Search results for: enhanced heat transfer
6186 Assessment of Interior Environmental Quality and Airborne Infectious Risk in a Commuter Bus Cabin by Using Computational Fluid Dynamics with Computer Simulated Person
Authors: Yutaro Kyuma, Sung-Jun Yoo, Kazuhide Ito
Abstract:
A commuter bus remains important as a means to network public transportation between railway stations and terminals within cities. In some cases, the boarding time becomes longer, and the boarding rate tends to be higher corresponding to the development of urban cities. The interior environmental quality, e.g. temperature and air quality, in a commuter bus is relatively heterogeneous and complex compared to that of an indoor environment in buildings due to several factors: solar radiative heat – which comes from large-area windows –, inadequate ventilation rate caused by high density of commuters, and metabolic heat generation from travelers themselves. In addition to this, under conditions where many passengers ride in the enclosed space, contact and airborne infectious risk have attracted considerable attention in terms of public health. From this point of view, it is essential to develop the prediction method for assessment of interior environmental quality and infection risk in commuter bus cabins. In this study, we developed a numerical commuter bus model integrated with computer simulated persons to reproduce realistic indoor environment conditions with high occupancy during commuting. Here, computer simulated persons were newly designed considering different types of geometries, e.g., standing position, seating position, and individual differences. Here we conducted coupled computational fluid dynamics (CFD) analysis with radiative heat transfer analysis under steady state condition. Distributions of heterogeneous air flow patterns, temperature, and moisture surrounding the human body under some different ventilation system were analyzed by using CFD technique, and skin surface temperature distributions were analyzed using thermoregulation model that integrated into computer simulated person. Through these analyses, we discussed the interior environmental quality in specific commuter bus cabins. Further, inhaled air quality of each passenger was also analyzed. This study may have possibility to design the ventilation system in bus for improving thermal comfort of occupants.Keywords: computational fluid dynamics, CFD, computer simulated person, CSP, contaminant, indoor environment, public health, ventilation
Procedia PDF Downloads 2516185 Water Injection in order to Enhanced Oil Recovery
Authors: Hooman Fallah, Fatemeh Karampour
Abstract:
Low salinity water (LSW) has been proved to be efficacious because of low cost and ability to change properties of reservoir rock and fluids and their interactions toward desired condition. These include change in capillary pressure, interfacial tension, wettability tendency, permeability and pore sizing. This enhanced oil recovery (EOR) method has been studied so far for evaluating capability of inducing recent mentioned parameters and the mechanisms of its operation and applicabi-lity in different fields. This study investigates the effect of three types of salts (including Ca2+, Mg2+, and SO42-) on wettability and final oil recovery in labratory.Keywords: low salinity water, smart water, wettability alteration, carbonated reservoir
Procedia PDF Downloads 3106184 Enhanced Imperialist Competitive Algorithm for the Cell Formation Problem Using Sequence Data
Authors: S. H. Borghei, E. Teymourian, M. Mobin, G. M. Komaki, S. Sheikh
Abstract:
Imperialist competitive algorithm (ICA) is a recent meta-heuristic method that is inspired by the social evolutions for solving NP-Hard problems. The ICA is a population based algorithm which has achieved a great performance in comparison to other meta-heuristics. This study is about developing enhanced ICA approach to solve the cell formation problem (CFP) using sequence data. In addition to the conventional ICA, an enhanced version of ICA, namely EICA, applies local search techniques to add more intensification aptitude and embed the features of exploration and intensification more successfully. Suitable performance measures are used to compare the proposed algorithms with some other powerful solution approaches in the literature. In the same way, for checking the proficiency of algorithms, forty test problems are presented. Five benchmark problems have sequence data, and other ones are based on 0-1 matrices modified to sequence based problems. Computational results elucidate the efficiency of the EICA in solving CFP problems.Keywords: cell formation problem, group technology, imperialist competitive algorithm, sequence data
Procedia PDF Downloads 4556183 Nonequilibrium Effects in Photoinduced Ultrafast Charge Transfer Reactions
Authors: Valentina A. Mikhailova, Serguei V. Feskov, Anatoly I. Ivanov
Abstract:
In the last decade the nonequilibrium charge transfer have attracted considerable interest from the scientific community. Examples of such processes are the charge recombination in excited donor-acceptor complexes and the intramolecular electron transfer from the second excited electronic state. In these reactions the charge transfer proceeds predominantly in the nonequilibrium mode. In the excited donor-acceptor complexes the nuclear nonequilibrium is created by the pump pulse. The intramolecular electron transfer from the second excited electronic state is an example where the nuclear nonequilibrium is created by the forward electron transfer. The kinetics of these nonequilibrium reactions demonstrate a number of peculiar properties. Most important from them are: (i) the absence of the Marcus normal region in the free energy gap law for the charge recombination in excited donor-acceptor complexes, (ii) extremely low quantum yield of thermalized charge separated state in the ultrafast charge transfer from the second excited state, (iii) the nonexponential charge recombination dynamics in excited donor-acceptor complexes, (iv) the dependence of the charge transfer rate constant on the excitation pulse frequency. This report shows that most of these kinetic features can be well reproduced in the framework of stochastic point-transition multichannel model. The model involves an explicit description of the nonequilibrium excited state formation by the pump pulse and accounts for the reorganization of intramolecular high-frequency vibrational modes, for their relaxation as well as for the solvent relaxation. The model is able to quantitatively reproduce complex nonequilibrium charge transfer kinetics observed in modern experiments. The interpretation of the nonequilibrium effects from a unified point of view in the terms of the multichannel point transition stochastic model allows to see similarities and differences of electron transfer mechanism in various molecular donor-acceptor systems and formulates general regularities inherent in these phenomena. The nonequilibrium effects in photoinduced ultrafast charge transfer which have been studied for the last 10 years are analyzed. The methods of suppression of the ultrafast charge recombination, similarities and dissimilarities of electron transfer mechanism in different molecular donor-acceptor systems are discussed. The extremely low quantum yield of the thermalized charge separated state observed in the ultrafast charge transfer from the second excited state in the complex consisting of 1,2,4-trimethoxybenzene and tetracyanoethylene in acetonitrile solution directly demonstrates that its effectiveness can be close to unity. This experimental finding supports the idea that the nonequilibrium charge recombination in the excited donor-acceptor complexes can be also very effective so that the part of thermalized complexes is negligible. It is discussed the regularities inherent to the equilibrium and nonequilibrium reactions. Their fundamental differences are analyzed. Namely the opposite dependencies of the charge transfer rates on the dynamical properties of the solvent. The increase of the solvent viscosity results in decreasing the thermal rate and vice versa increasing the nonequilibrium rate. The dependencies of the rates on the solvent reorganization energy and the free energy gap also can considerably differ. This work was supported by the Russian Science Foundation (Grant No. 16-13-10122).Keywords: Charge recombination, higher excited states, free energy gap law, nonequilibrium
Procedia PDF Downloads 3266182 Geothermal Energy Evaluation of Lower Benue Trough Using Spectral Analysis of Aeromagnetic Data
Authors: Stella C. Okenu, Stephen O. Adikwu, Martins E. Okoro
Abstract:
The geothermal energy resource potential of the Lower Benue Trough (LBT) in Nigeria was evaluated in this study using spectral analysis of high-resolution aeromagnetic (HRAM) data. The reduced to the equator aeromagnetic data was divided into sixteen (16) overlapping blocks, and each of the blocks was analyzed to obtain the radial averaged power spectrum which enabled the computation of the top and centroid depths to magnetic sources. The values were then used to assess the Curie Point Depth (CPD), geothermal gradients, and heat flow variations in the study area. Results showed that CPD varies from 7.03 to 18.23 km, with an average of 12.26 km; geothermal gradient values vary between 31.82 and 82.50°C/km, with an average of 51.21°C/km, while heat flow variations range from 79.54 to 206.26 mW/m², with an average of 128.02 mW/m². Shallow CPD zones that run from the eastern through the western and southwestern parts of the study area correspond to zones of high geothermal gradient values and high subsurface heat flow distributions. These areas signify zones associated with anomalous subsurface thermal conditions and are therefore recommended for detailed geothermal energy exploration studies.Keywords: geothermal energy, curie-point depth, geothermal gradient, heat flow, aeromagnetic data, LBT
Procedia PDF Downloads 766181 Urban Vegetation as a Mitigation Strategy for Urban Heat Island Effect a Case of Kerala
Authors: Athul T.
Abstract:
Kerala cities in India are grappling with an alarming rise in temperatures fueled by the Urban Heat Island (UHI) effect. This phenomenon, exacerbated by rapid urbanization and climate change, poses a significant threat to public health and environmental well-being. In response to this growing concern, this study investigates the potential of urban vegetation as a powerful mitigation strategy against UHI. The study delves into the intricate relationship between micro-climate changes, UHI intensity, and the strategic placement of greenery in alleviating these effects. Utilizing advanced simulation software, the most effective vegetation types and configurations for maximizing UHI reduction will be identified. By analyzing the current state of Kozhikode's urban vegetation and its influence on microclimates, this study aims to tailor actionable strategies for Kerala cities, potentially paving the way for a more sustainable and thermally comfortable urban future.Keywords: urban heat island, climate change, micro climate, urban vegetation
Procedia PDF Downloads 636180 Study of Temperature Distribution in Coolant Channel of Nuclear Power with Fuel Cylinder Element Using Fluent Software
Authors: Elham Zamiri
Abstract:
In this research, we have focused on numeral simulation of a fuel rod in order to examine distribution of heat temperature in components of fuel rod by Fluent software by providing steady state, single phase fluid flow, frequency heat flux in a fuel rod in nuclear reactor to numeral simulation. Results of examining different layers of a fuel rod consist of fuel layer, gap, pod, and fluid cooling flow, also examining thermal properties and fluids such as heat transition rate and pressure drop. The obtained results through analytical method and results of other sources have been compared and have appropriate correspondence. Results show that using heavy water as cooling fluid along with few layers of gas and pod have the ability of reducing the temperature from above 300 ◦C to 70 ◦C. This investigation is developable for any geometry and material used in the nuclear reactor.Keywords: nuclear fuel fission, numberal simulation, fuel rod, reactor, Fluent software
Procedia PDF Downloads 1666179 Effects of Heat Treatment on the Mechanical Properties of Kenaf Fiber
Authors: Paulo Teodoro De Luna Carada, Toru Fujii, Kazuya Okubo
Abstract:
Natural fibers have wide variety of uses (e.g., rope, paper, and building materials). One specific application of it is in the field of composite materials (i.e., green composites). Huge amount of research are being done in this field due to rising concerns in the harmful effects of synthetic materials to the environment. There are several natural fibers used in this field, one of which can be extracted from a plant called kenaf (Hibiscus cannabinus L.). Kenaf fiber is regarded as a good alternative because the plant is easy to grow and the fiber is easy to extract. Additionally, it has good properties. Treatments, which are classified as mechanical or chemical in nature, can be done in order to improve the properties of the fiber. The aim of this study is to assess the effects of heat treatment in kenaf fiber. It specifically aims to observe the effect in the tensile strength and modulus of the fiber. Kenaf fiber bundles with an average diameter of at most 100μm was used for this purpose. Heat treatment was done using a constant temperature oven with the following heating temperatures: (1) 160̊C, (2) 180̊C, and (3) 200̊C for a duration of one hour. As a basis for comparison, tensile test was first done to kenaf fibers without any heat treatment. For every heating temperature, three groups of samples were prepared. Two groups of which were for doing tensile test (one group was tested right after heat treatment while the remaining group was kept inside a closed container with relative humidity of at least 95% for two days). The third group was used to observe how much moisture the treated fiber will absorb when it is enclosed in a high moisture environment for two days. The results showed that kenaf fiber can retain its tensile strength when heated up to a temperature of 160̊C. However, when heated at a temperature of about 180̊C or higher, the tensile strength decreases significantly. The same behavior was observed for the tensile modulus of the fiber. Additionally, the fibers which were stored for two days absorbed nearly the same amount of moisture (about 20% of the dried weight) regardless of the heating temperature. Heat treatment might have damaged the fiber in some way. Additional test was done in order to see if the damage due to heat treatment is attributed to changes in the viscoelastic property of the fiber. The findings showed that kenaf fibers can be heated for at most 160̊C to attain good tensile strength and modulus. Additionally, heating the fiber at high temperature (>180̊C) causes changes in its viscoelastic property. The results of this study is significant for processes which requires heat treatment not only in kenaf fiber but might also be helpful for natural fibers in general.Keywords: heat treatment, kenaf fiber, natural fiber, mechanical properties
Procedia PDF Downloads 3536178 Temperature-Related Alterations to Mineral Levels and Crystalline Structure in Porcine Long Bone: Intense Heat Vs. Open Flame
Authors: Caighley Logan
Abstract:
The outcome of fire related fatalities, along with other research, has found fires can have a detrimental effect to the mineral and crystalline structures within bone. This study focused on the mineral and crystalline structures within porcine bone samples to analyse the changes caused, with the intent of effectively ‘reverse engineering’ the data collected from burned bone samples to discover what may have happened. Using Fourier Transform Infrared (FT-IR), and X-Ray Fluorescence (XRF), the data collected from a controlled source of intense heat (muffle furnace) and an open fire, based in a living room setting in a standard size shipping container (8.5ft x 8ft) of a similar temperature with a known ignition source, a gasoline lighter. This approach is to analyse the changes to the samples and how the changes differ depending on the heat source. Results have found significant differences in the levels of remaining minerals for each type of heat/burning (p=<0.001), particularly Phosphorus and Calcium, this also includes notable additions of absorbed elements and minerals from the surrounding materials, i.e., Cerium (Ce), Bromine (Br) and Neodymium (Ne). The analysis techniques included provide validated results in conjunction with previous studies.Keywords: forensic anthropology, thermal alterations, porcine bone, FTIR, XRF
Procedia PDF Downloads 856177 Sustaining Language Learning: A Case Study of Multilingual Writers' ePortfolios
Authors: Amy Hodges, Deanna Rasmussen, Sherry Ward
Abstract:
This paper examines the use of ePortfolios in a two-course sequence for ESL (English as a Second Language) students at an international branch campus in Doha, Qatar. ePortfolios support the transfer of language learning, but few have examined the sustainability of that transfer across an ESL program. Drawing upon surveys and interviews with students, we analyze three case studies that complicate previous research on metacognition, language learning, and ePortfolios. Our findings have implications for those involved in ESL programs and assessment of student writing.Keywords: TESOL, electronic portfolios, assessment, technology
Procedia PDF Downloads 2616176 The Optimization of Sun Collector Parameters
Authors: István Patkó, Hosam Bayoumi Hamuda, András Szeder
Abstract:
In order to efficiently solve the problems created by the deepening energy crisis affecting Europe and the world, governments cannot neglect the opportunities of using the energy produced by sun collectors. In many of the EU countries there are sun collectors producing heat energy, e.g. in 2011 in the area of EU27 (countries which belong to European Union) + Switzerland altogether 37519126 m2 were operated, which are capable of producing 26.3 GWh heat energy. The energy produced by these sun collectors is utilized at the place of production. In the near future governments will have to focus more on spreading and using sun collectors. Among the complex problems of operating sun collectors, this article deals with determining the optimal tilt angle, directions of sun collectors. We evaluate the contamination of glass surface of sun collector to the produced energy. Our theoretically results are confirmed by laboratory measurements. The purpose of our work is to help users and engineers in determination of optimal operation parameters of sun collectors.Keywords: heat energy, tilt angle, direction of sun collector, contamination of surface
Procedia PDF Downloads 4336175 Controlled Doping of Graphene Monolayer
Authors: Vedanki Khandenwal, Pawan Srivastava, Kartick Tarafder, Subhasis Ghosh
Abstract:
We present here the experimental realization of controlled doping of graphene monolayers through charge transfer by trapping selected organic molecules between the graphene layer and underlying substrates. This charge transfer between graphene and trapped molecule leads to controlled n-type or p-type doping in monolayer graphene (MLG), depending on whether the trapped molecule acts as an electron donor or an electron acceptor. Doping controllability has been validated by a shift in corresponding Raman peak positions and a shift in Dirac points. In the transfer characteristics of field effect transistors, a significant shift of Dirac point towards positive or negative gate voltage region provides the signature of p-type or n-type doping of graphene, respectively, as a result of the charge transfer between graphene and the organic molecules trapped within it. In order to facilitate the charge transfer interaction, it is crucial for the trapped molecules to be situated in close proximity to the graphene surface, as demonstrated by findings in Raman and infrared spectroscopies. However, the mechanism responsible for this charge transfer interaction has remained unclear at the microscopic level. Generally, it is accepted that the dipole moment of adsorbed molecules plays a crucial role in determining the charge-transfer interaction between molecules and graphene. However, our findings clearly illustrate that the doping effect primarily depends on the reactivity of the constituent atoms in the adsorbed molecules rather than just their dipole moment. This has been illustrated by trapping various molecules at the graphene−substrate interface. Dopant molecules such as acetone (containing highly reactive oxygen atoms) promote adsorption across the entire graphene surface. In contrast, molecules with less reactive atoms, such as acetonitrile, tend to adsorb at the edges due to the presence of reactive dangling bonds. In the case of low-dipole moment molecules like toluene, there is a lack of substantial adsorption anywhere on the graphene surface. Observation of (i) the emergence of the Raman D peak exclusively at the edges for trapped molecules without reactive atoms and throughout the entire basal plane for those with reactive atoms, and (ii) variations in the density of attached molecules (with and without reactive atoms) to graphene with their respective dipole moments provides compelling evidence to support our claim. Additionally, these observations were supported by first principle density functional calculations.Keywords: graphene, doping, charge transfer, liquid phase exfoliation
Procedia PDF Downloads 656174 A Thermo-mechanical Finite Element Model to Predict Thermal Cycles and Residual Stresses in Directed Energy Deposition Technology
Authors: Edison A. Bonifaz
Abstract:
In this work, a numerical procedure is proposed to design dense multi-material structures using the Directed Energy Deposition (DED) process. A thermo-mechanical finite element model to predict thermal cycles and residual stresses is presented. A numerical layer build-up procedure coupled with a moving heat flux was constructed to minimize strains and residual stresses that result in the multi-layer deposition of an AISI 316 austenitic steel on an AISI 304 austenitic steel substrate. To simulate the DED process, the automated interface of the ABAQUS AM module was used to define element activation and heat input event data as a function of time and position. Of this manner, the construction of ABAQUS user-defined subroutines was not necessary. Thermal cycles and thermally induced stresses created during the multi-layer deposition metal AM pool crystallization were predicted and validated. Results were analyzed in three independent metal layers of three different experiments. The one-way heat and material deposition toolpath used in the analysis was created with a MatLab path script. An optimal combination of feedstock and heat input printing parameters suitable for fabricating multi-material dense structures in the directed energy deposition metal AM process was established. At constant power, it can be concluded that the lower the heat input, the lower the peak temperatures and residual stresses. It means that from a design point of view, the one-way heat and material deposition processing toolpath with the higher welding speed should be selected.Keywords: event series, thermal cycles, residual stresses, multi-pass welding, abaqus am modeler
Procedia PDF Downloads 696173 Exploring the Correlation between Population Distribution and Urban Heat Island under Urban Data: Taking Shenzhen Urban Heat Island as an Example
Authors: Wang Yang
Abstract:
Shenzhen is a modern city of China's reform and opening-up policy, the development of urban morphology has been established on the administration of the Chinese government. This city`s planning paradigm is primarily affected by the spatial structure and human behavior. The subjective urban agglomeration center is divided into several groups and centers. In comparisons of this effect, the city development law has better to be neglected. With the continuous development of the internet, extensive data technology has been introduced in China. Data mining and data analysis has become important tools in municipal research. Data mining has been utilized to improve data cleaning such as receiving business data, traffic data and population data. Prior to data mining, government data were collected by traditional means, then were analyzed using city-relationship research, delaying the timeliness of urban development, especially for the contemporary city. Data update speed is very fast and based on the Internet. The city's point of interest (POI) in the excavation serves as data source affecting the city design, while satellite remote sensing is used as a reference object, city analysis is conducted in both directions, the administrative paradigm of government is broken and urban research is restored. Therefore, the use of data mining in urban analysis is very important. The satellite remote sensing data of the Shenzhen city in July 2018 were measured by the satellite Modis sensor and can be utilized to perform land surface temperature inversion, and analyze city heat island distribution of Shenzhen. This article acquired and classified the data from Shenzhen by using Data crawler technology. Data of Shenzhen heat island and interest points were simulated and analyzed in the GIS platform to discover the main features of functional equivalent distribution influence. Shenzhen is located in the east-west area of China. The city’s main streets are also determined according to the direction of city development. Therefore, it is determined that the functional area of the city is also distributed in the east-west direction. The urban heat island can express the heat map according to the functional urban area. Regional POI has correspondence. The research result clearly explains that the distribution of the urban heat island and the distribution of urban POIs are one-to-one correspondence. Urban heat island is primarily influenced by the properties of the underlying surface, avoiding the impact of urban climate. Using urban POIs as analysis object, the distribution of municipal POIs and population aggregation are closely connected, so that the distribution of the population corresponded with the distribution of the urban heat island.Keywords: POI, satellite remote sensing, the population distribution, urban heat island thermal map
Procedia PDF Downloads 1046172 Rayleigh-Bénard-Taylor Convection of Newtonian Nanoliquid
Authors: P. G. Siddheshwar, T. N. Sakshath
Abstract:
In the paper we make linear and non-linear stability analyses of Rayleigh-Bénard convection of a Newtonian nanoliquid in a rotating medium (called as Rayleigh-Bénard-Taylor convection). Rigid-rigid isothermal boundaries are considered for investigation. Khanafer-Vafai-Lightstone single phase model is used for studying instabilities in nanoliquids. Various thermophysical properties of nanoliquid are obtained using phenomenological laws and mixture theory. The eigen boundary value problem is solved for the Rayleigh number using an analytical method by considering trigonometric eigen functions. We observe that the critical nanoliquid Rayleigh number is less than that of the base liquid. Thus the onset of convection is advanced due to the addition of nanoparticles. So, increase in volume fraction leads to advanced onset and thereby increase in heat transport. The amplitudes of convective modes required for estimating the heat transport are determined analytically. The tri-modal standard Lorenz model is derived for the steady state assuming small scale convective motions. The effect of rotation on the onset of convection and on heat transport is investigated and depicted graphically. It is observed that the onset of convection is delayed due to rotation and hence leads to decrease in heat transport. Hence, rotation has a stabilizing effect on the system. This is due to the fact that the energy of the system is used to create the component V. We observe that the amount of heat transport is less in the case of rigid-rigid isothermal boundaries compared to free-free isothermal boundaries.Keywords: nanoliquid, rigid-rigid, rotation, single phase
Procedia PDF Downloads 2346171 Three-Dimensional Fluid-Structure-Thermal Coupling Dynamics Simulation Model of a Gas-Filled Fluid-Resistance Damper and Experimental Verification
Authors: Wenxue Xu
Abstract:
Fluid resistance damper is an important damping element to attenuate vehicle vibration. It converts vibration energy into thermal energy dissipation through oil throttling. It is a typical fluid-solid-heat coupling problem. A complete three-dimensional flow-structure-thermal coupling dynamics simulation model of a gas-filled fluid-resistance damper was established. The flow-condition-based interpolation (FCBI) method and direct coupling calculation method, the unit's FCBI-C fluid numerical analysis method and iterative coupling calculation method are used to achieve the damper dynamic response of the piston rod under sinusoidal excitation; the air chamber inflation pressure, spring compression characteristics, constant flow passage cross-sectional area and oil parameters, etc. The system parameters, excitation frequency, and amplitude and other excitation parameters are analyzed and compared in detail for the effects of differential pressure characteristics, velocity characteristics, flow characteristics and dynamic response of valve opening, floating piston response and piston rod output force characteristics. Experiments were carried out on some simulation analysis conditions. The results show that the node-based FCBI (flow-condition-based interpolation) fluid numerical analysis method and direct coupling calculation method can better guarantee the conservation of flow field calculation, and the calculation step is larger, but the memory is also larger; if the chamber inflation pressure is too low, the damper will become cavitation. The inflation pressure will cause the speed characteristic hysteresis to increase, and the sealing requirements are too strict. The spring compression characteristics have a great influence on the damping characteristics of the damper, and reasonable damping characteristic needs to properly design the spring compression characteristics; the larger the cross-sectional area of the constant flow channel, the smaller the maximum output force, but the more stable when the valve plate is opening.Keywords: damper, fluid-structure-thermal coupling, heat generation, heat transfer
Procedia PDF Downloads 1446170 Temperature Distribution in Friction Stir Welding Using Finite Element Method
Authors: Armansyah, I. P. Almanar, M. Saiful Bahari Shaari, M. Shamil Jaffarullah, Nur’amirah Busu, M. Arif Fadzleen Zainal Abidin, M. Amlie A. Kasim
Abstract:
Temperature distribution in Friction Stir Welding (FSW) of 6061-T6 Aluminum Alloy is modeled using the Finite Element Method (FEM). In order to obtain temperature distribution in the welded aluminum plates during welding operation, transient thermal finite element analyses are performed. Heat input from tool shoulder and tool pin are considered in the model. A moving heat source with a heat distribution simulating the heat generated by frictions between tool shoulder and workpiece is used in the analysis. Three-dimensional model for simulated process is carried out by using Altair HyperWork, a commercially available software. Transient thermal finite element analyses are performed in order to obtain the temperature distribution in the welded Aluminum plates during welding operation. The developed model was then used to show the effect of various input parameters such as total rate of welding speed and rotational speed on temperature distribution in the workpiece.Keywords: frictions stir welding, temperature distribution, finite element method, altair hyperwork
Procedia PDF Downloads 5436169 A Compact Standing-Wave Thermoacoustic Refrigerator Driven by a Rotary Drive Mechanism
Authors: Kareem Abdelwahed, Ahmed Salama, Ahmed Rabie, Ahmed Hamdy, Waleed Abdelfattah, Ahmed Abd El-Rahman
Abstract:
Conventional vapor-compression refrigeration systems rely on typical refrigerants, such as CFC, HCFC and ammonia. Despite of their suitable thermodynamic properties and their stability in the atmosphere, their corresponding global warming potential and ozone depletion potential raise concerns about their usage. Thus, the need for new refrigeration systems, which are environment-friendly, inexpensive and simple in construction, has strongly motivated the development of thermoacoustic energy conversion systems. A thermoacoustic refrigerator (TAR) is a device that is mainly consisting of a resonator, a stack and two heat exchangers. Typically, the resonator is a long circular tube, made of copper or steel and filled with Helium as a the working gas, while the stack has short and relatively low thermal conductivity ceramic parallel plates aligned with the direction of the prevailing resonant wave. Typically, the resonator of a standing-wave refrigerator has one end closed and is bounded by the acoustic driver at the other end enabling the propagation of half-wavelength acoustic excitation. The hot and cold heat exchangers are made of copper to allow for efficient heat transfer between the working gas and the external heat source and sink respectively. TARs are interesting because they have no moving parts, unlike conventional refrigerators, and almost no environmental impact exists as they rely on the conversion of acoustic and heat energies. Their fabrication process is rather simpler and sizes span wide variety of length scales. The viscous and thermal interactions between the stack plates, heat exchangers' plates and the working gas significantly affect the flow field within the plates' channels, and the energy flux density at the plates' surfaces, respectively. Here, the design, the manufacture and the testing of a compact refrigeration system that is based on the thermoacoustic energy-conversion technology is reported. A 1-D linear acoustic model is carefully and specifically developed, which is followed by building the hardware and testing procedures. The system consists of two harmonically-oscillating pistons driven by a simple 1-HP rotary drive mechanism operating at a frequency of 42Hz -hereby, replacing typical expensive linear motors and loudspeakers-, and a thermoacoustic stack within which the energy conversion of sound into heat is taken place. Air at ambient conditions is used as the working gas while the amplitude of the driver's displacement reaches 19 mm. The 30-cm-long stack is a simple porous ceramic material having 100 square channels per square inch. During operation, both oscillating-gas pressure and solid-stack temperature are recorded for further analysis. Measurements show a maximum temperature difference of about 27 degrees between the stack hot and cold ends with a Carnot coefficient of performance of 11 and estimated cooling capacity of five Watts, when operating at ambient conditions. A dynamic pressure of 7-kPa-amplitude is recorded, yielding a drive ratio of 7% approximately, and found in a good agreement with theoretical prediction. The system behavior is clearly non-linear and significant non-linear loss mechanisms are evident. This work helps understanding the operation principles of thermoacoustic refrigerators and presents a keystone towards developing commercial thermoacoustic refrigerator units.Keywords: refrigeration system, rotary drive mechanism, standing-wave, thermoacoustic refrigerator
Procedia PDF Downloads 3686168 Effects of Cattaneo-Christov Heat Flux on 3D Magnetohydrodynamic Viscoelastic Fluid Flow with Variable Thermal Conductivity
Authors: Muhammad Ramzan
Abstract:
A mathematical model has been envisaged to discuss three-dimensional Viscoelastic fluid flow with an effect of Cattaneo-Christov heat flux in attendance of magnetohydrodynamic (MHD). Variable thermal conductivity with the impact of homogeneous-heterogeneous reactions and convective boundary condition is also taken into account. Homotopy analysis method is engaged to obtain series solutions. Graphical illustrations depicting behaviour of sundry parameters on skin friction coefficient and all involved distributions are also given. It is observed that velocity components are decreasing functions of Viscoelastic fluid parameter. Furthermore, strength of homogeneous and heterogeneous reactions have opposite effects on concentration distribution. A comparison with a published paper has also been established and an excellent agreement is obtained; hence reliable results are being presented.Keywords: Cattaneo Christov heat flux, homogenous-heterogeneous reactions, magnetic field, variable thermal conductivity
Procedia PDF Downloads 1976167 Effect of Post Hardening on PVD Coated Tools
Authors: Manjinder Bajwa, Mahipal Singh, Ashish Tulli
Abstract:
In the research, the effect of varying cutting parameters, design parameters and heat treatment processes were studied on the cutting performance (Tool life) of a PVD coated tool. Thus, in a quest for these phenomenon comparison, a single coated tool and a multicoated tool were analyzed after suitable heat treatment process. TNMG shaped insert with single coating of TiCN and multi-coating of TiAlN/TiN were developed on tungsten carbide substrate. These coated inserts were then successfully annealed and normalized for a temperature of 350°C for 30 minutes and their cutting performance was evaluated as per the flank wear obtained after turning of mild steel. The results showed that heat treatment had a suitable impact on the tool life of the coated insert and also led to increase in the micro-hardness of the tool coatings and decrease in the wear rate.Keywords: PVD coatings, flank wear, micro-hardness, annealing, normalizing
Procedia PDF Downloads 3566166 Linking Business Owners’ Choice of Organizational Form to Appraisers’ Determination of Value: An Agency Theory Perspective
Authors: Majdi Anwar Quttainah, William Paczkowski, Ali Muhammad
Abstract:
Determining the value of a privately held firms confound those in academia as well as practitioners in the fields of appraisal, forensic accounting, and law. Divergent parties to the transfer look to apply the valuation technique to serve their own best interests. This paper seeks to explore how agency theory induces owners to choose the form of their businesses at inception and how this choice will affect the appraisers’ valuation of the firm at the transfer of ownership.Keywords: organizational form, agency theory, value
Procedia PDF Downloads 4316165 Economical Dependency Evolution and Complexity
Authors: Allé Dieng, Mamadou Bousso, Latif Dramani
Abstract:
The purpose of this work is to show the complexity behind economical interrelations in a country and provide a linear dynamic model of economical dependency evolution in a country. The model is based on National Transfer Account which is one of the most robust methodology developed in order to measure a level of demographic dividend captured in a country. It is built upon three major factors: demography, economical dependency and migration. The established mathematical model has been simulated using Netlogo software. The innovation of this study is in describing economical dependency as a complex system and simulating using mathematical equation the evolution of the two populations: the economical dependent and the non-economical dependent as defined in the National Transfer Account methodology. It also allows us to see the interactions and behaviors of both populations. The model can track individual characteristics and look at the effect of birth and death rates on the evolution of these two populations. The developed model is useful to understand how demographic and economic phenomenon are relatedKeywords: ABM, demographic dividend, National Transfer Accounts (NTA), ODE
Procedia PDF Downloads 2056164 Austenite Transformation in Duplex Stainless Steels under Fast Cooling Rates
Authors: L. O. Luengas, E. V. Morales, L. F. G. De Souza, I. S. Bott
Abstract:
Duplex Stainless Steels are well known for its good mechanical properties, and corrosion resistance. However, when submitted to heating, these features can be lost since the good properties are strongly dependent on the austenite-ferrite phase ratio which has to be approximately 1:1 to keep the phase balance. In a welded joint, the transformation kinetics at the heat affected zone (HAZ) is a function of the cooling rates applied which in turn are dependent on the heat input. The HAZ is usually ferritized at these temperatures, and it has been argued that small variations of the chemical composition can play a role in the solid state transformation sequence of ferrite to austenite during cooling. The δ → γ transformation has been reported to be massive and diffusionless due to the fast cooling rate, but it is also considered a diffusion controlled transformation. The aim of this work is to evaluate the effect of different heat inputs on the HAZ of two duplex stainless steels UNS S32304 and S32750, obtained by physical simulation.Keywords: duplex stainless steels, HAZ, microstructural characterization, physical simulation
Procedia PDF Downloads 2776163 Performance of CO₂/N₂ Foam in Enhanced Oil Recovery
Authors: Mohamed Hassan, Rahul Gajbhiye
Abstract:
The high mobility and gravity override of CO₂ gas can be minimized by generating the CO₂ foam with the aid of surfactant. However, CO₂ is unable to generate the foam/stable foam above its supercritical point (1100 psi, 31°C). These difficulties with CO₂ foam is overcome by adding N₂ in small fraction to enhance the foam generation of CO₂ at supercritical conditions. This study shows how the addition of small quantity of N₂ helps in generating the CO₂ foam and performance of the CO₂/N₂ mixture foam in enhanced oil recovery. To investigate the performance of CO₂/N₂ foam, core-flooding experiments were conducted at elevated pressure and temperature condition (higher than supercritical CO₂ - 50°C and 1500 psi) in sandstone cores. Fluorosurfactant (FS-51) was used as a foaming agent, and n-decane was used as model oil in all the experiments. The selection of foam quality and N₂ fraction was optimized based on foam generation and stability tests. Every gas or foam flooding was preceded by seawater injection to simulate the behavior in the reservoir. The results from the core-flood experiments showed that the CO₂ and CO₂/N₂ foam flooding recovered an additional 34-40% of Original Initial Oil in Place (OIIP) indicating that foam flooding succeeded in producing more oil than pure CO₂ gas injection processes. Additionally, the performance CO₂/N₂ foam injection was better than CO₂ foam injection.Keywords: CO₂/N₂ foam, enhanced oil recovery (EOR), supercritical CO₂, sweep efficiency
Procedia PDF Downloads 2766162 Occupational Heat Stress Condition According to Wet Bulb Globe Temperature Index in Textile Processing Unit: A Case Study of Surat, Gujarat, India
Authors: Dharmendra Jariwala, Robin Christian
Abstract:
Thermal exposure is a common problem in every manufacturing industry where heat is used in the manufacturing process. In developing countries like India, a lack of awareness regarding the proper work environmental condition is observed among workers. Improper planning of factory building, arrangement of machineries, ventilation system, etc. play a vital role in the rise of temperature within the manufacturing areas. Due to the uncontrolled thermal stress, workers may be subjected to various heat illnesses from mild disorder to heat stroke. Heat stress is responsible for the health risk and reduction in production. Wet Bulb Globe Temperature (WBGT) index and relative humidity are used to evaluate heat stress conditions. WBGT index is a weighted average of natural wet bulb temperature, globe temperature, dry bulb temperature, which are measured with standard instrument QuestTemp 36 area stress monitor. In this study textile processing units have been selected in the industrial estate in the Surat city. Based on the manufacturing process six locations were identified within the plant at which process was undertaken at 120°C to 180°C. These locations were jet dying machine area, stenter machine area, printing machine, looping machine area, washing area which generate process heat. Office area was also selected for comparision purpose as a sixth location. Present Study was conducted in the winter season and summer season for day and night shift. The results shows that average WBGT index was found above Threshold Limiting Value (TLV) during summer season for day and night shift in all three industries except office area. During summer season highest WBGT index of 32.8°C was found during day shift and 31.5°C was found during night shift at printing machine area. Also during winter season highest WBGT index of 30°C and 29.5°C was found at printing machine area during day shift and night shift respectively.Keywords: relative humidity, textile industry, thermal stress, WBGT
Procedia PDF Downloads 1736161 Critical Analysis of Heat Exchanger Cycle for its Maintainability Using Failure Modes and Effect Analysis and Pareto Analysis
Authors: Sayali Vyas, Atharva Desai, Shreyas Badave, Apurv Kulkarni, B. Rajiv
Abstract:
The Failure Modes and Effect Analysis (FMEA) is an efficient evaluation technique to identify potential failures in products, processes, and services. FMEA is designed to identify and prioritize failure modes. It proves to be a useful method for identifying and correcting possible failures at its earliest possible level so that one can avoid consequences of poor performance. In this paper, FMEA tool is used in detection of failures of various components of heat exchanger cycle and to identify critical failures of the components which may hamper the system’s performance. Further, a detailed Pareto analysis is done to find out the most critical components of the cycle, the causes of its failures, and possible recommended actions. This paper can be used as a checklist which will help in maintainability of the system.Keywords: FMEA, heat exchanger cycle, Ishikawa diagram, pareto analysis, RPN (Risk Priority Number)
Procedia PDF Downloads 4026160 D-Wave Quantum Computing Ising Model: A Case Study for Forecasting of Heat Waves
Authors: Dmytro Zubov, Francesco Volponi
Abstract:
In this paper, D-Wave quantum computing Ising model is used for the forecasting of positive extremes of daily mean air temperature. Forecast models are designed with two to five qubits, which represent 2-, 3-, 4-, and 5-day historical data respectively. Ising model’s real-valued weights and dimensionless coefficients are calculated using daily mean air temperatures from 119 places around the world, as well as sea level (Aburatsu, Japan). In comparison with current methods, this approach is better suited to predict heat wave values because it does not require the estimation of a probability distribution from scarce observations. Proposed forecast quantum computing algorithm is simulated based on traditional computer architecture and combinatorial optimization of Ising model parameters for the Ronald Reagan Washington National Airport dataset with 1-day lead-time on learning sample (1975-2010 yr). Analysis of the forecast accuracy (ratio of successful predictions to total number of predictions) on the validation sample (2011-2014 yr) shows that Ising model with three qubits has 100 % accuracy, which is quite significant as compared to other methods. However, number of identified heat waves is small (only one out of nineteen in this case). Other models with 2, 4, and 5 qubits have 20 %, 3.8 %, and 3.8 % accuracy respectively. Presented three-qubit forecast model is applied for prediction of heat waves at other five locations: Aurel Vlaicu, Romania – accuracy is 28.6 %; Bratislava, Slovakia – accuracy is 21.7 %; Brussels, Belgium – accuracy is 33.3 %; Sofia, Bulgaria – accuracy is 50 %; Akhisar, Turkey – accuracy is 21.4 %. These predictions are not ideal, but not zeros. They can be used independently or together with other predictions generated by different method(s). The loss of human life, as well as environmental, economic, and material damage, from extreme air temperatures could be reduced if some of heat waves are predicted. Even a small success rate implies a large socio-economic benefit.Keywords: heat wave, D-wave, forecast, Ising model, quantum computing
Procedia PDF Downloads 4996159 Towards an Enhanced Quality of IPTV Media Server Architecture over Software Defined Networking
Authors: Esmeralda Hysenbelliu
Abstract:
The aim of this paper is to present the QoE (Quality of Experience) IPTV SDN-based media streaming server enhanced architecture for configuring, controlling, management and provisioning the improved delivery of IPTV service application with low cost, low bandwidth, and high security. Furthermore, it is given a virtual QoE IPTV SDN-based topology to provide an improved IPTV service based on QoE Control and Management of multimedia services functionalities. Inside OpenFlow SDN Controller there are enabled in high flexibility and efficiency Service Load-Balancing Systems; based on the Loading-Balance module and based on GeoIP Service. This two Load-balancing system improve IPTV end-users Quality of Experience (QoE) with optimal management of resources greatly. Through the key functionalities of OpenFlow SDN controller, this approach produced several important features, opportunities for overcoming the critical QoE metrics for IPTV Service like achieving incredible Fast Zapping time (Channel Switching time) < 0.1 seconds. This approach enabled Easy and Powerful Transcoding system via FFMPEG encoder. It has the ability to customize streaming dimensions bitrates, latency management and maximum transfer rates ensuring delivering of IPTV streaming services (Audio and Video) in high flexibility, low bandwidth and required performance. This QoE IPTV SDN-based media streaming architecture unlike other architectures provides the possibility of Channel Exchanging between several IPTV service providers all over the word. This new functionality brings many benefits as increasing the number of TV channels received by end –users with low cost, decreasing stream failure time (Channel Failure time < 0.1 seconds) and improving the quality of streaming services.Keywords: improved quality of experience (QoE), OpenFlow SDN controller, IPTV service application, softwarization
Procedia PDF Downloads 1476158 Thermophysical Properties of Water-Based Carboxylated Multi-Wall Carbon Nanotubes Nanofluids
Authors: Ahmad Amiri, Hamed Khajeh Arzani, Md. Salim Newaz Kazi, Bee Teng Chew
Abstract:
Obviously, the behavior of thermophysical properties of covalently functionalized MWNT-based water nanofluids cannot be predicted from the predicted models. We present a study of the specific heat capacity, effective thermal conductivity, density and viscosity of coolants containing functionalized multi-wall carbon nanotubes (MWNT-COOH) with carboxyl groups at different temperatures. After synthesizing of MWNT-COOH-based water, measurements on the prepared coolants were made at various concentrations by different experimental methods. While thermal conductivity of nanofluids illustrated a significant increase, the specific heat capacity of the samples showed a downward behavior with increasing temperature. The viscosity was investigated in different shear rates and temperatures. Interestingly, the specific heat capacity of all prepared nanofluids was decreased with increasing concentration. Also, the density of the MWNT-COOH-based water nanofluids increased and decreased smoothly with increasing MWNT-COOH concentration and temperature, respectively.Keywords: carbon nanotubes, coolant, heat capacity, density, viscosity, thermal conductivity
Procedia PDF Downloads 1956157 Performance of a Solar Heating System on the Microclimate of an Agricultural Greenhouse
Authors: Nora Arbaoui, Rachid Tadili, Ilham Ihoume
Abstract:
Climate change and its effects on low external temperatures in winter require great consumption of energy to improve the greenhouse microclimate and increase agricultural production. To reduce the amount of energy consumed, a solar system has been developed to heat an agricultural greenhouse. This system is based on a transfer fluid that will circulate inside the greenhouse through a solar copper coil positioned on the roof of the greenhouse. This thermal energy accumulated during the day will be stored to be released during the night to improve the greenhouse’s microclimate. The use of this solar heating system has resulted in an average increase in the greenhouse’s indoor temperature of 8.3°C compared to the outdoor environment. This improved temperature has created a more favorable climate for crops and has subsequently had a positive effect on their development, quality, and production.Keywords: solar system, agricultural greenhouse, heating, cooling, storage, drying
Procedia PDF Downloads 89