Search results for: physicochemical properties of amino acid
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11597

Search results for: physicochemical properties of amino acid

10397 Effect of Nitrogen and Gibberellic Acid at Different Level and their Interaction on Calendula

Authors: Pragnyashree Mishra, Shradhanjali Mohapatra

Abstract:

The present investigation is carried out to know the effect of foliar feeding of nitrogen and gibberellic acid on vegetative growth, flowering behaviour and yield of calendula variety ‘Golden Emporer’. The experiment was laid out in RBD in rabi season of 2013-14. There are 16 treatments are taken at different level such as nitrogen (at 0%,1%,2%,3%) and GA3 (at 50 ppm,100ppm,150 ppm). Among them maximum height at bud initiation stage was obtained at 3% nitrogen (27.00 cm) and at 150 ppm GA3 (26.5 cm), fist flowering was obtained at 3% nitrogen(60.00 days) and at 150 ppm GA3 (63.75 days), maximum flower stalk length was obtained at 3% nitrogen(3.50 cm) and at 150 ppm GA3 (5.42 cm),maximum duration of flowering was obtained at 3% nitrogen(46.00 days) and at 150 ppm GA3 (46.50days), maximum number of flower was obtained at 3% nitrogen (89.00per plant) and at 150 ppm GA3 (83.50 per plant), maximum flower weight was obtained at 3% nitrogen(1.25 gm per flower) and at 150 ppm GA3 (1.50 gm per flower), maximum yield was was obtained at 3% nitrogen (110.00 gm per plant) and at 150 ppm GA3 (105.00gm per plant) and minimum of all character was obtained when 0% nitrogen0 ppm GA3. All interaction between nitrogen and GA3 was found in significant except the yield .

Keywords: calendula, golden emporer, GA3, nitrogen and gibberellic acid

Procedia PDF Downloads 448
10396 Effect of Non-Crimp Fabric Structure on Mechanical Properties of Laminates

Authors: Hireni R. Mankodi, D. J. Chudasama

Abstract:

The textile preforms play a key role in providing the mechanical properties and gives the idea about selection parameter of preforms to improve the quality and performance of laminates. The main objectives of this work are to study the effect of non-crimp fabric preform structure in final properties of laminates. It has been observed that the multi-axial preform give better mechanical properties of laminates as compared to woven and biaxial fabrics. This study investigated the effect of different non-crimp glass preform structure on tensile strength, bending and compression properties of glass laminates. The different woven, bi-axial and multi-axial fabrics with similar GSM used to manufacture the laminates using polyester resin. The structural and mechanical properties of preform and laminates were studied using standard methods. It has been observed that the glass fabric geometry, including type of weaves, warps and filling density and number of layer plays significant role in deciding mechanical properties of laminates.

Keywords: preform, non-crimp structure, laminates, bi-axial, multiaxial

Procedia PDF Downloads 482
10395 The Toxic Effects of Kynurenine Metabolites on SH-SY5Y Neuroblastoma Cells

Authors: Susan Hall, Gary D. Grant, Catherine McDermott, Devinder Arora

Abstract:

Introduction /Aim: The kynurenine pathway is thought to play an important role in the pathophysiology of numerous neurodegenerative diseases including depression, Alzheimer’s disease, and Parkinson’s disease. Numerous neuroactive compounds, including the neurotoxic 3-hydroxyanthranilic acid, 3-hydroxykynurenine and quinolinic acid and the neuroprotective kynurenic acid and picolinic acid, are produced through the metabolism of kynurenine and are thought to be the causative agents responsible for neurodegeneration. The toxicity of 3-hydroxykynurenine, 3-hydroxyanthranilic acid and quinolinic acid has been widely evaluated and demonstrated in primary cell cultures but to date only 3-hydroxykynurenine and 3-hydroxyanthranilic acid have been shown to cause toxicity in immortal tumour cells. The aim of this study was to evaluate the toxicity of kynurenine metabolites, both individually and in combination, on SH-SY5Y neuroblastoma cells after 24 and 72 h exposure in order to explore a cost-effective model to study their neurotoxic effects and potential protective agents. Methods: SH-SY5Y neuroblastoma cells were exposed to various concentrations of the neuroactive kynurenine metabolites, both individually and in combination, for 24 and 72 h, and viability was subsequently evaluated using the Resazurin (Alamar blue) proliferation assay. Furthermore, the effects of these compounds, alone and in combination, on specific death pathways including apoptosis, necrosis and free radical production was evaluated using various assays. Results: Consistent with literature, toxicity was shown with short-term 24-hour treatments at 1000 μM concentrations for both 3-hydroxykynurenine and 3-hydroxyanthranilic acid. Combinations of kynurenine metabolites showed modest toxicity towards SH-SY5Y neuroblastoma cells in a concentration-dependent manner. Specific cell death pathways, including apoptosis, necrosis and free radical production were shown to be increased after both 24 and 72 h exposure of SH-SY5Y neuroblastoma cells to 3-hydroxykynurenine and 3-hydroxyanthranilic acid and various combinations of neurotoxic kynurenine metabolites. Conclusion: It is well documented that neurotoxic kynurenine metabolites show toxicity towards primary human neurons in the nanomolar to low micromolar concentration range. Results show that the concentrations required to show significant cell death are in the range of 1000 µM for 3-hydroxykynurenine and 3-hydroxyanthranilic acid and toxicity of quinolinic acid towards SH-SY5Y was unable to be shown. This differs significantly from toxicities observed in primary human neurons. Combinations of the neurotoxic metabolites were shown to have modest toxicity towards these cells with increased toxicity and activation of cell death pathways observed after 72 h exposure. This study suggests that the 24 h model is unsuitable for use in neurotoxicity studies, however, the 72 h model better represents the observations of the studies using primary human neurons and may provide some benefit in providing a cost-effective model to assess possible protective agents against kynurenine metabolite toxicities.

Keywords: kynurenine metabolites, neurotoxicity, quinolinic acid, SH-SY5Y neuroblastoma

Procedia PDF Downloads 407
10394 Development and Characterization of Mesoporous Silica Nanoparticles of Quercetin in Skin Cancer

Authors: Khusboo Agrawal, S. Saraf

Abstract:

Quercetin, a flavonol provides a cellular protection against UV induced oxidative damages due to its excellent free radical scavenging activity and direct pro-apoptopic effect on tumor cells. However, its topical use is limited due to its unfavorable physicochemical properties. The present study was aimed to evaluate the potential of mesoporous silica nanoparticles as topical carrier system for quercetin delivery. Complexes of quercetin with mesoporous silica was prepared with different weight ratios and characterized by thermo gravimetric analysis, X-ray diffraction, high resolution TEM, FT-IR spectroscopy, zeta potential measurements and differential scanning calorimetry The protective effect of this vehicle on UV-induced degradation of the quercetin was investigated revealing a certain positive influence of the inclusion on the photostability over time. Epidermal accumulation and transdermal permeation of this molecule were ex vivo evaluated by using Franz diffusion cells. The immobilization of Quercetin in mesoporous silica nanoparticles (MSNs) increased the stability without undermining the antioxidant efficacy.

Keywords: cancer, MSNs, quercetin, topical delivery

Procedia PDF Downloads 293
10393 Geochemical Controls of Salinity in a Typical Acid Mine Drainage Neutralized Groundwater System

Authors: Modreck Gomo

Abstract:

Although the dolomite and calcite carbonates can neutralize Acid Mine Drainage (AMD) and prevent leaching of metals, salinity still remains a huge problem. The study presents a conceptual discussion of geochemical controls of salinity in a typical calcite and dolomite AMD neutralised groundwater systems. Thereafter field evidence is presented to support the conceptual discussions. 1020 field data sets of from a groundwater system reported to be under circumneutral conditions from the neutralization effect of calcite and dolomite is analysed using correlation analysis and bivariate plots. Field evidence indicates that sulphate, calcium and magnesium are strongly and positively correlated to Total Dissolved Solids (TDS) which is used as measure of salinity. In this, a hydrogeochemical system, the dissolution of sulphate, calcium and magnesium form AMD neutralization process contributed 50%, 10% and 5% of the salinity.

Keywords: acid mine drainage, carbonates, neutralization, salinity

Procedia PDF Downloads 129
10392 PLA Production from Multi Supply Lignocellulosic Biomass Residues: A Pathway for Agrifood Sector

Authors: Sónia Ribeiro, Diana Farinha, Hélia Sales, Rita Pontes, João Nunes

Abstract:

The demand and commitment to sustainability in the agrifood sector introduce news opportunities for new composite materials. Composite materials are emerging as a vital entity for the sustainable development. Polylactic acid (PLA) has been recognized as a potential polymer with attractive characteristics for agrifood sector applications. PLA that can be beneficial for the development of composites, biocomposites, films, porous gels, and so on. The production of PLA from lignocellulosic biomass residues matrix is a key option towards a sustainable and circular bioeconomy and a non-competitive application with feed and food sector. The Flui and BeirInov projects presents news developments in the production of PLA composites to value the Portuguese forest ecosystem, with high amount of lignocellulosic biomass residues and available. A performance production of lactic acid from lignocellulosic biomass undergoes a process of autohydrolysis, saccharification and fermentation, originating a lactic acid fermentation medium with a 72.27g.L-1 was obtained and a final purification of 72%. The high purification PLA from multi lignocellulosic residues representing one economic expensive process, and a new materials and application for the polymers and a combination with others types of composites matrix characteristic is the drive-up for this green market.

Keywords: polylactic acid, lignocellulosic biomass, agrifood, composite materials

Procedia PDF Downloads 59
10391 Antioxidant Activity of Friedelin, Eudesmic Acid and Methyl-3,4,5-Trimethoxybenzoate from Tapinanthus bangwensis (Engl., and K. Krause) [Loranthaceae] Grown in Nigeria

Authors: Odunayo Christy Atewolara-Odule, Olapeju O. Aiyelaagbe

Abstract:

The search for new natural anti-oxidants has grown tremendously over the years because reactive oxygen species (ROS) production and oxidative stress have been linked to a large number of human degenerative diseases, such as cancer, cardiovascular diseases, inflammation, and diabetes. Tapinanthus bangwensis, a parasitic plant commonly known as mistletoe belonging to the Loranthaceae family, is mostly employed traditionally to treat inflammation, cancer, diabetes, and hypertension to mention a few. In this study, air-dried pulverized leaves and stem of Tapinanthus bangwensis were successively extracted with n-hexane, ethyl acetate, and methanol to give the corresponding crude extracts. The extracts were purified by column chromatography and high-performance liquid chromatography to give the isolated compounds. Structural elucidation was done using mass spectrometry, Fourier transform infra-red, 1D and 2D NMR spectroscopy. The antioxidant activity of the compounds was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ascorbic acid as standard. Three compounds; Friedelin, Eudesmic acid (3,4,5-trimethoxybenzoic) and Methyl-3,4,5-trimethoxybenzoate were isolated from the extracts of Tapinanthus bangwensis. Friedelin was isolated from the ethyl acetate extract of the stem while the two other compounds were isolated from the methanol extract of the leaves. The percentages of free radical scavenging activities of the compounds are as follows: Friedelin, 73.69%, methyl-3,4,5-trimethoxybenzoate, 79.33% and eudesmic, 87.68% anti-oxidant activity which were quite comparable to 93.96% given by ascorbic acid. We are reporting, to our best knowledge, for the first time the occurrence of friedelin and eudesmic acid in Tapinanthus bangwensis. The high anti-oxidant activity of these compounds supports the use of this plant in the management of diabetes and hypertension as they will be useful in combating complications arising from the disease.

Keywords: column chromatography, eudesmic acid, friedelin, Tapinanthus bangwensis

Procedia PDF Downloads 231
10390 Comparative Study of Traditional Old and Recent Clay Bricks in the Southwest of Tunisia: Chemical, Mineralogical and Physical Properties

Authors: N. Majouri, J. Sghaier, M. El Mankibi

Abstract:

The history of brick manufacturing in south-west Tunisia dates back 1000 years. Most of the bricks are made at local workshops near to the clay supply site. This experimental study aims at studying and comparing the chemical, mineralogical and physical characterization of ancient and recent clay bricks in south-western Tunisia. This was done by collecting a large sample of clay brick specimens from four sites. There was much variability in the properties. The results revealed that there is a difference of up to 50% between old and new bricks; in chemical composition, mineralogy composition and porosity, which are much lower in recent clay bricks.

Keywords: clay bricks, chemical properties, mineralogical properties, physical properties

Procedia PDF Downloads 68
10389 Preparation and Characterization of Nanocrystalline Cellulose from Acacia mangium

Authors: Samira Gharehkhani, Seyed Farid Seyed Shirazi, Abdolreza Gharehkhani, Hooman Yarmand, Ahmad Badarudin, Rushdan Ibrahim, Salim Newaz Kazi

Abstract:

Nanocrystalline cellulose (NCC) were prepared by acid hydrolysis and ultrasound treatment of bleached Acacia mangium fibers. The obtained rod-shaped nanocrystals showed a uniform size. The results showed that NCC with high crystallinity can be obtained using 64 wt% sulfuric acid. The effect of synthesis condition was investigated. Different reaction times were examined to produce the NCC and the results revealed that an optimum reaction time has to be used for preparing the NCC. Morphological investigation was performed using the transmission electron microscopy (TEM). Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA) were performed. X-ray diffraction (XRD) analysis revealed that the crystallinity increased with successive treatments. The NCC suspension was homogeneous and stable and no sedimentation was observed for a long time.

Keywords: acid hydrolysis, nanocrystalline cellulose, nano material, reaction time

Procedia PDF Downloads 492
10388 Assisted Supercritical Carbon Dioxide Extraction of Tocotrienols from Palm Fatty Acid Distillate

Authors: Najwa Othman, Norhidayah Suleiman, Gun Hean Chong

Abstract:

Palm fatty acid distillate (PFAD) is a by-product of palm oil refineries which contains valuable compounds such as phytosterols, squalene, polycosanol, co-enzyme Q10 and vitamin E (tocopherols and tocotrienols). Approximately 0.7-1.0% of vitamin E accumulates in PFAD, and it functions as antioxidants and anti-inflammatory. The objective of this research is to evaluate the effect of manipulated variables in supercritical carbon dioxide towards the recovery of tocotrienols in PFAD. The vitamin E concentrate isolated varies depending on the pre-treatment of sample and extraction techniques. In this research, tocotrienols in PFAD was concentrated by removing the extraneous matters, especially free fatty acid (FFA) and acylglycerols. Pre-treatment method such as enzymatic hydrolysis by using lipase from Candida rugosa as an enzyme was used to remove FFA and improve recovery of vitamin E. After that, treated PFAD was extracted by using supercritical fluid extraction in co-current glass beads packed column (22 cm x 75 cm i.d) at different temperatures (40-60°C) and pressures (100-300 bar) for 5 hours. After the extraction, the sample was analyzed by using high-pressure liquid chromatography (HPLC) system to quantify the tocotrienols. The results indicated that a combined pressure (200 bar) and temperature (60°C) was predicted to provide highest tocotrienols yield and the extraction yield obtained was 106.45%.

Keywords: enzymatic hydrolysis, palm fatty acid distillate, supercritical fluid extraction, tocotrienols

Procedia PDF Downloads 124
10387 Use of Acid Mine Drainage as a Source of Iron to Initiate the Solar Photo-Fenton Treatment of Municipal Wastewater: Circular Economy Effect

Authors: Tooba Aslam, Efthalia Chatzisymeon

Abstract:

Untreated Municipal Wastewater (MWW) is renowned as the utmost harmful pollution caused to environmental water due to the high presence of nutrients and organic contaminants. Removal of Chemical Oxygen Demand (COD) from synthetic as well as municipal wastewater is investigated by using acid mine drainage as a source of iron to initiate the solar photo-Fenton treatment of municipal wastewater. In this study, Acid Mine Drainage (AMD) and different minerals enriched in iron, such as goethite, hematite, magnetite, and magnesite, have been used as the source of iron to initiate the photo-Fenton process. Co-treatment of real municipal wastewater and acid mine drainage /minerals is widely examined. The effects of different parameters such as minerals recovery from AMD, AMD as a source of iron, H₂O₂ concentration, and COD concentrations on the COD percentage removal of the process are studied. The results show that, out of all the four minerals, only hematite (1g/L) could remove 30% of the pollutants at about 100 minutes and 1000 ppm of H₂O₂. The addition of AMD as a source of iron is performed and compared with both synthetic as well as real wastewater from South Africa under the same conditions, i.e., 1000 ppm of H₂O₂, ambient temperature, 2.8 pH, and solar simulator. In the case of synthetic wastewater, the maximum removal (56%) is achieved with 50 ppm of iron (AMD source) at 160 minutes. On the other hand, in real wastewater, the removal efficiency is 99% with 30 ppm of iron at 90 minutes and 96% with 50 ppm of iron at 120 minutes. In conclusion, overall, the co-treatment of AMD and MWW by solar photo-Fenton treatment appears to be an effective and promising method to remove organic materials from Municipal wastewater.

Keywords: municipal wastewater treatment, acid mine drainage, co-treatment, COD removal, solar photo-Fenton, circular economy

Procedia PDF Downloads 74
10386 In Vivo Evaluation of the Therapeutic Effect on Intestinal Disorders by Thermophilic Streptococcus Isolated from Camel Milk

Authors: A. T. Laiche, M. L. Tlil, Benine B., S. Bechoua

Abstract:

The aim of this study is to isolate and select, from camel milk from El-Oued region in Algeria, a strains of lactic acid bacteria and possessing probiotic properties ; and to evaluate their potential effect on intestinal disorders in Wistar ratsmThe results relating to the selection of probiotic strains confirms that the Thermophilic streptococcus exhibits the best probiotic activity performance, with a resistance important to different degrees of pH and to bile salts, and a remarkable antibacterial activity and resistance to antibiotics compared to the other four isolated strains. In the in vivo study, diseases are induced in rats at the level of the digestive system, it was reported that the administration of Escherichia coli and castor oil caused an intestinal disorders. The microscopic observation of the histological section of the intestine showed a damaged intestinal structure and some symptoms of its irritation, including a decrease in the height of the villi and the presence of others destroyed cells, and after treatment with Streptococcus thermophilus, the microscopic observation of the cut of the histological section of the intestine showed almost complete disappearance of the mentioned symptoms, The dosage of the hematological parameters by complete blood count (CBC) is in agreement with the results of the histological sections.

Keywords: camel milk, probiotic, pathogenic bacteria, intestinal disorders, lactic acid bacteria

Procedia PDF Downloads 144
10385 Synthesis and Characterization of Sulfonated Aromatic Hydrocarbon Polymers Containing Trifluoromethylphenyl Side Chain for Proton Exchange Membrane Fuel Cell

Authors: Yi-Chiang Huang, Hsu-Feng Lee, Yu-Chao Tseng, Wen-Yao Huang

Abstract:

Proton exchange membranes as a key component in fuel cells have been widely studying over the past few decades. As proton exchange, membranes should have some main characteristics, such as good mechanical properties, low oxidative stability and high proton conductivity. In this work, trifluoromethyl groups had been introduced on polymer backbone and phenyl side chain which can provide densely located sulfonic acid group substitution and also promotes solubility, thermal and oxidative stability. Herein, a series of novel sulfonated aromatic hydrocarbon polyelectrolytes was synthesized by polycondensation of 4,4''''-difluoro-3,3''''- bis(trifluoromethyl)-2'',3''-bis(3-(trifluoromethyl)phenyl)-1,1':4',1'':4'',1''':4''',1''''-quinquephenyl with 2'',3''',5'',6''-tetraphenyl-[1,1':4',1'': 4'',1''':4''',1''''-quinquephenyl]-4,4''''-diol and post-sulfonated was through chlorosulfonic acid to given sulfonated polymers (SFC3-X) possessing ion exchange capacities ranging from 1.93, 1.91 and 2.53 mmol/g. ¹H NMR and FT-IR spectroscopy were applied to confirm the structure and composition of sulfonated polymers. The membranes exhibited considerably dimension stability (10-27.8% in length change; 24-56.5% in thickness change) and excellent oxidative stability (weight remain higher than 97%). The mechanical properties of membranes demonstrated good tensile strength on account of the high rigidity multi-phenylated backbone. Young's modulus were ranged 0.65-0.77GPa which is much larger than that of Nafion 211 (0.10GPa). Proton conductivities of membranes ranged from 130 to 240 mS/cm at 80 °C under fully humidified which were comparable or higher than that of Nafion 211 (150 mS/cm). The morphology of membranes was investigated by transmission electron microscopy which demonstrated a clear hydrophilic/hydrophobic phase separation with spherical ionic clusters in the size range of 5-20 nm. The SFC3-1.97 single fuel cell performance demonstrates the maximum power density at 1.08W/cm², and Nafion 211 was 1.24W/cm² as a reference in this work. The result indicated that SFC3-X are good candidates for proton exchange membranes in fuel cell applications. Fuel cell of other membranes is under testing.

Keywords: fuel cells, polyelectrolyte, proton exchange membrane, sulfonated polymers

Procedia PDF Downloads 440
10384 An Initial Evaluation of Newly Proposed Biomarker of Zinc Status in Humans: The Erythrocyte Linoleic Acid: Dihomo-γ-Linolenic Acid (LA:DGLA) Ratio

Authors: Marija Knez, James C.R. Stangoulis, Manja Zec, Zoran Pavlovic, Jasmina D. Martacic, Mirjana Gurinovic, Maria Glibetic

Abstract:

Background: Zinc is an essential micronutrient for humans with important physiological functions. A sensitive and specific biomarker for assessing Zn status is still needed. Objective: The major aim of this study was to examine if the changes in the content of plasma phospholipid LA, DGLA and LA: DGLA ratio can be used to efficiently predict the dietary Zn intake and plasma Zn status of humans. Methods: The study was performed on apparently healthy human volunteers. The dietary Zn intake was assessed using 24h recall questionnaires. Plasma phospholipid fatty acid analysis was done by gas chromatography and plasma analysis of minerals by atomic absorption spectrometry. Biochemical, anthropometrical and hematological parameters were assessed. Results: No significant relationship was found between the dietary and plasma zinc status (r=0.07; p=0.6). There is a statistically significant correlation between DGLA and plasma Zn (r=0.39, p=0.00). No relationship was observed between the linoleic acid and plasma Zn, while there was a significant negative correlation between LA: DGLA ratio and plasma Zn status (r=-0.35, p=0.01). Similarly, there were statistically significant difference in DGLA status (p=0.004) and LA: DGLA ratio (p=0.042) between the Zn formed groups. Conclusions: This study is an initial step in evaluating LA: DGLA ratio as a biomarker of Zn status in humans. The results are encouraging as they show that concentration of DGLA is decreased and LA: DGLA ratio increased in people with lower dietary Zn intake. However, additional studies are needed to fully examine the sensitivity of this biomarker.

Keywords: dietary Zn intake Zinc, fatty acid composition, LA: DGLA, healthy population, plasma Zn status, Zn biomarker

Procedia PDF Downloads 257
10383 Preliminary Study of Fermented Pickle of Tabah Bamboo Shoot: Gigantochloa nigrociliata (Buese) Kurz

Authors: Luh Putu T. Darmayanti, A. A. Duwipayana, I. Nengah K. Putra, Nyoman S. Antara

Abstract:

Tabah Bamboo (Gigantochloa nigrociliata (Buese) Kurz) is the indigenous bamboo species which grows in District of Pupuan, Tabanan at Province of Bali. Compared to the others, this shoot has low concentration of hydrocyanide acid (HCN). However, as found for almost of bamboo shoot, its seasonal availability, perishable in nature, and short-lived. This study aimed to gather information about total of lactic acid bacteria (LAB), pH, total acidity, HCN content, detection of LAB’s type involved during fermentation, and organic acids’ profiles of fermented pickles of Tabah bamboo shoot. The pickle was made by natural fermentation with 6 % salt concentration and fermentation conducted for 13 days. The result showed during the fermentation time, in the fourth day we found LAB’s number was highest as much as 72 x 107 CFU/ml and the lowest pH was 3.09. We also found decreasing in HCN from 37.8 ppm at the beginning to 20.52 ppm at the end of fermentation process. The total number of indigenous LAB isolated from the pickle are 48 strains we found 18 out of these had rod shape. For the preliminary study, all of the LAB with rod shape were detected by PCR as member of Lactobacillus spp., in which 17 strains detected as L. plantarum. The organic acids detected during the fermentation were lactic acid with the highest concentration was 0.0546 g/100 g and small amount of acetic acid.

Keywords: fermentation, LAB, pickle, Tabah Bamboo shoot

Procedia PDF Downloads 330
10382 Synthesis of Amorphous Nanosilica Anode Material from Philippine Waste Rice Hull for Lithium Battery Application

Authors: Emie A. Salamangkit-Mirasol, Rinlee Butch M. Cervera

Abstract:

Rice hull or rice husk (RH) is an agricultural waste obtained from milling rice grains. Since RH has no commercial value and is difficult to use in agriculture, its volume is often reduced through open field burning which is an environmental hazard. In this study, amorphous nanosilica from Philippine waste RH was prepared via acid precipitation method. The synthesized samples were fully characterized for its microstructural properties. X-ray diffraction pattern reveals that the structure of the prepared sample is amorphous in nature while Fourier transform infrared spectrum showed the different vibration bands of the synthesized sample. Scanning electron microscopy (SEM) and particle size analysis (PSA) confirmed the presence of agglomerated silica particles. On the other hand, transmission electron microscopy (TEM) revealed an amorphous sample with grain sizes of about 5 to 20 nanometer range and has about 95 % purity according to EDS analyses. The elemental mapping also suggests that leaching of rice hull ash effectively removed the metallic impurity such as potassium element in the material. Hence, amorphous nanosilica was successfully prepared via a low-cost acid precipitation method from Philippine waste rice hull. In addition, initial electrode performance of the synthesized samples as an anode material in Lithium Battery have been investigated.

Keywords: agricultural waste, anode material, nanosilica, rice hull

Procedia PDF Downloads 272
10381 Selected Ethnomedicinal Plants of Northern Surigao Del Sur: Their Antioxidant Activities in Terms of Total Phenolics, ABTS Radical Cation Decolorization Power, and Ferric Reducing Ability

Authors: Gemma A. Gruyal

Abstract:

Plants can contain a wide variety of substances with antioxidative properties which are associated to important health benefits. These positive health effects are of great importance at a time when the environment is laden with many toxic substances. Five selected herbal plants namely, Mimosa pudica, Phyllanthus niruri, Ceiba pentandra, Eleusine polydactyla and Trema amboinensis, were chosen for the experiment to investigate their total phenolics content and antioxidant activities using ABTS radical cation decolorization power, and ferric reducing antioxidant power. The total phenolic content of each herbal plants ranges from 0.84 to 42.59 mg gallic acid equivalent/g. The antioxidant activity in the ABTS radical cation decolorization power varies from 0.005 to 0.362 mg trolox equivalent/g and the FRAP ranges from 0.30 to 28.42 mg gallic acid equivalent/g. Among the five medicinal plants, Mimosa pudica has been an excellent performer in terms of the 3 parameters measured; it is followed by Phyllanthus niruri. The five herbal plants do not have equivalent antioxidant power. The relative high values for M. pudica and P. niruri supports the medicinal value of both plants. The total phenolics, ABTS and FRAP correlate strongly with one another.

Keywords: ABTS, FRAP, Leaf extracts, phenol

Procedia PDF Downloads 420
10380 Application of Microparticulated Whey Proteins in Reduced-Fat Yogurt through Hot-Extrusion: Influence on Physicochemical and Sensory Properties

Authors: M. K. Hossain, J. Keidel, O. Hensel, M. Diakite

Abstract:

Fat reduced dairy products are holding a potential market due to health reason. Due to less creamy, and pleasantness, reduced and/or low-fat dairy products are getting less consumer acceptance whereas the fat molecule provides smooth, creamy and a pleasant mouthfeel in dairy products especially yogurt & ice cream. This study was aimed to investigate whether the application of microparticulated whey proteins (MWPs) processed by extrusion cooking, the reduced fat yogurt can achieve similar or higher creaminess compared to whole milk (3.8% fat) and skimmed milk (0.5% fat) yogurt. Full cream and skimmed milk were used to prepare natural stirred yogurt, as well as the dry matter content, also adjusted up to 16% with skimmed milk powder. Whey protein concentrates (WPC80) were used to produce MWPs in particle size of d50 > 5 µm, d50 3<5 µm and d50 < 3 µm through the hot-extrusion process with a screw speed of 400, 600 and 1000 rpm respectively. Furthermore, the commercially available microparticulated whey protein called Simplesse® was also applied in order to compare with extruded MWPs. The rheological and sensory properties of yogurt were assessed, and data were analyzed statistically. The applications of extruded MWPs with 600 and 1000 rpm were achieved significantly (p < 0.05) higher creaminess and preference compared to the whole and skimmed milk yogurt whereas, 400 rpm got lower preference. On the other hand, Simplesse® obtained the lowest creaminess and preference compared to other yogurts, although the contribution of dry matter in yogurt was same as extruded MWPs. The creaminess and viscosities were strongly (r = 0.62) correlated, furthermore, the viscosity from sensory evaluation and the dynamic viscosity of yogurt was also significantly (r = 0.72) correlated which clarifies that the performance of sensory panelists as well as the quality of the products.

Keywords: microparticulation, hot-extrusion, reduced-fat yogurt, whey protein concentrate

Procedia PDF Downloads 117
10379 Exploring the Effect of Cellulose Based Coating Incorporated with CaCl2 and MgSO4 on Shelf Life Extension of Kinnow (Citrus reticulata blanco) Cultivar

Authors: Muhammad Atif Randhawa, Muhammad Nadeem

Abstract:

Kinnow (Citrus reticulate Blanco) is nutritious and perishable fruit with high juice content, and also rich source of vitamin-C. In Pakistan, kinnow export is limited due to inadequate post-harvest handling and lack of satisfactory storage practices. Considering these issues, the present study was designed to evaluate the effect of hydroxypropyl methylcellulose (HPMC) coating in combination with CaCl2 and MgSO4 on shelf life extension of kinnow. Fruits were treated with different levels of CaCl2 and MgSO4 followed by HPMC coating (3 and 5%) and stored at 10°C with 80% relative humidity for 6 weeks. Fruits were analyzed for various physico-chemical parameters on weekly basis. During this study lower fruit firmness (0.24Nm-2), loss in weight (0.64%) and ethylene production (0.039 µL•kg-1•hr-1) was observed in fruits treated with 1% CaCl2 + 1% MgSO4 + 5% HPMC (T6) during storage of 42 days. Minimum chilling injury indexes 0.22% and 0.61% were recorded in treatments T4 and T6, respectively. T6 showed higher values of titerable acidity (0.29%) and ascorbic acid contents (39.82mg/100g). Minimum TSS (9.62°Brix) was found in fruits of T6. Overall T6 showed significantly better results for various parameters, as compared to all other treated and control fruits.

Keywords: firmness, kinnow coating, physicochemical, storage

Procedia PDF Downloads 421
10378 Optimization, Characterization and Stability of Trachyspermum copticum Essential Oil Loaded in Niosome Nanocarriers

Authors: Mohadese Hashemi, Elham Akhoundi Kharanaghi, Fatemeh Haghiralsadat, Mojgan Yazdani, Omid Javani, Mahboobe Sharafodini, Davood Rajabi

Abstract:

Niosomes are non-ionic surfactant vesicles in aqueous media resulting in closed bilayer structures that can be used as carriers of hydrophilic and hydrophobic compounds. The use of niosomes for encapsulation of essential oils (EOs) is an attractive new approach to overcome their physicochemical stability concerns include sensibility to oxygen, light, temperature, and volatility, and their reduced bioavailability which is due to low solubility in water. EOs are unstable and fragile volatile compounds which have strong interest in pharmaceutical due to their medicinal properties such as antiviral, anti-inflammatory, antifungal, and antioxidant activities without side effects. Trachyspermum copticum (ajwain) is an annual aromatic plant with important medicinal properties that grows widely around Mediterranean region and south-west Asian countries. The major components of the ajwain oil were reported as thymol, γ-terpinene, p-cymene, and carvacrol which provide antimicrobial and antioxidant activity. The aim of this work was to formulate ajwain essential oil-loaded niosomes to improve water solubility of natural product and evaluate its physico-chemical features and stability. Ajwain oil was obtained through steam distillation using a clevenger-type apparatus and GC/MS was applied to identify the main components of the essential oil. Niosomes were prepared by using thin film hydration method and nanoparticles were characterized for particle size, dispersity index, zeta potential, encapsulation efficiency, in vitro release, and morphology.

Keywords: trachyspermum copticum, ajwain, niosome, essential oil, encapsulation

Procedia PDF Downloads 468
10377 Zinc (II) Complexes of Nitrogen, Oxygen and Sulfur Coordination Modes: Synthesis, Spectral Studies and Antibacterial Activities

Authors: Ayodele Odularu, Peter Ajibade, Albert Bolhuis

Abstract:

This study aimed at assessing the antibacterial activities of four zinc (II) complexes. Zinc (II) complexes of nitrogen, oxygen and sulfur coordination modes were synthesized using direct substitution reaction. The characterization techniques involved physicochemical properties (molar conductivity) and spectroscopic techniques. The molar conductivity gave the non-electrolytic nature of zinc (II) complexes. The spectral studies of zinc (II) complexes were done using electronic spectra (UV-Vis) and Fourier Transform Infra-red Spectroscopy (FT-IR). Spectral data from the spectroscopic studies confirmed the coordination of the mixed ligands with zinc (II) ion. The antibacterial activities of zinc(II) complexes of were all in supportive of Overtone’s concept and Tweedy’s theory of chelation for bacterial strains of S. aureus MRSA252 and E coli MC4100 because the zones of inhibition were greater than the corresponding ligands. In summary, all zinc (II) complexes of ZEPY, ZE1PH, ZE1PY and ZE135PY all have potentials for antibacterial activities.

Keywords: antibacterial activities, spectral studies, syntheses, zinc(II) complexes

Procedia PDF Downloads 262
10376 Effect of T6 and Re-Aging Heat Treatment on Mechanical Properties of 7055 Aluminum Alloy

Authors: M. Esmailian, M. Shakouri, A. Mottahedi, S. G. Shabestari

Abstract:

Heat treatable aluminium alloys such as 7075 and 7055, because of high strength and low density, are used widely in aircraft industry. For best mechanical properties, T6 heat treatment has recommended for this regards, but this temper treatment is sensitive to corrosion induced and Stress Corrosion Cracking (SCC) damage. For improving this property, the over-aging treatment (T7) applies to this alloy, but it decreases the mechanical properties up to 30 percent. Hence, to increase the mechanical properties, without any remarkable decrease in SCC resistant, Retrogression and Re-Aging (RRA) heat treatment is used. This treatment performs in a relatively short time. In this paper, the RRA heat treatment was applied to 7055 aluminum alloy and then effect of RRA time on the mechanical properties of 7055 has been investigated. The results show that the 40 minute time is suitable time for retrogression of 7055 aluminum alloy and ultimate strength increases up to 625MPa.

Keywords: 7055 Aluminum alloy, mechanical properties, SCC resistance, heat Treatment

Procedia PDF Downloads 415
10375 Competitive Adsorption of Al, Ga and In by Gamma Irradiation Induced Pectin-Acrylamide-(Vinyl Phosphonic Acid) Hydrogel

Authors: Md Murshed Bhuyan, Hirotaka Okabe, Yoshiki Hidaka, Kazuhiro Hara

Abstract:

Pectin-Acrylamide- (Vinyl Phosphonic Acid) Hydrogels were prepared from their blend by using gamma radiation of various doses. It was found that the gel fraction of hydrogel increases with increasing the radiation dose reaches a maximum and then started decreasing with increasing the dose. The optimum radiation dose and the composition of raw materials were determined on the basis of equilibrium swelling which resulted in 20 kGy absorbed dose and 1:2:4 (Pectin:AAm:VPA) composition. Differential scanning calorimetry reveals the gel strength for using them as the adsorbent. The FTIR-spectrum confirmed the grafting/ crosslinking of the monomer on the backbone of pectin chain. The hydrogels were applied in adsorption of Al, Ga, and In from multielement solution where the adsorption capacity order for those three elements was found as – In>Ga>Al. SEM images of hydrogels and metal adsorbed hydrogels indicate the gel network and adherence of the metal ions in the interpenetrating network of the hydrogel which were supported by EDS spectra. The adsorption isotherm models were studied and found that the Langmuir adsorption isotherm model was well fitted with the data. Adsorption data were also fitted to different adsorption kinetic and diffusion models. Desorption of metal adsorbed hydrogels was performed in 5% nitric acid where desorption efficiency was found around 90%.

Keywords: hydrogel, gamma radiation, vinyl phosphonic acid, metal adsorption

Procedia PDF Downloads 140
10374 Physico-Chemical and Antibacterial Properties of Neem Extracts

Authors: C. C. Igwe

Abstract:

Several parts of Neem tree (Azadirachta indica) are used in traditional medicine in many West African countries for the treatment of various human diseases. The leaf, stem - bark and seed were air dried for 8, 5 and 7 days, respectively. The shells were carfully separated from the seeds, each powdered sample obtained with mechanical miller and 250 mm sieve. The neem samples were individually subjected to extraction with acetone, n-hexane for 48hr and 72 hr, respectively. Physico-chemical and antibacterial evaluation were carried out using standard methods. Results of physico - chemical analyses of the extracted oil from the seed shows that it has a brownish colour, with a smell similar to garlic while the moisture content, refractive index are 0.76% and 1.47 respectively. Other vital chemical results obtained from the neem oil such as saponification value (234.62), acid value (10.84 %), free fatty acid (5.84 %) and peroxide value (10.52%) indicated the oil extracted satisfied standard oils parameters for quality soap and cosmetics production. The antibacterial screening by disc diffusion revealed the oil demonstrated high activity against Staphylococcus aureus. Both the physio-chemical and antibacterial of samples have been certified by National Agency for Food and Drugs Administration and Control. The preliminary results of this study may validate the medicinal value of the plant. Further studies are in progress to clarify the in vivo potentials of neem extracts in the management of human communicable diseases and this is a subject of investigation in our group.

Keywords: anti-bacterial, neem extract, physico-chemical analyses, staphylococcus aureus

Procedia PDF Downloads 58
10373 To Study the Effect of Drying Temperature Towards Extraction of Aquilaria subintegra Dry Leaves Using Vacuum Far Infrared

Authors: Tengku Muhammad Rafi Nazmi Bin Tengku Razali, Habsah Alwi

Abstract:

This article based on effect of temperature towards extraction of Aquilaria Subintegra. Aquilaria Subintegra which its main habitat is in Asia-tropical and particularly often found in its native which is Thailand. There is claim which is Aquilaria Subintegra contains antipyretic properties that helps fight fever. Research nowadays also shown that paracetamol consumed bring bad effect towards consumers. This sample will first dry using Vacuum Far Infrared which provides better drying than conventional oven. Soxhlet extractor used to extract oil from sample. Gas Chromatography Mass Spectrometer used to analyze sample to determine its compound. Objective from this research was to determine the active ingredients that exist in the Aquilaria Subintegra leaves and to determine whether compound of Acetaminophen exist or not inside the leaves. Moisture content from 400C was 80%, 500C was 620% and 600C was 36%. The greater temperature resulting lower moisture content inside sample leaves. 7 components were identified in sample T=400C while only 5 components were identified in sample at T=50C and T=60C. Four components were commonly identified in three sample which is 1n-Hexadecanoic acid, 9,12,15-Octadecatrienoic acid, methyl ester (z,z,z), Vitamin E and Squalene. Further studies are needed with new series of temperature to refine the best results.

Keywords: aquilaria subintegra, vacuum far infrared, SOXHLET extractor, gas chromatography mass spectrometer, paracetamol

Procedia PDF Downloads 471
10372 Synthesis and Functionalization of Gold Nanostars for ROS Production

Authors: H. D. Duong, J. I. Rhee

Abstract:

In this work, gold nanoparticles in star shape (called gold nanostars, GNS) were synthesized and coated by N-(3-aminopropyl) methacrylamide hydrochloride (PA) and mercaptopropionic acid (MPA) for functionalizing their surface by amine and carboxyl groups and then investigated for ROS production. The GNS with big size and multi-tips seem to be superior in singlet oxygen production as compared with that of small GNS and less tips. However, the functioned GNS in small size could also enhance efficiency of singlet oxygen production about double as compared with that of the intact GNS. In combination with methylene blue (MB+), the functioned GNS could enhance the singlet oxygen production of MB+ after 1h of LED750 irradiation and no difference between small size and big size in this reaction was observed. In combination with 5-aminolevulinic acid (ALA), only GNS coated PA could enhance the singlet oxygen production of ALA and the small size of GNS coated PA was a little higher effect than that of the bigger size. However, GNS coated MPA with small size had strong effect on hydroxyl radical production of ALA.

Keywords: 5-aminolevulinic acid, gold nanostars, methylene blue, ROS production

Procedia PDF Downloads 337
10371 Sorption of Cesium Ions from Aqueous Solutions by Magnetic Multi-Walled Carbon Nanotubes Functionalized with Zinc Hexacyanoferrate

Authors: H. H. Lee, D. Y. Kim, S. W. Lee, J. H. Kim, J. H. Kim, W. Z. Oh, S. J. Choi

Abstract:

In recent years, carbon nanotubes (CNTs) have been widely employed as a sorbent for the removal of various metal ions from water due to their unique properties such as large surface area, light mass density, high porous and hollow structure, and strong interaction between the pollutant molecules and CNTs. To apply CNTs to the sorption of Cs+ from aqueous solutions, they must first be functionalized to increase their hydrophilicity and therefore, enhance their applicability to the sorption of polar and relatively low-molecular-weight species. The objective of this study is to investigate the preparation of magnetically separable multi-walled carbon nanotubes (MWCNTs-m) as a sorbents for the removal of Cs+ from aqueous solutions. The MWCNTs-m was prepared using pristine MWCNTs and iron precursor Fe(acac)3. For the selective removal of Cs+ from aqueous solutions, the MWCNTs-m was functionalized with zinc hexacyanoferrate (MWCNTs-m-ZnFC). The physicochemical properties of the synthesized sorbents were characterized with various techniques, including transmission electron microscopy (TEM), specific surface area analysis, Fourier transform-infrared (FT-IR) spectroscopy, and vibrating-sample magnetometer. The MWCNTs-m-ZnFC was found to be easily separated from aqueous solutions by using magnetic field. The MWCNTs-m-ZnFC exhibited a high capacity for sorbing Cs+ from aqueous solutions because of their strong affinity for Cs+ and specific surface area. The sorption ability of the MWCNTs-m-ZnFC for Cs+ was maintained even in the presence of co-existing ions (Na+). Considering these results, the CNT-m-ZnFCs have great potential for use as an effective sorbent for the selective removal of radioactive Cs+ ions from aqueous solutions.

Keywords: multi-walled carbon nanotubes, magnetic materials, cesium, zinc hexacyanoferrate, sorption

Procedia PDF Downloads 316
10370 Calibration Model of %Titratable Acidity (Citric Acid) for Intact Tomato by Transmittance SW-NIR Spectroscopy

Authors: K. Petcharaporn, S. Kumchoo

Abstract:

The acidity (citric acid) is one of the chemical contents that can refer to the internal quality and the maturity index of tomato. The titratable acidity (%TA) can be predicted by a non-destructive method prediction by using the transmittance short wavelength (SW-NIR). Spectroscopy in the wavelength range between 665-955 nm. The set of 167 tomato samples divided into groups of 117 tomatoes sample for training set and 50 tomatoes sample for test set were used to establish the calibration model to predict and measure %TA by partial least squares regression (PLSR) technique. The spectra were pretreated with MSC pretreatment and it gave the optimal result for calibration model as (R = 0.92, RMSEC = 0.03%) and this model obtained high accuracy result to use for %TA prediction in test set as (R = 0.81, RMSEP = 0.05%). From the result of prediction in test set shown that the transmittance SW-NIR spectroscopy technique can be used for a non-destructive method for %TA prediction of tomatoes.

Keywords: tomato, quality, prediction, transmittance, titratable acidity, citric acid

Procedia PDF Downloads 261
10369 Spontaneous Generation of Wrinkled Patterns on pH-Sensitive Smart-Hydrogel Films

Authors: Carmen M. Gonzalez-Henriquez, Mauricio A. Sarabia-Vallejos, Juan Rodriguez-Hernandez

Abstract:

DMAEMA, as a monomer, has been widely studied and used in several application fields due to their pH-sensitive capacity (tertiary amine protonation), being relevant in the biomedical area as a potential carrier for drugs focused on the treatment of genetic or acquired diseases (efficient gene transfection), among others. Additionally, the inhibition of bacterial growth and, therefore, their antimicrobial activity, can be used as dual-functional antifogging/antimicrobial polymer coatings. According to their interesting physicochemical characteristics and biocompatible properties, DMAEMA was used as a monomer to synthesize a smart pH-sensitive hydrogel, namely poly(HEMA-co-PEGDA575-co-DMAEMA). Thus, different mole ratios (ranging from 5:1:0 to 0:1:5, according to the mole ratio between HEMA, PEGDA, and DEAEMA, respectively) were used in this research. The surface patterns formed via a two-step polymerization (redox- and photo-polymerization) were first chemically studied via 1H-NMR and elemental analysis. Secondly, the samples were morphologically analyzed by using Field-Emission Scanning Electron Microscopy (FE-SEM) and Atomic Force Microscopy (AFM) techniques. Then, a particular relation between HEMA, PEGDA, and DEAEMA (0:1:5) was also characterized at three different pH (5.4, 7.4 and 8.3). The hydrodynamic radius and zeta potential of the micro-hydrogel particles (emulsion) were carried out as a possible control for morphology, exploring the effect that produces hydrogel micelle dimensions in the wavelength, height, and roughness of the wrinkled patterns. Finally, contact angle and cross-hatch adhesion test was carried out for the hydrogels supported on glass using TSM-silanized surfaces in order to measure their mechanical properties.

Keywords: wrinkled patterns, smart pH-sensitive hydrogels, hydrogel micelle diameter, adhesion tests

Procedia PDF Downloads 195
10368 Effect of Conjugated Linoleic Acid on Lipid Metabolism and Increased Fat around the Muscle Durability by Reducing the Oxidation Process

Authors: Hamidreza Khodaei, Ali Daryabeigi Zand

Abstract:

Conjugated linoleic acid (CLA) is a mixture of isomers of linoleic acid. Despite the fact that 28 different isomers of CLA have already been identified, but the main isomer found in natural diets more than ninety percent CLA on intake of food constitutes demonstrates. CLA is known to be a substance that readily available by rumen microorganisms in some ruminants such as cattle and sheep would likely be made. The main objective of this research was to evaluate the impacts of CLA on lipid metabolism and enhanced fat around the muscle durability by reducing the process of oxidation. In order to implement this research, 80 female mice of the Balb/C, with 55 days of age were employed in the experiment. Treatments include various levels of CLA. Over the course of this study blood samples was also taken from the tail vein of the studied mice. Some other relevant parameters such as serum concentrations of triglycerides, total cholesterol, LDL, HDL and liver enzymes were also determined. The oxidative stability of fats TBARS technique was investigated at different intervals. The findings of the research were analyzed by statistical software of SAS 98. The results, CLA had no significant effect on liver enzymes (P > 0.05). However, it showed a statistically significant impact on triglycerides and total cholesterol. Ratio of LDL to HDL declined remarkably. Histological studies demonstrated reduced accumulation of fat in the tissues surrounding muscles.

Keywords: conjugated linoleic acid, fat metabolism, fat retention, oxidation process

Procedia PDF Downloads 188