Search results for: multivariate linear regression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6297

Search results for: multivariate linear regression

5097 Modeling and Controlling Nonlinear Dynamical Effects in Non-Contact Superconducting and Diamagnetic Suspensions

Authors: Sergey Kuznetsov, Yuri Urman

Abstract:

We present an approach to investigate non-linear dynamical effects occurring in the noncontact superconducting and diamagnetic suspensions, when levitated body has finite size. This approach is based on the calculation of interaction energy between spherical finite size superconducting or diamagnetic body with external magnetic field. Effects of small deviations from spherical shape may be also taken into account by introducing small corrections to the energy. This model allows investigating dynamical effects important for practical applications, such as nonlinear resonances, change of vibration plane, coupling of rotational and translational motions etc. We also show how the geometry of suspension affects various dynamical effects and how an inverse problem may be formulated to enforce or diminish various dynamical effects.

Keywords: levitation, non-linear dynamics, superconducting, diamagnetic stability

Procedia PDF Downloads 410
5096 Development and Validation of a HPLC Method for 6-Gingerol and 6-Shogaol in Joint Pain Relief Gel Containing Ginger (Zingiber officinale)

Authors: Tanwarat Kajsongkram, Saowalux Rotamporn, Sirinat Limbunruang, Sirinan Thubthimthed.

Abstract:

High-Performance Liquid Chromatography (HPLC) method was developed and validated for simultaneous estimation of 6-Gingerol(6G) and 6-Shogaol(6S) in joint pain relief gel containing ginger extract. The chromatographic separation was achieved by using C18 column, 150 x 4.6mm i.d., 5μ Luna, mobile phase containing acetonitrile and water (gradient elution). The flow rate was 1.0 ml/min and the absorbance was monitored at 282 nm. The proposed method was validated in terms of the analytical parameters such as specificity, accuracy, precision, linearity, range, limit of detection (LOD), limit of quantification (LOQ), and determined based on the International Conference on Harmonization (ICH) guidelines. The linearity ranges of 6G and 6S were obtained over 20-60 and 6-18 µg/ml respectively. Good linearity was observed over the above-mentioned range with linear regression equation Y= 11016x- 23778 for 6G and Y = 19276x-19604 for 6S (x is concentration of analytes in μg/ml and Y is peak area). The value of correlation coefficient was found to be 0.9994 for both markers. The limit of detection (LOD) and limit of quantification (LOQ) for 6G were 0.8567 and 2.8555 µg/ml and for 6S were 0.3672 and 1.2238 µg/ml respectively. The recovery range for 6G and 6S were found to be 91.57 to 102.36 % and 84.73 to 92.85 % for all three spiked levels. The RSD values from repeated extractions for 6G and 6S were 3.43 and 3.09% respectively. The validation of developed method on precision, accuracy, specificity, linearity, and range were also performed with well-accepted results.

Keywords: ginger, 6-gingerol, HPLC, 6-shogaol

Procedia PDF Downloads 443
5095 Electronic Structure Calculation of AsSiTeB/SiAsBTe Nanostructures Using Density Functional Theory

Authors: Ankit Kargeti, Ravikant Shrivastav, Tabish Rasheed

Abstract:

The electronic structure calculation for the nanoclusters of AsSiTeB/SiAsBTe quaternary semiconductor alloy belonging to the III-V Group elements was performed. Motivation for this research work was to look for accurate electronic and geometric data of small nanoclusters of AsSiTeB/SiAsBTe in the gaseous form. The two clusters, one in the linear form and the other in the bent form, were studied under the framework of Density Functional Theory (DFT) using the B3LYP functional and LANL2DZ basis set with the software packaged Gaussian 16. We have discussed the Optimized Energy, Frontier Orbital Energy Gap in terms of HOMO-LUMO, Dipole Moment, Ionization Potential, Electron Affinity, Binding Energy, Embedding Energy, Density of States (DoS) spectrum for both structures. The important findings of the predicted nanostructures are that these structures have wide band gap energy, where linear structure has band gap energy (Eg) value is 2.375 eV and bent structure (Eg) value is 2.778 eV. Therefore, these structures can be utilized as wide band gap semiconductors. These structures have high electron affinity value of 4.259 eV for the linear structure and electron affinity value of 3.387 eV for the bent structure form. It shows that electron acceptor capability is high for both forms. The widely known application of these compounds is in the light emitting diodes due to their wide band gap nature.

Keywords: density functional theory, DFT, density functional theory, nanostructures, HOMO-LUMO, density of states

Procedia PDF Downloads 114
5094 Proposing a New Design Method for Added Viscoelastic Damper’s Application in Steel Moment-Frame

Authors: Saeed Javaherzadeh, Babak Dindar Safa

Abstract:

Structure, given its ductility, can depreciate significant amount of seismic energy in the form of hysteresis behavior; the amount of energy depreciation depends on the structure ductility rate. So in seismic guidelines such as ASCE7-10 code, to reduce the number of design forces and using the seismic energy dissipation capacity of structure, when entering non-linear behavior range of the materials, the response modification factor is used. Various parameters such as ductility modification factor, overstrength factor and reliability factor, are effective in determining the value of this factor. Also, gradually, energy dissipation systems, especially added dampers, have become an inseparable part of the seismic design. In this paper, in addition to reviewing of previous studies, using the response modification factor caused by using more added viscoelastic dampers, a new design method has introduced for steel moment-frame with added dampers installed. To do this, in addition to using bilinear behavior models and quick ways such as using the equivalent lateral force method and capacity spectrum method for the proposed design methodology, the results has been controlled with non-linear time history analysis for a number of structural. The analysis is done by Opensees Software.

Keywords: added viscoelastic damper, design base shear, response modification factor, non-linear time history

Procedia PDF Downloads 441
5093 Strategy of Inventory Analysis with Economic Order Quantity and Quick Response: Case on Filter Inventory for Heavy Equipment in Indonesia

Authors: Lim Sanny, Felix Christian

Abstract:

The use of heavy equipment in Indonesia is always increasing. Cost reduction in procurement of spare parts is the aim of the company. The spare parts in this research are focused in the kind of filters. On the early step, the choosing of priority filter will be studied further by using the ABC analysis. To find out future demand of the filter, this research is using demand forecast by utilizing the QM software for windows. And to find out the best method of inventory control for each kind of filter is by comparing the total cost of Economic Order Quantity and Quick response inventory method. For the three kind of filters which are Cartridge, Engine oil – pn : 600-211-123, Element, Transmission – pn : 424-16-11140, and Element, Hydraulic – pn : 07063-01054, the best forecasting method is Linear regression. The best method for inventory control of Cartridge, Engine oil – pn : 600-211-123 and Element, Transmission – pn : 424-16-11140, is Quick Response Inventory, while the best method for Element, Hydraulic – pn : 07063-01054 is Economic Order Quantity.

Keywords: strategy, inventory, ABC analysis, forecasting, economic order quantity, quick response inventory

Procedia PDF Downloads 364
5092 Identification of Rainfall Trends in Qatar

Authors: Abdullah Al Mamoon, Ataur Rahman

Abstract:

Due to climate change, future rainfall will change at many locations on earth; however, the spatial and temporal patterns of this change are not easy to predict. One approach of predicting such future changes is to examine the trends in the historical rainfall data at a given region and use the identified trends to make future prediction. For this, a statistical trend test is commonly applied to the historical data. This paper examines the trends of daily extreme rainfall events from 30 rain gauges located in the State of Qatar. Rainfall data covering from 1962 to 2011 were used in the analysis. A combination of four non-parametric and parametric tests was applied to identify trends at 10%, 5%, and 1% significance levels. These tests are Mann-Kendall (MK), Spearman’s Rho (SR), Linear Regression (LR) and CUSUM tests. These tests showed both positive and negative trends throughout the country. Only eight stations showed positive (upward) trend, which were however not statistically significant. In contrast, significant negative (downward) trends were found at the 5% and 10% levels of significance in six stations. The MK, SR and LR tests exhibited very similar results. This finding has important implications in the derivation/upgrade of design rainfall for Qatar, which will affect design and operation of future urban drainage infrastructure in Qatar.

Keywords: trends, extreme rainfall, daily rainfall, Mann-Kendall test, climate change, Qatar

Procedia PDF Downloads 562
5091 Dietary Vitamin D Intake and the Bladder Cancer Risk: A Pooled Analysis of Prospective Cohort Studies

Authors: Iris W. A. Boot, Anke Wesselius, Maurice P. Zeegers

Abstract:

Diet may play an essential role in the aetiology of bladder cancer (BC). Vitamin D is involved in various biological functions which have the potential to prevent BC development. Besides, vitamin D also influences the uptake of calcium and phosphorus , thereby possibly indirectly influencing the risk of BC. The aim of the present study was to investigate the relation between vitamin D intake and BC risk. Individual dietary data were pooled from three cohort studies. Food item intake was converted to daily intakes of vitamin D, calcium and phosphorus. Pooled multivariate hazard ratios (HRs), with corresponding 95% confidence intervals (CIs) were obtained using Cox-regression models. Analyses were adjusted for gender, age and smoking status (Model 1), and additionally for the food groups fruit, vegetables and meat (Model 2). Dose–response relationships (Model 1) were examined using a nonparametric test for trend. In total, 2,871 cases and 522,364 non-cases were included in the analyses. The present study showed an overall increased BC risk for high dietary vitamin D intake (HR: 1.14, 95% CI: 1.03-1.26). A similar increase BC risk with high vitamin D intake was observed among women and for the non-muscle invasive BC subtype, (HR: 1.41, 95% CI: 1.15-1.72, HR: 1.13, 95% CI: 1.01-1.27, respectively). High calcium intake decreased the BC risk among women (HR: 0.81, 95% CI: 0.67-0.97). A combined inverse effect on BC risk was observed for low vitamin D intake and high calcium intake (HR: 0.67, 95% CI: 0.48-0.93), while a positive effect was observed for high vitamin D intake in combination with low, moderate and high phosphorus (HR: 1.31, 95% CI: 1.09-1.59, HR: 1.17, 95% CI: 1.01-1.36, HR: 1.16, 95% CI: 1.03-1.31, respectively). Combining all nutrients showed a decreased BC risk for low vitamin D intake, high calcium and moderate phosphor intake (HR: 0.37, 95% CI: 0.18-0.75), and an increased BC risk for moderate intake of all the nutrients (HR: 1.18, 95% CI: 1.02-1.38), for high vitamin D and low calcium and phosphor intake (HR: 1.28, 95% CI: 1.01-1.62), and for moderate vitamin D and calcium and high phosphorus intake (HR: 1.27, 95% CI: 1.01-1.59). No significant dose-response analyses were observed. The findings of this study show an increased BC risk for high dietary vitamin D intake and a decreased risk for high calcium intake. Besides, the study highlights the importance of examining the effect of a nutrient in combination with complementary nutrients for risk assessment. Future research should focus on nutrients in a wider context and in nutritional patterns.

Keywords: bladder cancer, nutritional oncology, pooled cohort analysis, vitamin D

Procedia PDF Downloads 84
5090 Preschoolers’ Involvement in Indoor and Outdoor Learning Activities as Predictors of Social Learning Skills in Niger State, Nigeria

Authors: Okoh Charity N.

Abstract:

This study investigated the predictive power of preschoolers’ involvement in indoor and outdoor learning activities on their social learning skills in Niger state, Nigeria. Two research questions and two null hypotheses guided the study. Correlational research design was employed in the study. The population of the study consisted of 8,568 Nursery III preschoolers across the 549 preschools in the five Local Education Authorities in Niger State. A sample of 390 preschoolers drawn through multistage sampling procedure. Two instruments; Preschoolers’ Learning Activities Rating Scale (PLARS) and Preschoolers’ Social Learning Skills Rating Scale (PSLSRS) developed by the researcher were used for data collection. The reliability coefficients obtained for the PLARS and PSLSRS were 0.83 and 0.82, respectively. Data collected were analyzed using simple linear regression. Results showed that 37% of preschoolers’ social learning skills are predicted by their involvement in indoor learning activities, which is statistically significant (p < 0.05). It also shows that 11% of preschoolers’ social learning skills are predicted by their involvement in outdoor learning activities, which is statistically significant (p < 0.05). Therefore, it was recommended among others, that government and school administrators should employ qualified teachers who will stand as role models for preschoolers’ social skills development and provide indoor and outdoor activities and materials for preschoolers in schools.

Keywords: preschooler, social learning, indoor activities, outdoor activities

Procedia PDF Downloads 130
5089 Exploring the Influence of Wind on Wildfire Behavior in China: A Data-Driven Study Using Machine Learning and Remote Sensing

Authors: Rida Kanwal, Wang Yuhui, Song Weiguo

Abstract:

Wildfires are one of the most prominent threats to ecosystems, human health, and economic activities, with wind acting as a critical driving factor. This study combines machine learning (ML) and remote sensing (RS) to assess the effects of wind on wildfires in Chongqing Province from August 16-23, 2022. Landsat 8 satellite images were used to estimate the difference normalized burn ratio (dNBR), representing prefire and postfire vegetation conditions. Wind data was analyzed through geographic information system (GIS) mapping. Correlation analysis between wind speed and fire radiative power (FRP) revealed a significant relationship. An autoregressive integrated moving average (ARIMA) model was developed for wind forecasting, and linear regression was applied to determine the effect of wind speed on FRP. The results identified high wind speed as a key factor contributing to the surge in FRP. Wind-rose plots showed winds blowing to the northwest (NW), aligning with the wildfire spread. This model was further validated with data from other provinces across China. This study integrated ML, RS, and GIS to analyze wildfire behavior, providing effective strategies for prediction and management.

Keywords: wildfires, machine learning, remote sensing, wind speed, GIS, wildfire behavior

Procedia PDF Downloads 20
5088 Factors Associated with Recurrence and Long-Term Survival in Younger and Postmenopausal Women with Breast Cancer

Authors: Sopit Tubtimhin, Chaliya Wamaloon, Anchalee Supattagorn

Abstract:

Background and Significance: Breast cancer is the most frequently diagnosed and leading cause of cancer death among women. This study aims to determine factors potentially predicting recurrence and long-term survival after the first recurrence in surgically treated patients between postmenopausal and younger women. Methods and Analysis: A retrospective cohort study was performed on 498 Thai women with invasive breast cancer, who had undergone mastectomy and been followed-up at Ubon Ratchathani Cancer Hospital, Thailand. We collected based on a systematic chart audit from medical records and pathology reports between January 1, 2002, and December 31, 2011. The last follow-up time point for surviving patients was December 31, 2016. A Cox regression model was used to calculate hazard ratios of recurrence and death. Findings: The median age was 49 (SD ± 9.66) at the time of diagnosis, 47% was post-menopausal women ( ≥ 51years and not experienced any menstrual flow for a minimum of 12 months), and 53 % was younger women ( ˂ 51 years and have menstrual period). Median time from the diagnosis to the last follow-up or death was 10.81 [95% CI = 9.53-12.07] years in younger cases and 8.20 [95% CI = 6.57-9.82] years in postmenopausal cases. The recurrence-free survival (RFS) for younger estimates at 1, 5 and 10 years of 95.0 %, 64.0% and 58.93% respectively, appeared slightly better than the 92.7%, 58.1% and 53.1% for postmenopausal women [HRadj = 1.25, 95% CI = 0.95-1.64]. Regarding overall survival (OS) for younger at 1, 5 and 10 years were 97.7%, 72.7 % and 52.7% respectively, for postmenopausal patients, OS at 1, 5 and 10 years were 95.7%, 70.0% and 44.5 respectively, there were no significant differences in survival [HRadj = 1.23, 95% CI = 0.94 -1.64]. Multivariate analysis identified five risk factors for negatively impacting on survival were triple negative [HR= 2.76, 95% CI = 1.47-5.19], Her2-enriched [HR = 2.59, 95% CI = 1.37-4.91], luminal B [HR = 2.29, 95 % CI=1.35-3.89], not free margin [HR = 1.98, 95%CI=1.00-3.96] and patients who received only adjuvant chemotherapy [HR= 3.75, 95% CI = 2.00-7.04]. Statistically significant risks of overall cancer recurrence were Her2-enriched [HR = 5.20, 95% CI = 2.75-9.80], triple negative [HR = 3.87, 95% CI = 1.98-7.59], luminal B [HR= 2.59, 95% CI = 1.48-4.54,] and patients who received only adjuvant chemotherapy [HR= 2.59, 95% CI = 1.48-5.66]. Discussion and Implications: Outcomes from this studies have shown that postmenopausal women have been associated with increased risk of recurrence and mortality. As the results, it provides useful information for planning the screening and treatment of early-stage breast cancer in the future.

Keywords: breast cancer, menopause status, recurrence-free survival, overall survival

Procedia PDF Downloads 163
5087 Measuring Energy Efficiency Performance of Mena Countries

Authors: Azam Mohammadbagheri, Bahram Fathi

Abstract:

DEA has become a very popular method of performance measure, but it still suffers from some shortcomings. One of these shortcomings is the issue of having multiple optimal solutions to weights for efficient DMUs. The cross efficiency evaluation as an extension of DEA is proposed to avoid this problem. Lam (2010) is also proposed a mixed-integer linear programming formulation based on linear discriminate analysis and super efficiency method (MILP model) to avoid having multiple optimal solutions to weights. In this study, we modified MILP model to determine more suitable weight sets and also evaluate the energy efficiency of MENA countries as an application of the proposed model.

Keywords: data envelopment analysis, discriminate analysis, cross efficiency, MILP model

Procedia PDF Downloads 687
5086 Incidence and Risk Factors of Central Venous Associated Infections in a Tunisian Medical Intensive Care Unit

Authors: Ammar Asma, Bouafia Nabiha, Ghammam Rim, Ezzi Olfa, Ben Cheikh Asma, Mahjoub Mohamed, Helali Radhia, Sma Nesrine, Chouchène Imed, Boussarsar Hamadi, Njah Mansour

Abstract:

Background: Central venous catheter associated infections (CVC-AI) are among the serious hospital-acquired infections. The aims of this study are to determine the incidence of CVC-AI, and their risk factors among patients followed in a Tunisian medical intensive care unit (ICU). Materials / Methods: A prospective cohort study conducted between September 15th, 2015 and November 15th, 2016 in an 8-bed medical ICU including all patients admitted for more than 48h. CVC-AI were defined according to CDC of ATLANTA criteria. The enrollment was based on clinical and laboratory diagnosis of CVC-AI. For all subjects, age, sex, underlying diseases, SAPS II score, ICU length of stay, exposure to CVC (number of CVC placed, site of insertion and duration catheterization) were recorded. Risk factors were analyzed by conditional stepwise logistic regression. The p-value of < 0.05 was considered significant. Results: Among 192 eligible patients, 144 patients (75%) had a central venous catheter. Twenty-eight patients (19.4%) had developed CVC-AI with density rate incidence 20.02/1000 CVC-days. Among these infections, 60.7% (n=17) were systemic CVC-AI (with negative blood culture), and 35.7% (n=10) were bloodstream CVC-AI. The mean SAPS II of patients with CVC-AI was 32.76 14.48; their mean Charlson index was 1.77 1.55, their mean duration of catheterization was 15.46 10.81 days and the mean duration of one central line was 5.8+/-3.72 days. Gram-negative bacteria was determined in 53.5 % of CVC-AI (n= 15) dominated by multi-drug resistant Acinetobacter baumani (n=7). Staphylococci were isolated in 3 CVC-AI. Fourteen (50%) patients with CVC-AI died. Univariate analysis identified men (p=0.034), the referral from another hospital department (p=0.03), tobacco (p=0.006), duration of sedation (p=0.003) and the duration of catheterization (p=0), as possible risk factors of CVC-AI. Multivariate analysis showed that independent factors of CVC-AI were, male sex; OR= 5.73, IC 95% [2; 16.46], p=0.001, Ramsay score; OR= 1.57, IC 95% [1.036; 2.38], p=0.033, and duration of catheterization; OR=1.093, IC 95% [1.035; 1.15], p=0.001. Conclusion: In a monocenter cohort, CVC-AI had a high density and is associated with poor outcome. Identifying the risk factors is necessary to find solutions for this major health problem.

Keywords: central venous catheter associated infection, intensive care unit, prospective cohort studies, risk factors

Procedia PDF Downloads 361
5085 The Relation between Proactive Coping and Well-Being: An Example of Middle-Aged and Older Learners from Taiwan

Authors: Ya-Hui Lee, Ching-Yi Lu, Hui-Chuan Wei

Abstract:

The purpose of this research was to explore the relation between proactive coping and well-being of middle-aged adults. We conducted survey research that with t-test, one way ANOVA, Pearson correlation and stepwise multiple regression to analyze. This research drew on a sample of 395 participants from the senior learning centers of Taiwan. The results provided the following findings: 1.The participants from different residence areas associated significant difference with proactive coping, but not with well-being. 2. The participants’ perceived of financial level associated significant difference with both proactive coping and well-being. 3. There was significant difference between participants’ income and well-being. 4. The proactive coping was positively correlated with well-being. 5. From stepwise multiple regression analysis showed that two dimensions of proactive coping had positive predictability. Finally, these results of this study can be provided as references for designing older adult educational programs in Taiwan.

Keywords: middle-age and older adults, learners, proactive coping, well-being

Procedia PDF Downloads 456
5084 Altered Lower Extremity Biomechanical Risk Factor Related to Anterior Cruciate Ligament Injury in Athlete with Functional Ankle Instability

Authors: Mohammad Karimizadehardakani, Hooman Minoonejad, Reza Rajabi, Ali Sharifnejad

Abstract:

Background: Ankle sprain is one of the most important risk factor of anterior cruciate ligament (ACL) injury. Also, functional ankle instability (FAI) population has alterations in lower extremity sagittal plane biomechanics during landing task. We want to examine whether biomechanical alterations demonstrated by FAI patients are associated with the mechanism of ACL injury during high risk and sport related tasks. Methods: Sixteen basketball player with FAI and 16 non-injured control performed a single-leg cross drop landing. Knee sagittal and frontal (ATSF) was calculated. Independent t-tests, multiple linear regression, and Pearson correlation were used for analysis data. Result: Subject with FAI showed more peak ATFS, posterior ground reaction force (GRF) and less knee flexion, compared to the controls (P= 0.001, P= 0.004, P= 0.011). Knee flexion (r= −0.824, P = 0.011) and posterior GRF (r= 0.901, P = .001) were correlated with ATSF; Posterior GRF was factor that most explained the variance in ATSF (R2= 0.645; P = .001) in the FAI group. Conclusions: Result of our study showed there is a potential biomechanical relationship between the presence of FAI and risk factors associated with ACL injury mechanism.

Keywords: functional ankle instability, anterior cruciate ligament, biomechanics, risk factor

Procedia PDF Downloads 222
5083 Prevalence and Correlates of Complementary and Alternative Medicine Use among Diabetic Patients in Lebanon: A Cross-Sectional Study

Authors: Farah Naja, Mohamad Alameddine

Abstract:

Background: The difficulty of compliance to therapeutic and lifestyle management of type 2 diabetes mellitus (T2DM) encourages patients to use complementary and alternative medicine (CAM) therapies. Little is known about the prevalence and mode of CAM use among diabetics in the Eastern Mediterranean Region in general and Lebanon in particular. Objective: To assess the prevalence and modes of CAM use among patients with T2DM residing in Beirut, Lebanon. Methods: A cross-sectional survey of T2DM patients was conducted on patients recruited from two major referral centers - a public hospital and a private academic medical center in Beirut. In a face-to-face interview, participants completed a survey questionnaire comprised of three sections: socio-demographic, diabetes characteristics and types and modes of CAM use. Descriptive statistics, univariate and multivariate logistic regression analyses were utilized to assess the prevalence, mode and correlates of CAM use in the study population. The main outcome in this study (CAM use) was defined as using CAM at least once since diagnosis with T2DM. Results: A total of 333 T2DM patients completed the survey (response rate: 94.6%). Prevalence of CAM use in the study population was 38%, 95% CI (33.1-43.5). After adjustment, CAM use was significantly associated with a “married” status, a longer duration of T2DM, the presence of disease complications, and a positive family history of the disease. Folk foods and herbs were the most commonly used CAM followed by natural health products. One in five patients used CAM as an alternative to conventional treatment. Only 7 % of CAM users disclosed the CAM use to their treating physician. Health care practitioners were the least cited (7%) as influencing the choice of CAM among users. Conclusion: The use of CAM therapies among T2DM patients in Lebanon is prevalent. Decision makers and care providers must fully understand the potential risks and benefits of CAM therapies to appropriately advise their patients. Attention must be dedicated to educating T2DM patients on the importance of disclosing CAM use to their physicians especially patients with a family history of diabetes, and those using conventional therapy for a long time.

Keywords: nutritional supplements, type 2 diabetes mellitus, complementary and alternative medicine (CAM), conventional therapy

Procedia PDF Downloads 349
5082 A Reactive Flexible Job Shop Scheduling Model in a Stochastic Environment

Authors: Majid Khalili, Hamed Tayebi

Abstract:

This paper considers a stochastic flexible job-shop scheduling (SFJSS) problem in the presence of production disruptions, and reactive scheduling is implemented in order to find the optimal solution under uncertainty. In this problem, there are two main disruptions including machine failure which influences operation time, and modification or cancellation of the order delivery date during production. In order to decrease the negative effects of these difficulties, two derived strategies from reactive scheduling are used; the first one is relevant to being able to allocate multiple machine to each job, and the other one is related to being able to select the best alternative process from other job while some disruptions would be created in the processes of a job. For this purpose, a Mixed Integer Linear Programming model is proposed.

Keywords: flexible job-shop scheduling, reactive scheduling, stochastic environment, mixed integer linear programming

Procedia PDF Downloads 361
5081 Dimension Free Rigid Point Set Registration in Linear Time

Authors: Jianqin Qu

Abstract:

This paper proposes a rigid point set matching algorithm in arbitrary dimensions based on the idea of symmetric covariant function. A group of functions of the points in the set are formulated using rigid invariants. Each of these functions computes a pair of correspondence from the given point set. Then the computed correspondences are used to recover the unknown rigid transform parameters. Each computed point can be geometrically interpreted as the weighted mean center of the point set. The algorithm is compact, fast, and dimension free without any optimization process. It either computes the desired transform for noiseless data in linear time, or fails quickly in exceptional cases. Experimental results for synthetic data and 2D/3D real data are provided, which demonstrate potential applications of the algorithm to a wide range of problems.

Keywords: covariant point, point matching, dimension free, rigid registration

Procedia PDF Downloads 168
5080 Methadone Maintenance Treatment Patients' and Medical Students' Common Trait: Low Mindfulness Trait Associated with High Perceived Stress

Authors: Einat Peles, Anat Sason, Ariel Claman, Gabriel Barkay, Miriam Adelson

Abstract:

Individuals with opioid addiction are characterized as suffering from stress responses disturbance, including the hypothalamic-pituitary-adrenal (HPA) axis, and autonomic nervous system function. HPA axis is known to be stabilized during methadone maintenance treatment (MMT). Mindfulness (present-oriented, nonjudgmental awareness of cognitions, emotions, perceptions, and habitual behavioral reactions in daily life) counteracts stress. To our knowledge, the relation between perceived stress and mindfulness trait among MMT patients has never been studied. To measure indices of mindfulness and their relation to perceived stress among MMT patients, a cross-sectional random sample of current MMT patients was performed using questionnaires for perceived stress (PSS) and mindfulness trait (FFMQ- yields a total score and individual scores for five internally consistent mindfulness factors: Observing, Describing, Acting with awareness and consciousness, Non-judging the inner experience, Non-reactivity to the inner experience). Two additional groups were studied to serve as reference groups; Medical students that are known to suffer from stress, and Axis II psychiatric diagnosis patients that are known to characterized with poor mindfulness trait. Results: Groups included 41 MMT patients, 27 Axis II patients and 36 medical students. High perceived stressed (PSS≥18) defined among 61% of the MMT patients and 50% of the medical students. Highest mindfulness score observed among non-stressed MMT patients (153.5±17.2) followed by the groups of stressed MMT and non-stressed student (128.9±17.0 and 130.5±13.3 respectively), with the lowest score among stressed students (116.3±17.9) (multivariate analyses, corrected model p (F=14.3) < 0.0005, p (group) < 0.0005, p (stress) < 0.0005, p (interaction) =0.2). Linear inverse correlations were found between perceived stress score and mindfulness score among MMT patients (R=-0.65, p < 0.0005) and students (R=-0.51, p=0.002). Axis II patients had the lowest mindfulness score (103.4±25.3). Conclusion: High prevalence of high perceived stressed which characterized with poor mindfulness trait observed in both MMT patients and medical students, two different population groups. The effectiveness of mindfulness treatment in reducing stress and improve mindfulness trait should be evaluated to improve rehabilitation of MMT patients, and students success.

Keywords: mindfulness, stress, methadone maintenance treatment, medical students

Procedia PDF Downloads 183
5079 Climate-Smart Agriculture Technologies and Determinants of Farmers’ Adoption Decisions in the Great Rift Valley of Ethiopia

Authors: Theodrose Sisay, Kindie Tesfaye, Mengistu Ketema, Nigussie Dechassa, Mezegebu Getnet

Abstract:

Agriculture is a sector that is very vulnerable to the effects of climate change and contributes to anthropogenic greenhouse gas (GHG) emissions in the atmosphere. By lowering emissions and adjusting to the change, it can also help to reduce climate change. Utilizing Climate-Smart Agriculture (CSA) technology that can sustainably boost productivity, improve resilience, and lower GHG emissions is crucial. This study sought to identify the CSA technologies used by farmers and assess adoption levels and factors that influence them. In order to gather information from 384 smallholder farmers in the Great Rift Valley (GRV) of Ethiopia, a cross-sectional survey was carried out. Data were analysed using percentage, chi-square test, t-test, and multivariate probit model. Results showed that crop diversification, agroforestry, and integrated soil fertility management were the most widely practiced technologies. The results of the Chi-square and t-tests showed that there are differences and significant and positive connections between adopters and non-adopters based on various attributes. The chi-square and t-test results confirmed that households who were older had higher incomes, greater credit access, knowledge of the climate, better training, better education, larger farms, higher incomes, and more frequent interactions with extension specialists had a positive and significant association with CSA technology adopters. The model result showed that age, sex, and education of the head, farmland size, livestock ownership, income, access to credit, climate information, training, and extension contact influenced the selection of CSA technologies. Therefore, effective action must be taken to remove barriers to the adoption of CSA technologies, and taking these adoption factors into account in policy and practice is anticipated to support smallholder farmers in adapting to climate change while lowering emissions.

Keywords: climate change, climate-smart agriculture, smallholder farmers, multivariate probit model

Procedia PDF Downloads 127
5078 A Nonlinear Approach for System Identification of a Li-Ion Battery Based on a Non-Linear Autoregressive Exogenous Model

Authors: Meriem Mossaddek, El Mehdi Laadissi, El Mehdi Loualid, Chouaib Ennawaoui, Sohaib Bouzaid, Abdelowahed Hajjaji

Abstract:

An electrochemical system is a subset of mechatronic systems that includes a wide variety of batteries and nickel-cadmium, lead-acid batteries, and lithium-ion. Those structures have several non-linear behaviors and uncertainties in their running range. This paper studies an effective technique for modeling Lithium-Ion (Li-Ion) batteries using a Nonlinear Auto-Regressive model with exogenous input (NARX). The Artificial Neural Network (ANN) is trained to employ the data collected from the battery testing process. The proposed model is implemented on a Li-Ion battery cell. Simulation of this model in MATLAB shows good accuracy of the proposed model.

Keywords: lithium-ion battery, neural network, energy storage, battery model, nonlinear models

Procedia PDF Downloads 114
5077 A Geographic Information System Mapping Method for Creating Improved Satellite Solar Radiation Dataset Over Qatar

Authors: Sachin Jain, Daniel Perez-Astudillo, Dunia A. Bachour, Antonio P. Sanfilippo

Abstract:

The future of solar energy in Qatar is evolving steadily. Hence, high-quality spatial solar radiation data is of the uttermost requirement for any planning and commissioning of solar technology. Generally, two types of solar radiation data are available: satellite data and ground observations. Satellite solar radiation data is developed by the physical and statistical model. Ground data is collected by solar radiation measurement stations. The ground data is of high quality. However, they are limited to distributed point locations with the high cost of installation and maintenance for the ground stations. On the other hand, satellite solar radiation data is continuous and available throughout geographical locations, but they are relatively less accurate than ground data. To utilize the advantage of both data, a product has been developed here which provides spatial continuity and higher accuracy than any of the data alone. The popular satellite databases: National Solar radiation Data Base, NSRDB (PSM V3 model, spatial resolution: 4 km) is chosen here for merging with ground-measured solar radiation measurement in Qatar. The spatial distribution of ground solar radiation measurement stations is comprehensive in Qatar, with a network of 13 ground stations. The monthly average of the daily total Global Horizontal Irradiation (GHI) component from ground and satellite data is used for error analysis. The normalized root means square error (NRMSE) values of 3.31%, 6.53%, and 6.63% for October, November, and December 2019 were observed respectively when comparing in-situ and NSRDB data. The method is based on the Empirical Bayesian Kriging Regression Prediction model available in ArcGIS, ESRI. The workflow of the algorithm is based on the combination of regression and kriging methods. A regression model (OLS, ordinary least square) is fitted between the ground and NSBRD data points. A semi-variogram is fitted into the experimental semi-variogram obtained from the residuals. The kriging residuals obtained after fitting the semi-variogram model were added to NSRBD data predicted values obtained from the regression model to obtain the final predicted values. The NRMSE values obtained after merging are respectively 1.84%, 1.28%, and 1.81% for October, November, and December 2019. One more explanatory variable, that is the ground elevation, has been incorporated in the regression and kriging methods to reduce the error and to provide higher spatial resolution (30 m). The final GHI maps have been created after merging, and NRMSE values of 1.24%, 1.28%, and 1.28% have been observed for October, November, and December 2019, respectively. The proposed merging method has proven as a highly accurate method. An additional method is also proposed here to generate calibrated maps by using regression and kriging model and further to use the calibrated model to generate solar radiation maps from the explanatory variable only when not enough historical ground data is available for long-term analysis. The NRMSE values obtained after the comparison of the calibrated maps with ground data are 5.60% and 5.31% for November and December 2019 month respectively.

Keywords: global horizontal irradiation, GIS, empirical bayesian kriging regression prediction, NSRDB

Procedia PDF Downloads 89
5076 High School Gain Analytics From National Assessment Program – Literacy and Numeracy and Australian Tertiary Admission Rankin Linkage

Authors: Andrew Laming, John Hattie, Mark Wilson

Abstract:

Nine Queensland Independent high schools provided deidentified student-matched ATAR and NAPLAN data for all 1217 ATAR graduates since 2020 who also sat NAPLAN at the school. Graduating cohorts from the nine schools contained a mean 100 ATAR graduates with previous NAPLAN data from their school. Excluded were vocational students (mean=27) and any ATAR graduates without NAPLAN data (mean=20). Based on Index of Community Socio-Educational Access (ICSEA) prediction, all schools had larger that predicted proportions of their students graduating with ATARs. There were an additional 173 students not releasing their ATARs to their school (14%), requiring this data to be inferred by schools. Gain was established by first converting each student’s strongest NAPLAN domain to a statewide percentile, then subtracting this result from final ATAR. The resulting ‘percentile shift’ was corrected for plausible ATAR participation at each NAPLAN level. Strongest NAPLAN domain had the highest correlation with ATAR (R2=0.58). RESULTS School mean NAPLAN scores fitted ICSEA closely (R2=0.97). Schools achieved a mean cohort gain of two ATAR rankings, but only 66% of students gained. This ranged from 46% of top-NAPLAN decile students gaining, rising to 75% achieving gains outside the top decile. The 54% of top-decile students whose ATAR fell short of prediction lost a mean 4.0 percentiles (or 6.2 percentiles prior to correction for regression to the mean). 71% of students in smaller schools gained, compared to 63% in larger schools. NAPLAN variability in each of the 13 ICSEA1100 cohorts was 17%, with both intra-school and inter-school variation of these values extremely low (0.3% to 1.8%). Mean ATAR change between years in each school was just 1.1 ATAR ranks. This suggests consecutive school cohorts and ICSEA-similar schools share very similar distributions and outcomes over time. Quantile analysis of the NAPLAN/ATAR revealed heteroscedasticity, but splines offered little additional benefit over simple linear regression. The NAPLAN/ATAR R2 was 0.33. DISCUSSION Standardised data like NAPLAN and ATAR offer educators a simple no-cost progression metric to analyse performance in conjunction with their internal test results. Change is expressed in percentiles, or ATAR shift per student, which is layperson intuitive. Findings may also reduce ATAR/vocational stream mismatch, reveal proportions of cohorts meeting or falling short of expectation and demonstrate by how much. Finally, ‘crashed’ ATARs well below expectation are revealed, which schools can reasonably work to minimise. The percentile shift method is neither value-add nor a growth percentile. In the absence of exit NAPLAN testing, this metric is unable to discriminate academic gain from legitimate ATAR-maximizing strategies. But by controlling for ICSEA, ATAR proportion variation and student mobility, it uncovers progression to ATAR metrics which are not currently publicly available. However achieved, ATAR maximisation is a sought-after private good. So long as standardised nationwide data is available, this analysis offers useful analytics for educators and reasonable predictivity when counselling subsequent cohorts about their ATAR prospects.  

Keywords: NAPLAN, ATAR, analytics, measurement, gain, performance, data, percentile, value-added, high school, numeracy, reading comprehension, variability, regression to the mean

Procedia PDF Downloads 68
5075 Fine-Scale Modeling the Influencing Factors of Multi-Time Dimensions of Transit Ridership at Station Level: The Study of Guangzhou City

Authors: Dijiang Lyu, Shaoying Li, Zhangzhi Tan, Zhifeng Wu, Feng Gao

Abstract:

Nowadays, China is experiencing rapidly urban rail transit expansions in the world. The purpose of this study is to finely model factors influencing transit ridership at multi-time dimensions within transit stations’ pedestrian catchment area (PCA) in Guangzhou, China. This study was based on multi-sources spatial data, including smart card data, high spatial resolution images, points of interest (POIs), real-estate online data and building height data. Eight multiple linear regression models using backward stepwise method and Geographic Information System (GIS) were created at station-level. According to Chinese code for classification of urban land use and planning standards of development land, residential land-use were divided into three categories: first-level (e.g. villa), second-level (e.g. community) and third-level (e.g. urban villages). Finally, it concluded that: (1) four factors (CBD dummy, number of feeder bus route, number of entrance or exit and the years of station operation) were proved to be positively correlated with transit ridership, but the area of green land-use and water land-use negative correlated instead. (2) The area of education land-use, the second-level and third-level residential land-use were found to be highly connected to the average value of morning peak boarding and evening peak alighting ridership. But the area of commercial land-use and the average height of buildings, were significantly positive associated with the average value of morning peak alighting and evening peak boarding ridership. (3) The area of the second-level residential land-use was rarely correlated with ridership in other regression models. Because private car ownership is still large in Guangzhou now, and some residents living in the community around the stations go to work by transit at peak time, but others are much more willing to drive their own car at non-peak time. The area of the third-level residential land-use, like urban villages, was highly positive correlated with ridership in all models, indicating that residents who live in the third-level residential land-use are the main passenger source of the Guangzhou Metro. (4) The diversity of land-use was found to have a significant impact on the passenger flow on the weekend, but was non-related to weekday. The findings can be useful for station planning, management and policymaking.

Keywords: fine-scale modeling, Guangzhou city, multi-time dimensions, multi-sources spatial data, transit ridership

Procedia PDF Downloads 142
5074 Life Course Events, Residential and Job Relocation and Commute Time in Australian Cities

Authors: Solmaz Jahed Shiran, Elizabeth Taylor, John Hearne

Abstract:

Over the past decade a growing body of research, known as mobility biography approach has emerged that focuses on changes in travel behaviour over the life course of individuals. Mobility biographies suggest that changes in travel behaviour have a certain relation to important key events in life courses such as residential relocation, workplace changes, marriage and the birth of children. Taking this approach as the theoretical background, this study uses data from the Household, Income and Labor Dynamics Survey in Australia (HILDA) to model a set of life course events and their interaction with the commute time. By analysing longitudinal data, it is possible to assign different key events during the life course to change a person’s travel behaviour. Changes in the journey-to-work travel time is used as an indication of travel behaviour change in this study. Results of a linear regression model for change in commute time show a significant influence from socio-demographic factors like income and age, the previous home-to-work commute time and remoteness of the residence. Residential relocation and job change have significant influences on commute time. Other life events such as birth of a child, marriage and divorce or separation have also a strong impact on commute time change. Overall, the research confirms previous studies of links between life course events and travel behaviour.

Keywords: life course events, residential mobility, travel behaviour, commute time, job change

Procedia PDF Downloads 205
5073 Spatial Pattern and Predictors of Malaria in Ethiopia: Application of Auto Logistics Spatial Regression

Authors: Melkamu A. Zeru, Yamral M. Warkaw, Aweke A. Mitku, Muluwerk Ayele

Abstract:

Introduction: Malaria is a severe health threat in the World, mainly in Africa. It is the major cause of health problems in which the risk of morbidity and mortality associated with malaria cases are characterized by spatial variations across the county. This study aimed to investigate the spatial patterns and predictors of malaria distribution in Ethiopia. Methods: A weighted sample of 15,239 individuals with rapid diagnosis tests was obtained from the Central Statistical Agency and Ethiopia malaria indicator survey of 2015. Global Moran's I and Moran scatter plots were used in determining the distribution of malaria cases, whereas the local Moran's I statistic was used in identifying exposed areas. In data manipulation, machine learning was used for variable reduction and statistical software R, Stata, and Python were used for data management and analysis. The auto logistics spatial binary regression model was used to investigate the predictors of malaria. Results: The final auto logistics regression model reported that male clients had a positive significant effect on malaria cases as compared to female clients [AOR=2.401, 95 % CI: (2.125 - 2.713)]. The distribution of malaria across the regions was different. The highest incidence of malaria was found in Gambela [AOR=52.55, 95%CI: (40.54-68.12)] followed by Beneshangul [AOR=34.95, 95%CI: (27.159 - 44.963)]. Similarly, individuals in Amhara [AOR=0.243, 95% CI:(0.1950.303],Oromiya[AOR=0.197,95%CI:(0.1580.244)],DireDawa[AOR=0.064,95%CI(0.049-0.082)],AddisAbaba[AOR=0.057,95%CI:(0.044-0.075)], Somali[AOR=0.077,95%CI:(0.059-0.097)], SNNPR[OR=0.329, 95%CI: (0.261- 0.413)] and Harari [AOR=0.256, 95%CI:(0.201 - 0.325)] were less likely to had low incidence of malaria as compared with Tigray. Furthermore, for a one-meter increase in altitude, the odds of a positive rapid diagnostic test (RDT) decrease by 1.6% [AOR = 0.984, 95% CI :( 0.984 - 0.984)]. The use of a shared toilet facility was found as a protective factor for malaria in Ethiopia [AOR=1.671, 95% CI: (1.504 - 1.854)]. The spatial autocorrelation variable changes the constant from AOR = 0.471 for logistic regression to AOR = 0.164 for auto logistics regression. Conclusions: This study found that the incidence of malaria in Ethiopia had a spatial pattern that is associated with socio-economic, demographic, and geographic risk factors. Spatial clustering of malaria cases had occurred in all regions, and the risk of clustering was different across the regions. The risk of malaria was found to be higher for those who live in soil floor-type houses as compared to those who live in cement or ceramics floor type. Similarly, households with thatched, metal and thin, and other roof-type houses have a higher risk of malaria than ceramic tiles roof houses. Moreover, using a protected anti-mosquito net reduced the risk of malaria incidence.

Keywords: malaria, Ethiopia, auto logistics, spatial model, spatial clustering

Procedia PDF Downloads 34
5072 Predicting the Impact of Scope Changes on Project Cost and Schedule Using Machine Learning Techniques

Authors: Soheila Sadeghi

Abstract:

In the dynamic landscape of project management, scope changes are an inevitable reality that can significantly impact project performance. These changes, whether initiated by stakeholders, external factors, or internal project dynamics, can lead to cost overruns and schedule delays. Accurately predicting the consequences of these changes is crucial for effective project control and informed decision-making. This study aims to develop predictive models to estimate the impact of scope changes on project cost and schedule using machine learning techniques. The research utilizes a comprehensive dataset containing detailed information on project tasks, including the Work Breakdown Structure (WBS), task type, productivity rate, estimated cost, actual cost, duration, task dependencies, scope change magnitude, and scope change timing. Multiple machine learning models are developed and evaluated to predict the impact of scope changes on project cost and schedule. These models include Linear Regression, Decision Tree, Ridge Regression, Random Forest, Gradient Boosting, and XGBoost. The dataset is split into training and testing sets, and the models are trained using the preprocessed data. Cross-validation techniques are employed to assess the robustness and generalization ability of the models. The performance of the models is evaluated using metrics such as Mean Squared Error (MSE) and R-squared. Residual plots are generated to assess the goodness of fit and identify any patterns or outliers. Hyperparameter tuning is performed to optimize the XGBoost model and improve its predictive accuracy. The feature importance analysis reveals the relative significance of different project attributes in predicting the impact on cost and schedule. Key factors such as productivity rate, scope change magnitude, task dependencies, estimated cost, actual cost, duration, and specific WBS elements are identified as influential predictors. The study highlights the importance of considering both cost and schedule implications when managing scope changes. The developed predictive models provide project managers with a data-driven tool to proactively assess the potential impact of scope changes on project cost and schedule. By leveraging these insights, project managers can make informed decisions, optimize resource allocation, and develop effective mitigation strategies. The findings of this research contribute to improved project planning, risk management, and overall project success.

Keywords: cost impact, machine learning, predictive modeling, schedule impact, scope changes

Procedia PDF Downloads 39
5071 Patient Understanding of Health Information: Implications for Organizational Health Literacy in Germany

Authors: Florian Tille, Heide Weishaar, Bernhard Gibis, Susanne Schnitzer

Abstract:

Introduction: The quality of patient-doctor communication and of written health information is central to organizational health literacy (HL). Whether patients understand their doctors’ explanations and textual material on health, however, is understudied. This study identifies the overall levels of patient understanding of health information and its associations with patients’ social characteristics in outpatient health care in Germany. Materials & Methods: This analysis draws on data collected via a 2017 national health survey with a sample of 6,105 adults. Quality of communication was measured for consultations with general practitioners (GPs) and specialists (SPs) via the Ask Me 3 program questions, and through a question on written health material. Correlations with social characteristics were explored employing bivariate and multivariate logistic regression analyses. Results: Over 90% of all respondents reported that they had understood their doctors’ explanations during the last consultation. Failed understanding was strongly correlated with patients’ very poor health (Odds Ratio [OR]: 5.19; 95% confidence interval [CI]: 2.23–12.10; ref. excellent/very good health), current health problem (OR: 6.54, CI: 1.70–25.12; ref. preventive examination) and age 65 years and above (OR: 2.97, CI: 1.10–8.00; ref. 18 to 34 years). Fewer patients answered they understood written material well (86.7% for las visit at GP, 89.7% at SP). Understanding written material poorly was highly associated with basic education (OR: 4.20, CI: 2.76–6.39; ref. higher education) and 65 years old and above (OR: 2.66, CI: 1.43–4.96). Discussion: Overall ratings of oral patient-doctor communication and written communication of health information are high. Yet, a considerable share of patients reports not-understanding their doctors and poor understanding of the written health-related material. Interventions that can contribute to improving organizational HL in outpatient care in Germany include HL training for doctors, reducing system barriers to easily-accessible health information for patients and combining oral and written health communication means. Conclusion: This work adds to the study of organizational HL in Germany. To increase patient understanding of health-relevant information and thereby possibly reduce health disparities, meeting the communication needs especially of persons in different age groups, with basic education and in very poor health is suggested.

Keywords: health survey, organizational health literacy, patient-doctor communication, social characteristics, outpatient care, Ask Me 3

Procedia PDF Downloads 166
5070 An Alternative Approach for Assessing the Impact of Cutting Conditions on Surface Roughness Using Single Decision Tree

Authors: S. Ghorbani, N. I. Polushin

Abstract:

In this study, an approach to identify factors affecting on surface roughness in a machining process is presented. This study is based on 81 data about surface roughness over a wide range of cutting tools (conventional, cutting tool with holes, cutting tool with composite material), workpiece materials (AISI 1045 Steel, AA2024 aluminum alloy, A48-class30 gray cast iron), spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev), depth of cut (0.05-0.15 mm) and tool overhang (41-65 mm). A single decision tree (SDT) analysis was done to identify factors for predicting a model of surface roughness, and the CART algorithm was employed for building and evaluating regression tree. Results show that a single decision tree is better than traditional regression models with higher rate and forecast accuracy and strong value.

Keywords: cutting condition, surface roughness, decision tree, CART algorithm

Procedia PDF Downloads 375
5069 On Direct Matrix Factored Inversion via Broyden's Updates

Authors: Adel Mohsen

Abstract:

A direct method based on the good Broyden's updates for evaluating the inverse of a nonsingular square matrix of full rank and solving related system of linear algebraic equations is studied. For a matrix A of order n whose LU-decomposition is A = LU, the multiplication count is O (n3). This includes the evaluation of the LU-decompositions of the inverse, the lower triangular decomposition of A as well as a “reduced matrix inverse”. If an explicit value of the inverse is not needed the order reduces to O (n3/2) to compute to compute inv(U) and the reduced inverse. For a symmetric matrix only O (n3/3) operations are required to compute inv(L) and the reduced inverse. An example is presented to demonstrate the capability of using the reduced matrix inverse in treating ill-conditioned systems. Besides the simplicity of Broyden's update, the method provides a mean to exploit the possible sparsity in the matrix and to derive a suitable preconditioner.

Keywords: Broyden's updates, matrix inverse, inverse factorization, solution of linear algebraic equations, ill-conditioned matrices, preconditioning

Procedia PDF Downloads 479
5068 New Results on Exponential Stability of Hybrid Systems

Authors: Grienggrai Rajchakit

Abstract:

This paper is concerned with the exponential stability of switched linear systems with interval time-varying delays. The time delay is any continuous function belonging to a given interval, in which the lower bound of delay is not restricted to zero. By constructing a suitable augmented Lyapunov-Krasovskii functional combined with Leibniz-Newton's formula, a switching rule for the exponential stability of switched linear systems with interval time-varying delays and new delay-dependent sufficient conditions for the exponential stability of the systems are first established in terms of LMIs. Finally, some examples are exploited to illustrate the effectiveness of the proposed schemes.

Keywords: exponential stability, hybrid systems, time-varying delays, lyapunov-krasovskii functional, leibniz-newton's formula

Procedia PDF Downloads 544