Search results for: feature expanding.
911 Recycled Cellulosic Fibers and Lignocellulosic Aggregates for Sustainable Building Materials
Authors: N. Stevulova, I. Schwarzova, V. Hospodarova, J. Junak, J. Briancin
Abstract:
Sustainability is becoming a priority for developers and the use of environmentally friendly materials is increasing. Nowadays, the application of raw materials from renewable sources to building materials has gained a significant interest in this research area. Lignocellulosic aggregates and cellulosic fibers are coming from many different sources such as wood, plants and waste. They are promising alternative materials to replace synthetic, glass and asbestos fibers as reinforcement in inorganic matrix of composites. Natural fibers are renewable resources so their cost is relatively low in comparison to synthetic fibers. With the consideration of environmental consciousness, natural fibers are biodegradable so their using can reduce CO2 emissions in the building materials production. The use of cellulosic fibers in cementitious matrices have gained importance because they make the composites lighter at high fiber content, they have comparable cost - performance ratios to similar building materials and they could be processed from waste paper, thus expanding the opportunities for waste utilization in cementitious materials. The main objective of this work is to find out the possibility of using different wastes: hemp hurds as waste of hemp stem processing and recycled fibers obtained from waste paper for making cement composite products such as mortars based on cellulose fibers. This material was made of cement mortar containing organic filler based on hemp hurds and recycled waste paper. In addition, the effects of fibers and their contents on some selected physical and mechanical properties of the fiber-cement plaster composites have been investigated. In this research organic material have used to mortars as 2.0, 5.0 and 10.0 % replacement of cement weight. Reference sample is made for comparison of physical and mechanical properties of cement composites based on recycled cellulosic fibers and lignocellulosic aggregates. The prepared specimens were tested after 28 days of curing in order to investigate density, compressive strength and water absorbability. Scanning Electron Microscopy examination was also carried out.Keywords: Hemp hurds, organic filler, recycled paper, sustainable building materials
Procedia PDF Downloads 223910 From Waste to Wealth: A Future Paradigm for Plastic Management Using Blockchain Technology
Authors: Jim Shi, Jasmine Chang, Nesreen El-Rayes
Abstract:
The world has been experiencing a steadily increasing trend in both the production and consumption of plastic. The global consumer revolution should not have been possible without plastic, thanks to its salient feature of inexpensiveness and durability. But, as a two-edged sword, its durable quality has returned to haunt and even jeopardized us. That exacerbating the plastic crisis has attracted various global initiatives and actions. Simultaneously, firms are eager to adopt new technology as they witness and perceive more potential and merit of Industry 4.0 technologies. For example, Blockchain technology (BCT) is drawing the attention of numerous stakeholders because of its wide range of outstanding features that promise to enhance supply chain operations. However, from a research perspective, most of the literature addresses the plastic crisis from either environmental or social perspectives. In contrast, analysis from the data science perspective and technology is relatively scarce. To this end, this study aims to fill this gap and cover the plastic crisis from a holistic view of environmental, social, technological, and business perspectives. In particular, we propose a mathematical model to examine the inclusion of BCT to enhance and improve the efficiency on the upstream and the downstream sides of the plastic value, where the whole value chain is coordinated systematically, and its interoperability can be optimized. Consequently, the Environmental, Social, and Governance (ESG) goal and Circular Economics (CE) sustainability can be maximized.Keywords: blockchain technology, plastic, circular economy, sustainability
Procedia PDF Downloads 81909 Reading Strategy Instruction in Secondary Schools in China
Authors: Leijun Zhang
Abstract:
Reading literacy has become a powerful tool for academic success and an essential goal of education. The ability to read is not only fundamental for pupils’ academic success but also a prerequisite for successful participation in today’s vastly expanding multi-literate textual environment. It is also important to recognize that, in many educational settings, students are expected to learn a foreign/second language for successful participation in the increasingly globalized world. Therefore, it is crucial to help learners become skilled foreign-language readers. Research indicates that students’ reading comprehension can be significantly improved through explicit instruction of multiple reading strategies. Despite the wealth of research on how to enhance learners’ reading comprehension achievement by identifying an enormous range of reading strategies and techniques for assisting students in comprehending specific texts, relatively scattered studies have centered on whether these reading comprehension strategies and techniques are used in classrooms, especially in Chinese academic settings. Given the central role of ‘the teacher’ in reading instruction, the study investigates the degree of importance that EFL teachers attach to reading comprehension strategies and their classroom employment of those strategies in secondary schools in China. It also explores the efficiency of reading strategy instruction on pupils’ reading comprehension performance. As a mix-method study, the analysis drew on data from a quantitative survey and interviews with seven teachers. The study revealed that the EFL teachers had positive attitudes toward the use of cognitive strategies despite their insufficient knowledge about and limited attention to the metacognitive strategies and supporting strategies. Regarding the selection of reading strategies for instruction, the mandated curriculum and high-stakes examinations, text features and demands, teaching preparation programs and their own EFL reading experiences were the major criteria in their responses, while few teachers took into account the learner needs in their choice of reading strategies. Although many teachers agreed upon the efficiency of reading strategy instruction in developing students’ reading comprehension competence, three challenges were identified in their implementation of the strategy instruction. The study provides some insights into reading strategy instruction in EFL contexts and proposes implications for curriculum innovation, teacher professional development, and reading instruction research.Keywords: reading comprehension strategies, EFL reading instruction, language teacher cognition, teacher education
Procedia PDF Downloads 90908 Improving Axial-Attention Network via Cross-Channel Weight Sharing
Authors: Nazmul Shahadat, Anthony S. Maida
Abstract:
In recent years, hypercomplex inspired neural networks improved deep CNN architectures due to their ability to share weights across input channels and thus improve cohesiveness of representations within the layers. The work described herein studies the effect of replacing existing layers in an Axial Attention ResNet with their quaternion variants that use cross-channel weight sharing to assess the effect on image classification. We expect the quaternion enhancements to produce improved feature maps with more interlinked representations. We experiment with the stem of the network, the bottleneck layer, and the fully connected backend by replacing them with quaternion versions. These modifications lead to novel architectures which yield improved accuracy performance on the ImageNet300k classification dataset. Our baseline networks for comparison were the original real-valued ResNet, the original quaternion-valued ResNet, and the Axial Attention ResNet. Since improvement was observed regardless of which part of the network was modified, there is a promise that this technique may be generally useful in improving classification accuracy for a large class of networks.Keywords: axial attention, representational networks, weight sharing, cross-channel correlations, quaternion-enhanced axial attention, deep networks
Procedia PDF Downloads 83907 Analysis of Vocal Fold Vibrations from High-Speed Digital Images Based on Dynamic Time Warping
Authors: A. I. A. Rahman, Sh-Hussain Salleh, K. Ahmad, K. Anuar
Abstract:
Analysis of vocal fold vibration is essential for understanding the mechanism of voice production and for improving clinical assessment of voice disorders. This paper presents a Dynamic Time Warping (DTW) based approach to analyze and objectively classify vocal fold vibration patterns. The proposed technique was designed and implemented on a Glottal Area Waveform (GAW) extracted from high-speed laryngeal images by delineating the glottal edges for each image frame. Feature extraction from the GAW was performed using Linear Predictive Coding (LPC). Several types of voice reference templates from simulations of clear, breathy, fry, pressed and hyperfunctional voice productions were used. The patterns of the reference templates were first verified using the analytical signal generated through Hilbert transformation of the GAW. Samples from normal speakers’ voice recordings were then used to evaluate and test the effectiveness of this approach. The classification of the voice patterns using the technique of LPC and DTW gave the accuracy of 81%.Keywords: dynamic time warping, glottal area waveform, linear predictive coding, high-speed laryngeal images, Hilbert transform
Procedia PDF Downloads 239906 The Communication Library DIALOG for iFDAQ of the COMPASS Experiment
Authors: Y. Bai, M. Bodlak, V. Frolov, S. Huber, V. Jary, I. Konorov, D. Levit, J. Novy, D. Steffen, O. Subrt, M. Virius
Abstract:
Modern experiments in high energy physics impose great demands on the reliability, the efficiency, and the data rate of Data Acquisition Systems (DAQ). This contribution focuses on the development and deployment of the new communication library DIALOG for the intelligent, FPGA-based Data Acquisition System (iFDAQ) of the COMPASS experiment at CERN. The iFDAQ utilizing a hardware event builder is designed to be able to readout data at the maximum rate of the experiment. The DIALOG library is a communication system both for distributed and mixed environments, it provides a network transparent inter-process communication layer. Using the high-performance and modern C++ framework Qt and its Qt Network API, the DIALOG library presents an alternative to the previously used DIM library. The DIALOG library was fully incorporated to all processes in the iFDAQ during the run 2016. From the software point of view, it might be considered as a significant improvement of iFDAQ in comparison with the previous run. To extend the possibilities of debugging, the online monitoring of communication among processes via DIALOG GUI is a desirable feature. In the paper, we present the DIALOG library from several insights and discuss it in a detailed way. Moreover, the efficiency measurement and comparison with the DIM library with respect to the iFDAQ requirements is provided.Keywords: data acquisition system, DIALOG library, DIM library, FPGA, Qt framework, TCP/IP
Procedia PDF Downloads 316905 Assessing the Impacts of Vocational Training System in the Sudan: A Dynamic CGE Application
Authors: Zuhal Mohammed, Khalid Siddig, Harald Grethe
Abstract:
Vocational training (VT) has been identified as a potential engine for achieving economic and social development, particularly in developing countries, while during the last two decades it is deemed as an essential determinant of human capital accumulation. Furthermore, it has a crucial role in reducing inequality, wage gaps and unemployment and in promoting skill decomposition. Government plays an important role in the human capital formulation by providing finance for education. In some countries, a large portion of the public educational investment is devoted to academic education (primary, secondary and tertiary). This is reflected in disproportionately increasing investment in various education sectors other than vocational education and VT. Nevertheless, the finance of VT system is not likely to increase or even remain at its existing level. This paper conducts an in-depth analysis to quantify the impacts of various options for expanding the public expenditure on education as well as vocational training in the Sudan. The study uses a recursive dynamic CGE modelling framework that accommodates VT and allows depicting the impact of various policies targeting the vocational training system with special focus on the agricultural sector. This allows for depicting the potential effects of various resource allocation policies not only among education versus non-education sectors, but also between the various types of education and training. Moreover, the study assesses the role of VT system in the economy through its influence on workers’ skill improvement and their movement across sectors. The results show that an increase in the public educational investment will lead to decrease the supply of low and high educated workers as results of increasing the school participation of the students in the short run. While in the medium to long run, this measure guides to increase the productivity of the labour and thus the growth rate of the gross domestic product (GDP). Therefore, the findings of the study provide Sudanese policymakers with needed information to help to adopt measures to reduce unemployment, enhance workers’ skill and ultimately improve livelihoods.Keywords: vocational training, recursive dynamic CGE, skill level, labour market, economic growth, Sudan
Procedia PDF Downloads 197904 Repetitive Compulsions of Trauma: Critically Analyzing Damages Done When Perpetuating Heroic White Masculinity at Federally Managed United States Civil War Battlefields
Authors: Cait M. Henry, Sarah Jackson
Abstract:
Abstract-This study is built from the culmination of four years of research into the cultural interpretation of Civil War heritage at a National Park Service (NPS) site, namely the Manassas National Battlefield Park, within an increasingly contentious political landscape surrounding the U.S. Civil War. Originating as questions regarding the relevancy of historic battlefields to the current culture within the United States soon evolved into more philosophical questions about what it means to feel welcome at a battlefield site, and what are considered appropriate actions and behaviors at what was once a mass gravesite. In trying to answer these questions, this work aims to critically analyze the confluence between the cultural authority of the NPS and collective memories of the U.S. Civil War. Operationalizing trauma as repeated violent acts within public spaces, the authors posit that the normalization of violence from white or white-passing men partially stems from the glorification of heroic white masculinity at National Park Service Civil War battlefield sites—especially those which also commemorate Confederate military strategy and prowess. From here the study moves outward to focus on the prevalence of heroic white masculinity within the nation’s current social zeitgeist, and particularly the notion that to take back masculinity one must utilize violence as a means of symbolic restoration from perceptions of white victimhood. The study ends with case studies of dark tourism framing at international battlefields as models for expanding heritage interpretation at the NPS site to foster narratives of empathy and responsibility within an increasingly contentious political landscape within the United States of America. Visitors do not leave Manassas National Battlefield Park with answers about the social and moral implications of the U.S. Civil War, but the tools for championing their own (predominantly white) heroic masculinity. As such, it is only logical that one common reaction when masculinity is symbolically threatened is to enact violence against Others as a restorative force within the United States.Keywords: confederate heritage, military history, national park service, trauma, United States civil war
Procedia PDF Downloads 12903 Interplay of Power Management at Core and Server Level
Authors: Jörg Lenhardt, Wolfram Schiffmann, Jörg Keller
Abstract:
While the feature sizes of recent Complementary Metal Oxid Semiconductor (CMOS) devices decrease the influence of static power prevails their energy consumption. Thus, power savings that benefit from Dynamic Frequency and Voltage Scaling (DVFS) are diminishing and temporal shutdown of cores or other microchip components become more worthwhile. A consequence of powering off unused parts of a chip is that the relative difference between idle and fully loaded power consumption is increased. That means, future chips and whole server systems gain more power saving potential through power-aware load balancing, whereas in former times this power saving approach had only limited effect, and thus, was not widely adopted. While powering off complete servers was used to save energy, it will be superfluous in many cases when cores can be powered down. An important advantage that comes with that is a largely reduced time to respond to increased computational demand. We include the above developments in a server power model and quantify the advantage. Our conclusion is that strategies from datacenters when to power off server systems might be used in the future on core level, while load balancing mechanisms previously used at core level might be used in the future at server level.Keywords: power efficiency, static power consumption, dynamic power consumption, CMOS
Procedia PDF Downloads 221902 Investigation of Possible Precancerous Viral Markers in Dental Follicles of Asymptomatic Impacted Teeth
Authors: Serap Keskin Tunç, Cennet Neslihan Eroğlu, Sevinç Şahin, Selda Seçkin
Abstract:
It has been suggested that various viruses may play a role in the pathogenesis of cancerous oral lesions in the literature. The aim of this study was to investigate the presence of both possible precancerous viral markers (HPV, HHV8, HSV1, HSV2, and EBV), and p53 and Ki-67 in the dental follicles of asymptomatic impacted teeth. A hundred healthy volunteers, older than 18 years old, included in the study. Dental follicles of extracted impacted teeth were excised and fixated in 10% formaldehyde. Histopathological and immunohistochemical examinations using HPV (containing HPV 8 and HPV 11), p16 (containing HPV 16), HHV8, HSV1, HSV2, EBV, p53 and Ki-67 antibodies were carried out. Also, the immunohistochemical results were correlated with the clinicopathological feature by Chi-square test statistically No dysplasia or neoplasm was observed. 62% of the cases were positive for p16, 32% were positive for EBV, 26% were positive for HSV1, immunohistochemically. All cases were immunonegative for HPV, HSV2, and HHV8. There was statistically significant correlation between overexpression of p53 with both EBV and p16 positivity (p<0.05). Direct correlation between higher expression of Ki-67 between EBV immunopositivity was detected (p<0.05). Thus, these viruses may be suggested to show trophism to the dental follicles acting as a reservoir. In conclusion, all dental follicles of extracted impacted teeth should be examined histopathologically in order to detect and prevent possible viral oncogenesis.Keywords: dental follicles, Ki67, p53, precancerous markers viral markers
Procedia PDF Downloads 290901 Towards Long-Range Pixels Connection for Context-Aware Semantic Segmentation
Authors: Muhammad Zubair Khan, Yugyung Lee
Abstract:
Deep learning has recently achieved enormous response in semantic image segmentation. The previously developed U-Net inspired architectures operate with continuous stride and pooling operations, leading to spatial data loss. Also, the methods lack establishing long-term pixels connection to preserve context knowledge and reduce spatial loss in prediction. This article developed encoder-decoder architecture with bi-directional LSTM embedded in long skip-connections and densely connected convolution blocks. The network non-linearly combines the feature maps across encoder-decoder paths for finding dependency and correlation between image pixels. Additionally, the densely connected convolutional blocks are kept in the final encoding layer to reuse features and prevent redundant data sharing. The method applied batch-normalization for reducing internal covariate shift in data distributions. The empirical evidence shows a promising response to our method compared with other semantic segmentation techniques.Keywords: deep learning, semantic segmentation, image analysis, pixels connection, convolution neural network
Procedia PDF Downloads 103900 Skin Manifestations in Children With Inborn Errors of Immunity in a Tertiary Care Hospital in Iran
Authors: Zahra Salehi Shahrbabaki, Zahra Chavoshzadeh, Fahimeh Abdollahimajd, Samin Sharafian, Tolue Mahdavi, Mahnaz Jamee
Abstract:
Background: Inborn errors of immunity (IEIs) are monogenic diseases of the immune the system with broad clinical manifestations. Despite the increasing genetic advancements, the diagnosis of IEIs still leans on clinical diagnosis. Dermatologic manifestations are observed in a large number of IEI patients and can lead to proper approach, prompt intervention and improved prognosis. Methods: This cross-sectional study was carried out between 2018 and 2020 on IEIs at a Children's tertiary care center in Tehran, Iran. Demographic details (including age, sex, and parental consanguinity), age at onset of symptoms and family history of IEI with were recorded. Results :212 patients were included. Cutaneous findings were reported in (95 ,44.8%) patients. and 61 of 95 (64.2%) reported skin lesions as the first clinical presentation. Skin infection (69, 72.6%) was the most frequent cutaneous manifestation, followed by an eczematous rash (24, 25 %). Conclusions: Skin manifestations are common feature in IEI patients and can be readily recognizable by healthcare providers. This study tried to provide information on prognostic consequences.Keywords: primary immuno deficiency, inborn errror of metabolism, skin manifestation, skin infection
Procedia PDF Downloads 96899 Federalism, a System of Government: Comparative Study of Australia and Canada
Authors: Rana Tajammal Rashid
Abstract:
Federalism is a political system in which government power and responsibility are divided between a federal legislature and units of the state or provincial legislatures. This system provides the structure for the states having large territory and through that can manage the state affairs and administration easily. Many of the largest countries in the world are federations, like; The United States, Canada, India, Pakistan South Africa, Argentina, and Australia. Every large democratic nation has a federal system of government. This study will explore the feature and good governance of two developed countries Canada and Australia. This study will be helpful to the developing countries like Pakistan, India which have a federal form of structure to run the affairs of the state. In the federal system of Pakistan there are lot of issues and conflicts with the provinces with a comparative study of these two developed countries, i.e., Australia and Canada, our policy and decision maker political actors will understand in which way a state will successfully manage the issues related to federalism. This study will also provide the help to the students of comparative politics that how to analysis the different political system of the developed countries of the world.Keywords: federalism, features of federalism, types of federalism, history of federalism, Australian federalism, Canadian federalism, federalism developments, executives, federal and provincial autonomy legislative, judicial
Procedia PDF Downloads 287898 Deep Supervision Based-Unet to Detect Buildings Changes from VHR Aerial Imagery
Authors: Shimaa Holail, Tamer Saleh, Xiongwu Xiao
Abstract:
Building change detection (BCD) from satellite imagery is an essential topic in urbanization monitoring, agricultural land management, and updating geospatial databases. Recently, methods for detecting changes based on deep learning have made significant progress and impressive results. However, it has the problem of being insensitive to changes in buildings with complex spectral differences, and the features being extracted are not discriminatory enough, resulting in incomplete buildings and irregular boundaries. To overcome these problems, we propose a dual Siamese network based on the Unet model with the addition of a deep supervision strategy (DS) in this paper. This network consists of a backbone (encoder) based on ImageNet pre-training, a fusion block, and feature pyramid networks (FPN) to enhance the step-by-step information of the changing regions and obtain a more accurate BCD map. To train the proposed method, we created a new dataset (EGY-BCD) of high-resolution and multi-temporal aerial images captured over New Cairo in Egypt to detect building changes for this purpose. The experimental results showed that the proposed method is effective and performs well with the EGY-BCD dataset regarding the overall accuracy, F1-score, and mIoU, which were 91.6 %, 80.1 %, and 73.5 %, respectively.Keywords: building change detection, deep supervision, semantic segmentation, EGY-BCD dataset
Procedia PDF Downloads 120897 Baseline Study on Human Trafficking Crimes: A Case Study of Mapping Human Trafficking Crimes in East Java Province, Indonesia
Authors: Ni Komang Desy Arya Pinatih
Abstract:
Transnational crime is a crime with 'unique' feature because the activities benefit the lack of state monitoring on the borders so dealing with it cannot be based on conventional engagement but also need joint operation with other countries. On the other hand with the flow of globalization and the growth of information technology and transportation, states become more vulnerable to transnational crime threats especially human trafficking. This paper would examine transnational crime activities, especially human trafficking in Indonesia. With the case study on the mapping of human trafficking crime in East Java province, Indonesia, this paper would try to analyze how the difference in human trafficking crime trends at the national and sub-national levels. The findings of this research were first, there is difference in human trafficking crime trends whereas at the national level the trend is rising, while at sub-national (province) level the trend is declining. Second, regarding the decline of human trafficking number, it’s interesting to see how the method to decrease human trafficking crime in East Jawa Province in order to reduce transnational crime accounts in the region. These things are hopefully becoming a model for transnational crimes engagement in other regions to reduce human trafficking numbers as much as possible.Keywords: transnational crime, human trafficking, southeast Asia, anticipation model on transnational crimes
Procedia PDF Downloads 304896 An Integrative Computational Pipeline for Detection of Tumor Epitopes in Cancer Patients
Authors: Tanushree Jaitly, Shailendra Gupta, Leila Taher, Gerold Schuler, Julio Vera
Abstract:
Genomics-based personalized medicine is a promising approach to fight aggressive tumors based on patient's specific tumor mutation and expression profiles. A remarkable case is, dendritic cell-based immunotherapy, in which tumor epitopes targeting patient's specific mutations are used to design a vaccine that helps in stimulating cytotoxic T cell mediated anticancer immunity. Here we present a computational pipeline for epitope-based personalized cancer vaccines using patient-specific haplotype and cancer mutation profiles. In the workflow proposed, we analyze Whole Exome Sequencing and RNA Sequencing patient data to detect patient-specific mutations and their expression level. Epitopes including the tumor mutations are computationally predicted using patient's haplotype and filtered based on their expression level, binding affinity, and immunogenicity. We calculate binding energy for each filtered major histocompatibility complex (MHC)-peptide complex using docking studies, and use this feature to select good epitope candidates further.Keywords: cancer immunotherapy, epitope prediction, NGS data, personalized medicine
Procedia PDF Downloads 253895 Analysis Of Fine Motor Skills in Chronic Neurodegenerative Models of Huntington’s Disease and Amyotrophic Lateral Sclerosis
Authors: T. Heikkinen, J. Oksman, T. Bragge, A. Nurmi, O. Kontkanen, T. Ahtoniemi
Abstract:
Motor impairment is an inherent phenotypic feature of several chronic neurodegenerative diseases, and pharmacological therapies aimed to counterbalance the motor disability have a great market potential. Animal models of chronic neurodegenerative diseases display a number deteriorating motor phenotype during the disease progression. There is a wide array of behavioral tools to evaluate motor functions in rodents. However, currently existing methods to study motor functions in rodents are often limited to evaluate gross motor functions only at advanced stages of the disease phenotype. The most commonly applied traditional motor assays used in CNS rodent models, lack the sensitivity to capture fine motor impairments or improvements. Fine motor skill characterization in rodents provides a more sensitive tool to capture more subtle motor dysfunctions and therapeutic effects. Importantly, similar approach, kinematic movement analysis, is also used in clinic, and applied both in diagnosis and determination of therapeutic response to pharmacological interventions. The aim of this study was to apply kinematic gait analysis, a novel and automated high precision movement analysis system, to characterize phenotypic deficits in three different chronic neurodegenerative animal models, a transgenic mouse model (SOD1 G93A) for amyotrophic lateral sclerosis (ALS), and R6/2 and Q175KI mouse models for Huntington’s disease (HD). The readouts from walking behavior included gait properties with kinematic data, and body movement trajectories including analysis of various points of interest such as movement and position of landmarks in the torso, tail and joints. Mice (transgenic and wild-type) from each model were analyzed for the fine motor kinematic properties at young ages, prior to the age when gross motor deficits are clearly pronounced. Fine motor kinematic Evaluation was continued in the same animals until clear motor dysfunction with conventional motor assays was evident. Time course analysis revealed clear fine motor skill impairments in each transgenic model earlier than what is seen with conventional gross motor tests. Motor changes were quantitatively analyzed for up to ~80 parameters, and the largest data sets of HD models were further processed with principal component analysis (PCA) to transform the pool of individual parameters into a smaller and focused set of mutually uncorrelated gait parameters showing strong genotype difference. Kinematic fine motor analysis of transgenic animal models described in this presentation show that this method isa sensitive, objective and fully automated tool that allows earlier and more sensitive detection of progressive neuromuscular and CNS disease phenotypes. As a result of the analysis a comprehensive set of fine motor parameters for each model is created, and these parameters provide better understanding of the disease progression and enhanced sensitivity of this assay for therapeutic testing compared to classical motor behavior tests. In SOD1 G93A, R6/2, and Q175KI mice, the alterations in gait were evident already several weeks earlier than with traditional gross motor assays. Kinematic testing can be applied to a wider set of motor readouts beyond gait in order to study whole body movement patterns such as with relation to joints and various body parts longitudinally, providing a sophisticated and translatable method for disseminating motor components in rodent disease models and evaluating therapeutic interventions.Keywords: Gait analysis, kinematic, motor impairment, inherent feature
Procedia PDF Downloads 355894 Violence Detection and Tracking on Moving Surveillance Video Using Machine Learning Approach
Authors: Abe Degale D., Cheng Jian
Abstract:
When creating automated video surveillance systems, violent action recognition is crucial. In recent years, hand-crafted feature detectors have been the primary method for achieving violence detection, such as the recognition of fighting activity. Researchers have also looked into learning-based representational models. On benchmark datasets created especially for the detection of violent sequences in sports and movies, these methods produced good accuracy results. The Hockey dataset's videos with surveillance camera motion present challenges for these algorithms for learning discriminating features. Image recognition and human activity detection challenges have shown success with deep representation-based methods. For the purpose of detecting violent images and identifying aggressive human behaviours, this research suggested a deep representation-based model using the transfer learning idea. The results show that the suggested approach outperforms state-of-the-art accuracy levels by learning the most discriminating features, attaining 99.34% and 99.98% accuracy levels on the Hockey and Movies datasets, respectively.Keywords: violence detection, faster RCNN, transfer learning and, surveillance video
Procedia PDF Downloads 108893 Research on Configuration of Large-Scale Linear Array Feeder Truss Parabolic Cylindrical Antenna of Satellite
Authors: Chen Chuanzhi, Guo Yunyun
Abstract:
The large linear array feeding parabolic cylindrical antenna of the satellite has the ability of large-area line focusing, multi-directional beam clusters simultaneously in a certain azimuth plane and elevation plane, corresponding quickly to different orientations and different directions in a wide frequency range, dual aiming of frequency and direction, and combining space power. Therefore, the large-diameter parabolic cylindrical antenna has become one of the new development directions of spaceborne antennas. Limited by the size of the rocked fairing, the large-diameter spaceborne antenna is required to be small mass and have a deployment function. After being orbited, the antenna can be deployed by expanding and be stabilized. However, few types of structures can be used to construct large cylindrical shell structures in existing structures, which greatly limits the development and application of such antennas. Aiming at high structural efficiency, the geometrical characteristics of parabolic cylinders and mechanism topological mapping law to the expandable truss are studied, and the basic configuration of deployable truss with cylindrical shell is structured. Then a modular truss parabolic cylindrical antenna is designed in this paper. The antenna has the characteristics of stable structure, high precision of reflecting surface formation, controllable motion process, high storage rate, and lightweight, etc. On the basis of the overall configuration comprehensive theory and optimization method, the structural stiffness of the modular truss parabolic cylindrical antenna is improved. And the bearing density and impact resistance of support structure are improved based on the internal tension optimal distribution method of reflector forming. Finally, a truss-type cylindrical deployable support structure with high constriction-deployment ratio, high stiffness, controllable deployment, and low mass is successfully developed, laying the foundation for the application of large-diameter parabolic cylindrical antennas in satellite antennas.Keywords: linear array feed antenna, truss type, parabolic cylindrical antenna, spaceborne antenna
Procedia PDF Downloads 158892 Radon and Thoron Determination in Natural Ancient Mine Using Nuclear Track Detectors: Radiation Dose Assessment
Authors: L. Oufni, M. Amrane, R. Rabi
Abstract:
Radon (and thoron) is a naturally occurring radioactive noble gas, having variable distribution in the geological environment. The exposure of human beings to ionizing radiation from natural sources is a continuing and inescapable feature of life on earth. Radon, thoron and their short-lived decay products in the atmosphere are the most important contributors to human exposure from natural sources. The aim of this study is to determine alpha-and beta-activities per unit volume of air due to radon (222Rn), thoron (220Rn) and their progenies in the air of ancient mine of Aouli in which there is no working activity is situated at approximately 25 km north of the city of Midelt (Morocco), by using LR-115 type II and CR-39 solid state nuclear track detectors (SSNTDs). Equilibrium factors between radon and its daughters and between thoron and its progeny were evaluated in the studied atmospheres. The committed equivalent doses due to the 218Po and 214Po radon short-lived progeny were evaluated in different tissues of the respiratory tract of the visitors of the considered ancient mine. The visitors in these mines spent a good amount of time. It was essential to let the staff know about these values and take the needed steps to prevent any health complications.Keywords: radon, thoron, concentration, exposure dose, SSNTD, mine
Procedia PDF Downloads 537891 Data Science-Based Key Factor Analysis and Risk Prediction of Diabetic
Authors: Fei Gao, Rodolfo C. Raga Jr.
Abstract:
This research proposal will ascertain the major risk factors for diabetes and to design a predictive model for risk assessment. The project aims to improve diabetes early detection and management by utilizing data science techniques, which may improve patient outcomes and healthcare efficiency. The phase relation values of each attribute were used to analyze and choose the attributes that might influence the examiner's survival probability using Diabetes Health Indicators Dataset from Kaggle’s data as the research data. We compare and evaluate eight machine learning algorithms. Our investigation begins with comprehensive data preprocessing, including feature engineering and dimensionality reduction, aimed at enhancing data quality. The dataset, comprising health indicators and medical data, serves as a foundation for training and testing these algorithms. A rigorous cross-validation process is applied, and we assess their performance using five key metrics like accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC-ROC). After analyzing the data characteristics, investigate their impact on the likelihood of diabetes and develop corresponding risk indicators.Keywords: diabetes, risk factors, predictive model, risk assessment, data science techniques, early detection, data analysis, Kaggle
Procedia PDF Downloads 75890 Pharmacophore-Based Modeling of a Series of Human Glutaminyl Cyclase Inhibitors to Identify Lead Molecules by Virtual Screening, Molecular Docking and Molecular Dynamics Simulation Study
Authors: Ankur Chaudhuri, Sibani Sen Chakraborty
Abstract:
In human, glutaminyl cyclase activity is highly abundant in neuronal and secretory tissues and is preferentially restricted to hypothalamus and pituitary. The N-terminal modification of β-amyloids (Aβs) peptides by the generation of a pyro-glutamyl (pGlu) modified Aβs (pE-Aβs) is an important process in the initiation of the formation of neurotoxic plaques in Alzheimer’s disease (AD). This process is catalyzed by glutaminyl cyclase (QC). The expression of QC is characteristically up-regulated in the early stage of AD, and the hallmark of the inhibition of QC is the prevention of the formation of pE-Aβs and plaques. A computer-aided drug design (CADD) process was employed to give an idea for the designing of potentially active compounds to understand the inhibitory potency against human glutaminyl cyclase (QC). This work elaborates the ligand-based and structure-based pharmacophore exploration of glutaminyl cyclase (QC) by using the known inhibitors. Three dimensional (3D) quantitative structure-activity relationship (QSAR) methods were applied to 154 compounds with known IC50 values. All the inhibitors were divided into two sets, training-set, and test-sets. Generally, training-set was used to build the quantitative pharmacophore model based on the principle of structural diversity, whereas the test-set was employed to evaluate the predictive ability of the pharmacophore hypotheses. A chemical feature-based pharmacophore model was generated from the known 92 training-set compounds by HypoGen module implemented in Discovery Studio 2017 R2 software package. The best hypothesis was selected (Hypo1) based upon the highest correlation coefficient (0.8906), lowest total cost (463.72), and the lowest root mean square deviation (2.24Å) values. The highest correlation coefficient value indicates greater predictive activity of the hypothesis, whereas the lower root mean square deviation signifies a small deviation of experimental activity from the predicted one. The best pharmacophore model (Hypo1) of the candidate inhibitors predicted comprised four features: two hydrogen bond acceptor, one hydrogen bond donor, and one hydrophobic feature. The Hypo1 was validated by several parameters such as test set activity prediction, cost analysis, Fischer's randomization test, leave-one-out method, and heat map of ligand profiler. The predicted features were then used for virtual screening of potential compounds from NCI, ASINEX, Maybridge and Chembridge databases. More than seven million compounds were used for this purpose. The hit compounds were filtered by drug-likeness and pharmacokinetics properties. The selective hits were docked to the high-resolution three-dimensional structure of the target protein glutaminyl cyclase (PDB ID: 2AFU/2AFW) to filter these hits further. To validate the molecular docking results, the most active compound from the dataset was selected as a reference molecule. From the density functional theory (DFT) study, ten molecules were selected based on their highest HOMO (highest occupied molecular orbitals) energy and the lowest bandgap values. Molecular dynamics simulations with explicit solvation systems of the final ten hit compounds revealed that a large number of non-covalent interactions were formed with the binding site of the human glutaminyl cyclase. It was suggested that the hit compounds reported in this study could help in future designing of potent inhibitors as leads against human glutaminyl cyclase.Keywords: glutaminyl cyclase, hit lead, pharmacophore model, simulation
Procedia PDF Downloads 131889 Depolymerised Natural Polysaccharides Enhance the Production of Medicinal and Aromatic Plants and Their Active Constituents
Authors: M. Masroor Akhtar Khan, Moin Uddin, Lalit Varshney
Abstract:
Recently, there has been a rapidly expanding interest in finding applications of natural polymers in view of value addition to agriculture. It is now being realized that radiation processing of natural polysaccharides can be beneficially utilized either to improve the existing methodologies used for processing the natural polymers or to impart value addition to agriculture by converting them into more useful form. Gamma-ray irradiation is employed to degrade and lower the molecular weight of some of the natural polysaccharides like alginates, chitosan and carrageenan into small sized oligomers. When these oligomers are applied to plants as foliar sprays, they elicit various kinds of biological and physiological activities, including promotion of plant growth, seed germination, shoot elongation, root growth, flower production, suppression of heavy metal stress, etc. Furthermore, application of these oligomers can shorten the harvesting period of various crops and help in reducing the use of insecticides and chemical fertilizers. In recent years, the oligomers of sodium alginate obtained by irradiating the latter with gamma-rays at 520 kGy dose are being employed. It was noticed that the oligomers derived from the natural polysaccharides could induce growth, photosynthetic efficiency, enzyme activities and most importantly the production of secondary metabolite in the plants like Artemisia annua, Beta vulgaris, Catharanthus roseus, Chrysopogon zizanioides, Cymbopogon flexuosus, Eucalyptus citriodora, Foeniculum vulgare, Geranium sp., Mentha arvensis, Mentha citrata, Mentha piperita, Mentha virdis, Papaver somniferum and Trigonella foenum-graecum. As a result of the application of these oligomers, the yield and/or contents of the active constituents of the aforesaid plants were significantly enhanced. The productivity, as well as quality of medicinal and aromatic plants, may be ameliorated by this novel technique in an economical way as a very little quantity of these irradiated (depolymerised) polysaccharides is needed. Further, this is a very safe technique, as we did not expose the plants directly to radiation. The radiation was used to depolymerize the polysaccharides into oligomers.Keywords: essential oil, medicinal and aromatic plants, plant production, radiation processed polysaccharides, active constituents
Procedia PDF Downloads 444888 Effect of Large English Studies Classes on Linguistic Achievement and Classroom Discourse at Junior Secondary Level in Yobe State
Authors: Clifford Irikefe Gbeyonron
Abstract:
Applied linguists concur that there is low-level achievement in English language use among Nigerian secondary school students. One of the factors that exacerbate this is classroom feature of which large class size is obvious. This study investigated the impact of large classes on learning English as a second language (ESL) at junior secondary school (JSS) in Yobe State. To achieve this, Solomon four-group experimental design was used. 382 subjects were divided into four groups and taught ESL for thirteen weeks. 356 subjects wrote the post-test. Data from the systematic observation and post-test were analyzed via chi square and ANOVA. Results indicated that learners in large classes (LLC) attain lower linguistic progress than learners in small classes (LSC). Furthermore, LSC have more chances to access teacher evaluation and participate actively in classroom discourse than LLC. In consequence, large classes have adverse effects on learning ESL in Yobe State. This is inimical to English language education given that each learner of ESL has their individual peculiarity within each class. It is recommended that strategies that prioritize individualization, grouping, use of language teaching aides, and theorization of innovative models in respect of large classes be considered.Keywords: large classes, achievement, classroom discourse
Procedia PDF Downloads 409887 Extraction of Road Edge Lines from High-Resolution Remote Sensing Images Based on Energy Function and Snake Model
Authors: Zuoji Huang, Haiming Qian, Chunlin Wang, Jinyan Sun, Nan Xu
Abstract:
In this paper, the strategy to extract double road edge lines from acquired road stripe image was explored. The workflow is as follows: the road stripes are acquired by probabilistic boosting tree algorithm and morphological algorithm immediately, and road centerlines are detected by thinning algorithm, so the initial road edge lines can be acquired along the road centerlines. Then we refine the results with big variation of local curvature of centerlines. Specifically, the energy function of edge line is constructed by gradient feature and spectral information, and Dijkstra algorithm is used to optimize the initial road edge lines. The Snake model is constructed to solve the fracture problem of intersection, and the discrete dynamic programming algorithm is used to solve the model. After that, we could get the final road network. Experiment results show that the strategy proposed in this paper can be used to extract the continuous and smooth road edge lines from high-resolution remote sensing images with an accuracy of 88% in our study area.Keywords: road edge lines extraction, energy function, intersection fracture, Snake model
Procedia PDF Downloads 338886 Sea-Land Segmentation Method Based on the Transformer with Enhanced Edge Supervision
Authors: Lianzhong Zhang, Chao Huang
Abstract:
Sea-land segmentation is a basic step in many tasks such as sea surface monitoring and ship detection. The existing sea-land segmentation algorithms have poor segmentation accuracy, and the parameter adjustments are cumbersome and difficult to meet actual needs. Also, the current sea-land segmentation adopts traditional deep learning models that use Convolutional Neural Networks (CNN). At present, the transformer architecture has achieved great success in the field of natural images, but its application in the field of radar images is less studied. Therefore, this paper proposes a sea-land segmentation method based on the transformer architecture to strengthen edge supervision. It uses a self-attention mechanism with a gating strategy to better learn relative position bias. Meanwhile, an additional edge supervision branch is introduced. The decoder stage allows the feature information of the two branches to interact, thereby improving the edge precision of the sea-land segmentation. Based on the Gaofen-3 satellite image dataset, the experimental results show that the method proposed in this paper can effectively improve the accuracy of sea-land segmentation, especially the accuracy of sea-land edges. The mean IoU (Intersection over Union), edge precision, overall precision, and F1 scores respectively reach 96.36%, 84.54%, 99.74%, and 98.05%, which are superior to those of the mainstream segmentation models and have high practical application values.Keywords: SAR, sea-land segmentation, deep learning, transformer
Procedia PDF Downloads 181885 Human Action Recognition Using Variational Bayesian HMM with Dirichlet Process Mixture of Gaussian Wishart Emission Model
Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park
Abstract:
In this paper, we present the human action recognition method using the variational Bayesian HMM with the Dirichlet process mixture (DPM) of the Gaussian-Wishart emission model (GWEM). First, we define the Bayesian HMM based on the Dirichlet process, which allows an infinite number of Gaussian-Wishart components to support continuous emission observations. Second, we have considered an efficient variational Bayesian inference method that can be applied to drive the posterior distribution of hidden variables and model parameters for the proposed model based on training data. And then we have derived the predictive distribution that may be used to classify new action. Third, the paper proposes a process of extracting appropriate spatial-temporal feature vectors that can be used to recognize a wide range of human behaviors from input video image. Finally, we have conducted experiments that can evaluate the performance of the proposed method. The experimental results show that the method presented is more efficient with human action recognition than existing methods.Keywords: human action recognition, Bayesian HMM, Dirichlet process mixture model, Gaussian-Wishart emission model, Variational Bayesian inference, prior distribution and approximate posterior distribution, KTH dataset
Procedia PDF Downloads 353884 Using Satellite Images Datasets for Road Intersection Detection in Route Planning
Authors: Fatma El-Zahraa El-Taher, Ayman Taha, Jane Courtney, Susan Mckeever
Abstract:
Understanding road networks plays an important role in navigation applications such as self-driving vehicles and route planning for individual journeys. Intersections of roads are essential components of road networks. Understanding the features of an intersection, from a simple T-junction to larger multi-road junctions, is critical to decisions such as crossing roads or selecting the safest routes. The identification and profiling of intersections from satellite images is a challenging task. While deep learning approaches offer the state-of-the-art in image classification and detection, the availability of training datasets is a bottleneck in this approach. In this paper, a labelled satellite image dataset for the intersection recognition problem is presented. It consists of 14,692 satellite images of Washington DC, USA. To support other users of the dataset, an automated download and labelling script is provided for dataset replication. The challenges of construction and fine-grained feature labelling of a satellite image dataset is examined, including the issue of how to address features that are spread across multiple images. Finally, the accuracy of the detection of intersections in satellite images is evaluated.Keywords: satellite images, remote sensing images, data acquisition, autonomous vehicles
Procedia PDF Downloads 144883 Going Viral: Expanding a Student-Run COVID-19 Journal Club to Social Media
Authors: Joseph Dodson, Robert Roth, Alexander Hodakowski, Leah Greenfield, Melissa Porterhouse, Natalie Maltby, Rachel Sadowsky
Abstract:
Introduction: Throughout the COVID-19 pandemic, countless research publications were released regarding SARS-CoV-2 and its variants, suggested treatments, and vaccine safety and efficacy. Daily publication of research became overwhelming for health professionals and the general public to stay informed. To address this problem, a group of 70 students across the four colleges at Rush University created the “Rush University COVID-19 Journal Club.” To broaden the available audience, the journal club then expanded to social media. Methods: Easily accessible and understandable summaries of the research were written by students and sent to faculty sponsors for feedback. Following the revision, summaries were published weekly on the Rush University COVID-19 Journal Club website for clinicians and students to use for reference. An Instagram page was then created, and information was further condensed into succinct posts to address COVID-19 “FAQs.” Next, a survey was distributed to followers of the Instagram page with questions meant to assess the effectiveness of the platform and gain feedback. A 5-point Likert scale was used as the primary question format. Results: The Instagram page accrued 749 followers and posted 52 unique posts over a 2 year period. Preliminary results from the surveys demonstrate that over 80% of respondents strongly agree that the Instagram posts 1) are an effective platform for the public presentation of factual COVID-19-related information; 2) provide relevant and valuable information; 3) provide information that is clear, concise, and can be easily understood. Conclusion: These results suggest that the Rush COVID-19 Journal Club was able to successfully create a social media presence and convey information without sacrificing scholarly integrity. Other academic institutions may benefit from the application of this model to help students and clinicians with the interpretation and evaluation of research topics with large bodies of evidence.Keywords: SARS-CoV-2, COVID-19, public health, social media, SARS-CoV-2 vaccine, SARS-CoV-2 variants
Procedia PDF Downloads 128882 Electroencephalogram Based Approach for Mental Stress Detection during Gameplay with Level Prediction
Authors: Priyadarsini Samal, Rajesh Singla
Abstract:
Many mobile games come with the benefits of entertainment by introducing stress to the human brain. In recognizing this mental stress, the brain-computer interface (BCI) plays an important role. It has various neuroimaging approaches which help in analyzing the brain signals. Electroencephalogram (EEG) is the most commonly used method among them as it is non-invasive, portable, and economical. Here, this paper investigates the pattern in brain signals when introduced with mental stress. Two healthy volunteers played a game whose aim was to search hidden words from the grid, and the levels were chosen randomly. The EEG signals during gameplay were recorded to investigate the impacts of stress with the changing levels from easy to medium to hard. A total of 16 features of EEG were analyzed for this experiment which includes power band features with relative powers, event-related desynchronization, along statistical features. Support vector machine was used as the classifier, which resulted in an accuracy of 93.9% for three-level stress analysis; for two levels, the accuracy of 92% and 98% are achieved. In addition to that, another game that was similar in nature was played by the volunteers. A suitable regression model was designed for prediction where the feature sets of the first and second game were used for testing and training purposes, respectively, and an accuracy of 73% was found.Keywords: brain computer interface, electroencephalogram, regression model, stress, word search
Procedia PDF Downloads 187