricultural zones namely Birninkudu zone, Gumel zone, Hadejia zone, and Kazaure zone. Two agricultural zones (Gumel zone and Hadejia zones) were purposively selected. Six Local Government Areas (LGAs) were randomly selected from the two zones. Also, twenty rice farmers were purposively selected from each of the LGAS. Data were analyzed using frequency and percentages. The result shows that 83.3% of the respondents are aware of the climate change impact on their rice output. Personal experience is the main sources of climate change information in the study area, another 45.6% adopted use of irrigation as the most effective measure to combating climate change, 25.5% use of early maturing variety. Further studies are needed on how to combat the threat and menace of the climate change in the study area.

Keywords: awareness, perception, climate, change, Jigawa

Procedia PDF Downloads 389
14358 A Multi-Output Network with U-Net Enhanced Class Activation Map and Robust Classification Performance for Medical Imaging Analysis

Authors: Jaiden Xuan Schraut, Leon Liu, Yiqiao Yin

Abstract:

Computer vision in medical diagnosis has achieved a high level of success in diagnosing diseases with high accuracy. However, conventional classifiers that produce an image to-label result provides insufficient information for medical professionals to judge and raise concerns over the trust and reliability of a model with results that cannot be explained. In order to gain local insight into cancerous regions, separate tasks such as imaging segmentation need to be implemented to aid the doctors in treating patients, which doubles the training time and costs which renders the diagnosis system inefficient and difficult to be accepted by the public. To tackle this issue and drive AI-first medical solutions further, this paper proposes a multi-output network that follows a U-Net architecture for image segmentation output and features an additional convolutional neural networks (CNN) module for auxiliary classification output. Class activation maps are a method of providing insight into a convolutional neural network’s feature maps that leads to its classification but in the case of lung diseases, the region of interest is enhanced by U-net-assisted Class Activation Map (CAM) visualization. Therefore, our proposed model combines image segmentation models and classifiers to crop out only the lung region of a chest X-ray’s class activation map to provide a visualization that improves the explainability and is able to generate classification results simultaneously which builds trust for AI-led diagnosis systems. The proposed U-Net model achieves 97.61% accuracy and a dice coefficient of 0.97 on testing data from the COVID-QU-Ex Dataset which includes both diseased and healthy lungs.

Keywords: multi-output network model, U-net, class activation map, image classification, medical imaging analysis

Procedia PDF Downloads 205
14357 Harnessing Artificial Intelligence and Machine Learning for Advanced Fraud Detection and Prevention

Authors: Avinash Malladhi

Abstract:

Forensic accounting is a specialized field that involves the application of accounting principles, investigative skills, and legal knowledge to detect and prevent fraud. With the rise of big data and technological advancements, artificial intelligence (AI) and machine learning (ML) algorithms have emerged as powerful tools for forensic accountants to enhance their fraud detection capabilities. In this paper, we review and analyze various AI/ML algorithms that are commonly used in forensic accounting, including supervised and unsupervised learning, deep learning, natural language processing Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Support Vector Machines (SVMs), Decision Trees, and Random Forests. We discuss their underlying principles, strengths, and limitations and provide empirical evidence from existing research studies demonstrating their effectiveness in detecting financial fraud. We also highlight potential ethical considerations and challenges associated with using AI/ML in forensic accounting. Furthermore, we highlight the benefits of these technologies in improving fraud detection and prevention in forensic accounting.

Keywords: AI, machine learning, forensic accounting & fraud detection, anti money laundering, Benford's law, fraud triangle theory

Procedia PDF Downloads 94
14356 Detection of Autism Spectrum Disorders in Children Aged 4-6 Years by Municipal Maternal and Child Health Physicians: An Educational Intervention Study

Authors: M. Van 'T Hof, R. V. Pasma, J. T. Bailly, H. W. Hoek, W. A. Ester

Abstract:

Background: The transition into primary school can be challenging for children with an autism spectrum disorder (ASD). Due to the new demands that are made to children in this period, their limitations in social functioning and school achievements may manifest and appear faster. Detection of possible ASD signals mainly takes place by parents, teachers and during obligatory municipal maternal and child health centre visits. Physicians of municipal maternal and child health centres have limited education and instruments to detect ASD. Further education on detecting ASD is needed to optimally equip these doctors for this task. Most research aims to increase the early detection of ASD in children aged 0-3 years and shows positive results. However, there is a lack of research on educational interventions to detect ASD in children aged 4-6 years by municipal maternal and child health physicians. Aim: The aim of this study is to explore the effect of the online educational intervention: Detection of ASD in children aged 4-6 years for municipal maternal and child health physicians. This educational intervention is developed within The Reach-Aut Academic Centre for Autism; Transitions in education, and will be available throughout The Netherlands. Methods: Ninety-two participants will follow the educational intervention: Detection of ASD in children aged 4-6 years for municipal maternal and child health centre physicians. The educational intervention consists of three, one and a half hour sessions, which are offered through an online interactive classroom. The focus and content of the course has been developed in collaboration with three groups of stakeholders; autism scientists, clinical practitioners (municipal maternal and child health doctors and ASD experts) and parents of children with ASD. The primary outcome measure is knowledge about ASD: signals, early detection, communication with parents and referrals. The secondary outcome measures are the number of ASD related referrals, the attitude towards the mentally ill (CAMI), perceived competency about ASD knowledge and detection skills, and satisfaction about the educational intervention. Results and Conclusion: The study started in January 2016 and data collection will end mid 2017.

Keywords: ASD, child, detection, educational intervention, physicians

Procedia PDF Downloads 293
14355 Weight Gain After Total Thyroidectomy

Authors: Yong Seong Kim, Seongbin Hong, So Hun Kim, Moonsuk Nam

Abstract:

Background: Patients who undergo thyroidectomy due to thyroid cancer often complain weight gain, although they are on suppressive thyroid hormone treatment. The aim of this study is to know whether thyroid cancer patients gain the weight after thyroidectomy and weight change is dependent on estrogen state or use of rhTSH. Material and Method: We performed a retrospective chart review of subjects receiving medical care at an academic medical center. Two hundred two patients who underwent total thyroidectomy were included. As a control group, patients with thyroid nodule and euthyroidism were matched for age, gender, menopausal status. The weight changes occurring over first one year and thyroid function were assessed. Results: Mean age was 51±12 years and patients was composed with 38% of premenopausal, 15 % perimenopausal women, 37% of postmenopausal women and 20% of men. Patients with thyroid cancer gained 2.2 kg during the first year. It’ was not significantly different with control. However, weigh change in perimenopausal and post menopausal women gained more weight than control (P <0.05). Age, baseline body weight and weight gain were not correlated. Discussion: Patient who had undergone thyroidectomy gained more weight than their control, especially in peri- and postmenopausal women. Patients in this age should be monitored for their weight carefully.

Keywords: weight gain, thyroidectomy, thyroid cancer, weight chance

Procedia PDF Downloads 416
14354 Simplified Modeling of Post-Soil Interaction for Roadside Safety Barriers

Authors: Charly Julien Nyobe, Eric Jacquelin, Denis Brizard, Alexy Mercier

Abstract:

The performance of road side safety barriers depends largely on the dynamic interactions between post and soil. These interactions play a key role in the response of barriers to crash testing. In the literature, soil-post interaction is modeled in crash test simulations using three approaches. Many researchers have initially used the finite element approach, in which the post is embedded in a continuum soil modelled by solid finite elements. This method represents a more comprehensive and detailed approach, employing a mesh-based continuum to model the soil’s behavior and its interaction with the post. Although this method takes all soil properties into account, it is nevertheless very costly in terms of simulation time. In the second approach, all the points of the post located at a predefined depth are fixed. Although this approach reduces CPU computing time, it overestimates soil-post stiffness. The third approach involves modeling the post as a beam supported by a set of nonlinear springs in the horizontal directions. For support in the vertical direction, the posts were constrained at a node at ground level. This approach is less costly, but the literature does not provide a simple procedure to determine the constitutive law of the springs The aim of this study is to propose a simple and low-cost procedure to obtain the constitutive law of nonlinear springs that model the soil-post interaction. To achieve this objective, we will first present a procedure to obtain the constitutive law of nonlinear springs thanks to the simulation of a soil compression test. The test consists in compressing the soil contained in the tank by a rigid solid, up to a vertical displacement of 200 mm. The resultant force exerted by the ground on the rigid solid and its vertical displacement are extracted and, a force-displacement curve was determined. The proposed procedure for replacing the soil with springs must be tested against a reference model. The reference model consists of a wooden post embedded into the ground and impacted with an impactor. Two simplified models with springs are studied. In the first model, called Kh-Kv model, the springs are attached to the post in the horizontal and vertical directions. The second Kh model is the one described in the literature. The two simplified models are compared with the reference model according to several criteria: the displacement of a node located at the top of the post in vertical and horizontal directions; displacement of the post's center of rotation and impactor velocity. The results given by both simplified models are very close to the reference model results. It is noticeable that the Kh-Kv model is slightly better than the Kh model. Further, the former model is more interesting than the latter as it involves less arbitrary conditions. The simplified models also reduce the simulation time by a factor 4. The Kh-Kv model can therefore be used as a reliable tool to represent the soil-post interaction in a future research and development of road safety barriers.

Keywords: crash tests, nonlinear springs, soil-post interaction modeling, constitutive law

Procedia PDF Downloads 32
14353 Role of Community Forestry to Address Climate Change in Nepal

Authors: Laxmi Prasad Bhattarai

Abstract:

Climate change is regarded as one of the most fundamental threats to sustainable livelihood and global development. There is a growing global concern in linking community-managed forests as potential climate change mitigation projects. This study was conducted to explore local people’s perception on climate change and the role of community forestry (CF) to combat climate change impacts. Two active community forest user groups (CFUGs) from Kaski and Syangja Districts in Nepal were selected as study sites, and various participatory tools were applied to collect primary data. Although most of the respondents were unaware about the words “Climate Change” in study sites, they were quite familiar with the irregularities in rainfall season and other weather extremities. 60% of the respondents had the idea that, due to increase in precipitation, there is a frequent occurrence of erosion, floods, and landslide. Around 85% of the people agreed that community forests help in stabilizing soil, reducing the natural hazards like erosion, landslide. Biogas as an alternative source of cooking energy, and changes in crops and their varieties are the common adaptation measures that local people start practicing in both CFUGs in Nepal.

Keywords: community forestry, climate change, global warming, adaptation, Nepal

Procedia PDF Downloads 306
14352 Power Quality Modeling Using Recognition Learning Methods for Waveform Disturbances

Authors: Sang-Keun Moon, Hong-Rok Lim, Jin-O Kim

Abstract:

This paper presents a Power Quality (PQ) modeling and filtering processes for the distribution system disturbances using recognition learning methods. Typical PQ waveforms with mathematical applications and gathered field data are applied to the proposed models. The objective of this paper is analyzing PQ data with respect to monitoring, discriminating, and evaluating the waveform of power disturbances to ensure the system preventative system failure protections and complex system problem estimations. Examined signal filtering techniques are used for the field waveform noises and feature extractions. Using extraction and learning classification techniques, the efficiency was verified for the recognition of the PQ disturbances with focusing on interactive modeling methods in this paper. The waveform of selected 8 disturbances is modeled with randomized parameters of IEEE 1159 PQ ranges. The range, parameters, and weights are updated regarding field waveform obtained. Along with voltages, currents have same process to obtain the waveform features as the voltage apart from some of ratings and filters. Changing loads are causing the distortion in the voltage waveform due to the drawing of the different patterns of current variation. In the conclusion, PQ disturbances in the voltage and current waveforms indicate different types of patterns of variations and disturbance, and a modified technique based on the symmetrical components in time domain was proposed in this paper for the PQ disturbances detection and then classification. Our method is based on the fact that obtained waveforms from suggested trigger conditions contain potential information for abnormality detections. The extracted features are sequentially applied to estimation and recognition learning modules for further studies.

Keywords: power quality recognition, PQ modeling, waveform feature extraction, disturbance trigger condition, PQ signal filtering

Procedia PDF Downloads 188
14351 Investigation of Different Conditions to Detect Cycles in Linearly Implicit Quantized State Systems

Authors: Elmongi Elbellili, Ben Lauwens, Daan Huybrechs

Abstract:

The increasing complexity of modern engineering systems presents a challenge to the digital simulation of these systems which usually can be represented by differential equations. The Linearly Implicit Quantized State System (LIQSS) offers an alternative approach to traditional numerical integration techniques for solving Ordinary Differential Equations (ODEs). This method proved effective for handling discontinuous and large stiff systems. However, the inherent discrete nature of LIQSS may introduce oscillations that result in unnecessary computational steps. The current oscillation detection mechanism relies on a condition that checks the significance of the derivatives, but it could be further improved. This paper describes a different cycle detection mechanism and presents the outcomes using LIQSS order one in simulating the Advection Diffusion problem. The efficiency of this new cycle detection mechanism is verified by comparing the performance of the current solver against the new version as well as a reference solution using a Runge-Kutta method of order14.

Keywords: numerical integration, quantized state systems, ordinary differential equations, stiffness, cycle detection, simulation

Procedia PDF Downloads 61
14350 Pin Count Aware Volumetric Error Detection in Arbitrary Microfluidic Bio-Chip

Authors: Kunal Das, Priya Sengupta, Abhishek K. Singh

Abstract:

Pin assignment, scheduling, routing and error detection for arbitrary biochemical protocols in Digital Microfluidic Biochip have been reported in this paper. The research work is concentrating on pin assignment for 2 or 3 droplets routing in the arbitrary biochemical protocol, scheduling and routing in m × n biochip. The volumetric error arises due to droplet split in the biochip. The volumetric error detection is also addressed using biochip AND logic gate which is known as microfluidic AND or mAND gate. The algorithm for pin assignment for m × n biochip required m+n-1 numbers of pins. The basic principle of this algorithm is that no same pin will be allowed to be placed in the same column, same row and diagonal and adjacent cells. The same pin should be placed a distance apart such that interference becomes less. A case study also reported in this paper.

Keywords: digital microfludic biochip, cross-contamination, pin assignment, microfluidic AND gate

Procedia PDF Downloads 277
14349 Applying Wavelet Transform to Ferroresonance Detection and Protection

Authors: Chun-Wei Huang, Jyh-Cherng Gu, Ming-Ta Yang

Abstract:

Non-synchronous breakage or line failure in power systems with light or no loads can lead to core saturation in transformers or potential transformers. This can cause component and capacitance matching resulting in the formation of resonant circuits, which trigger ferroresonance. This study employed a wavelet transform for the detection of ferroresonance. Simulation results demonstrate the efficacy of the proposed method.

Keywords: ferroresonance, wavelet transform, intelligent electronic device, transformer

Procedia PDF Downloads 497
14348 High Altitude Glacier Surface Mapping in Dhauliganga Basin of Himalayan Environment Using Remote Sensing Technique

Authors: Aayushi Pandey, Manoj Kumar Pandey, Ashutosh Tiwari, Kireet Kumar

Abstract:

Glaciers play an important role in climate change and are sensitive phenomena of global climate change scenario. Glaciers in Himalayas are unique as they are predominantly valley type and are located in tropical, high altitude regions. These glaciers are often covered with debris which greatly affects ablation rate of glaciers and work as a sensitive indicator of glacier health. The aim of this study is to map high altitude Glacier surface with a focus on glacial lake and debris estimation using different techniques in Nagling glacier of dhauliganga basin in Himalayan region. Different Image Classification techniques i.e. thresholding on different band ratios and supervised classification using maximum likelihood classifier (MLC) have been used on high resolution sentinel 2A level 1c satellite imagery of 14 October 2017.Here Near Infrared (NIR)/Shortwave Infrared (SWIR) ratio image was used to extract the glaciated classes (Snow, Ice, Ice Mixed Debris) from other non-glaciated terrain classes. SWIR/BLUE Ratio Image was used to map valley rock and Debris while Green/NIR ratio image was found most suitable for mapping Glacial Lake. Accuracy assessment was performed using high resolution (3 meters) Planetscope Imagery using 60 stratified random points. The overall accuracy of MLC was 85 % while the accuracy of Band Ratios was 96.66 %. According to Band Ratio technique total areal extent of glaciated classes (Snow, Ice ,IMD) in Nagling glacier was 10.70 km2 nearly 38.07% of study area comprising of 30.87 % Snow covered area, 3.93% Ice and 3.27 % IMD covered area. Non-glaciated classes (vegetation, glacial lake, debris and valley rock) covered 61.93 % of the total area out of which valley rock is dominant with 33.83% coverage followed by debris covering 27.7 % of the area in nagling glacier. Glacial lake and Debris were accurately mapped using Band ratio technique Hence, Band Ratio approach appears to be useful for the mapping of debris covered glacier in Himalayan Region.

Keywords: band ratio, Dhauliganga basin, glacier mapping, Himalayan region, maximum likelihood classifier (MLC), Sentinel-2 satellite image

Procedia PDF Downloads 230
14347 Resolving Problems Experienced by Involving Patients in the Development of Pharmaceutical Products at Post-Launch Stage of Pharmaceutical Product Development

Authors: Clara T. Fatoye, April Betts, Abayomi Odeyemi, Francis A. Fatoye, Isaac O. Odeyemi

Abstract:

Background: The post-launch stage is the last stage in the development of a pharmaceutical product. It is important to involve patients in the development of pharmaceutical products at the post-launch stage, as patients are the end-users of pharmaceutical products. It is expected that involving them might ensure an effective working relationship among the various stakeholders. However, involving patients in the development of pharmaceutical products comes with its problems. Hence, this study examined how to resolve problems experienced by involving patients in the developments of pharmaceutical products’ at post-launch consisting of Positioning of pharmaceutical products (POPP), detailing of pharmaceutical products (DOPP) and reimbursement and Formulary Submission (R&FS). Methods: A questionnaire was used for the present study. It was administered at the ISPOR Glasgow 2017 to 104 participants, all of which were professionals from Market access (MA) and health economics and outcomes research (HEOR) backgrounds. They were asked how the issues experienced by patients can be resolved. Participants responded under six domains as follows: communication, cost, effectiveness, external factors, Quality of life (QoL) and safety. Thematic analysis was carried out to identify strategies to resolve issues experienced by patients at the post-launch stage. Results: Three (3) factors cut across at POPP, DOPP, and R&FS that is (external factors, communication and QoL). The first resolution method was an external factor that is, the relationship with stakeholders and policymakers. Communication was also identified as a resolution method that can help to resolve problems experienced by patients at the post-launch stage. The third method was QoL as perceived by the patients based on professionals’ opinions. Other strategies that could be used to resolve problems experienced were the effectiveness of pharmaceutical products at the DOPP level and cost at R&FS. Conclusion: The study showed that focusing on external factors, communication, and patients’ QoL are methods for resolving issues experienced by involving patients at the post-launch stage of pharmaceutical product development. Hence, effective working relationships between patients, policymakers and stakeholders may help to resolve problems experienced at the post-launch stage. Healthcare policymakers are to be aware of these findings as they may help them to put appropriate strategies in place to enhance the involvement of patients in pharmaceutical product development at the post-launch stage, thereby improving the health outcomes of the patients.

Keywords: patients, pharmaceutical products, post-launch stage, quality of life, QoL

Procedia PDF Downloads 134
14346 A Gradient Orientation Based Efficient Linear Interpolation Method

Authors: S. Khan, A. Khan, Abdul R. Soomrani, Raja F. Zafar, A. Waqas, G. Akbar

Abstract:

This paper proposes a low-complexity image interpolation method. Image interpolation is used to convert a low dimension video/image to high dimension video/image. The objective of a good interpolation method is to upscale an image in such a way that it provides better edge preservation at the cost of very low complexity so that real-time processing of video frames can be made possible. However, low complexity methods tend to provide real-time interpolation at the cost of blurring, jagging and other artifacts due to errors in slope calculation. Non-linear methods, on the other hand, provide better edge preservation, but at the cost of high complexity and hence they can be considered very far from having real-time interpolation. The proposed method is a linear method that uses gradient orientation for slope calculation, unlike conventional linear methods that uses the contrast of nearby pixels. Prewitt edge detection is applied to separate uniform regions and edges. Simple line averaging is applied to unknown uniform regions, whereas unknown edge pixels are interpolated after calculation of slopes using gradient orientations of neighboring known edge pixels. As a post-processing step, bilateral filter is applied to interpolated edge regions in order to enhance the interpolated edges.

Keywords: edge detection, gradient orientation, image upscaling, linear interpolation, slope tracing

Procedia PDF Downloads 261