Search results for: efficient features selection
9369 Efficient Ni(II)-Containing Layered Triple Hydroxide-Based Catalysts: Synthesis, Characterisation and Their Role in the Heck Reaction
Authors: Gabor Varga, Krisztina Karadi, Zoltan Konya, Akos Kukovecz, Pal Sipos, Istvan Palinko
Abstract:
Nickel can efficiently replace palladium in the Heck, Suzuki and Negishi reactions. This study focuses on the synthesis and catalytic application of Ni(II)-containing layered double hydroxides (LDHs) and layered triple hydroxides (LTHs). Our goals were to incorporate Ni(II) ions among the layers of LDHs or LTHs, or binding it to their surface or building it into their layers in such a way that their catalytic activities are maintained or even increased. The LDHs and LTHs were prepared by the co-precipitation method using ethylene glycol as co-solvent. In several cases, post-synthetic modifications (e.g., thermal treatment) were performed. After optimizing the synthesis conditions, the composites displayed good crystallinity and were free of byproducts. The success of the syntheses and the post-synthetic modifications was confirmed by relevant characterization methods (XRD, SEM, SEM-EDX and combined IR techniques). Catalytic activities of the produced and well-characterized solids were investigated through the Heck reaction. The composites behaved as efficient, recyclable catalysts in the Heck reaction between 4-bromoanisole and styrene. Through varying the reaction parameters, we were able to obtain acceptable conversions under mild conditions. Our study highlights the possibility of the application of Ni(II)-containing composites as efficient catalysts in coupling reactions.Keywords: layered double hydroxide, layered triple hydroxide, heterogeneous catalysis, heck reaction
Procedia PDF Downloads 1809368 Compact Finite Difference Schemes for Fourth Order Parabolic Partial Differential Equations
Authors: Sufyan Muhammad
Abstract:
Recently, in achieving highly efficient but at the same time highly accurate solutions has become the major target of numerical analyst community. The concept is termed as compact schemes and has gained great popularity and consequently, we construct compact schemes for fourth order parabolic differential equations used to study vibrations in structures. For the superiority of newly constructed schemes, we consider range of examples. We have achieved followings i.e. (a) numerical scheme utilizes minimum number of stencil points (which means new scheme is compact); (b) numerical scheme is highly accurate (which means new scheme is reliable) and (c) numerical scheme is highly efficient (which means new scheme is fast).Keywords: central finite differences, compact schemes, Bernoulli's equations, finite differences
Procedia PDF Downloads 2929367 Dependence of Autoignition Delay Period on Equivalence Ratio for i-Octane, Primary Reference Fuel
Authors: Sunil Verma
Abstract:
In today’s world non-renewable sources are depleting quickly, so there is a need to produce efficient and unconventional engines to minimize the use of fuel. Also, there are many fatal accidents happening every year during extraction, distillation, transportation and storage of fuel. Reason for explosions of gaseous fuel is unwanted autoignition. Autoignition characterstics of fuel are mandatory to study to build efficient engines and to avoid accidents. This report is concerned with study of autoignition delay characteristics of iso-octane by using rapid compression machine. The paper clearly explains the dependence of ignition delay characteristics on variation of equivalence ratios from lean to rich mixtures. The equivalence ratio is varied from 0.3 to 1.2.Keywords: autoignition, iso-octane, combustion, rapid compression machine, equivalence ratio, ignition delay
Procedia PDF Downloads 4519366 Critical Thinking and Academic Writing: A Case Study
Authors: Mubina Rauf
Abstract:
Critical thinking is a highly valued outcome of university education. There is an agreement in literature that it is demonstrated through the abilities to highlight issues and assumptions, find links between ideas and concepts, make correct inferences, evaluate evidence or authority and deduce conclusions (Tsui, 2002). Although Critical thinking plays a significant role in developing all academic skills, its role in developing writing skills is significant (Kurfiss, 1988). SAW (student academic writing) is an observable output of critical thinking (Wilson K. , 2016). When students apply critical thinking to their writing, they present clear, accurate, significant and logical arguments constructing their own voice in the form of an essay or dissertation (Matsuda, 2001). This presentation will show how a rubric can be used to find evidence of critical thinking in SAW. Participants will experience how evidence-based written arguments supported by background knowledge and authorial voice can develop students into efficient critical thinkers. Participants will have an opportunity to use the rubric to find the evidence of critical thinking in SAW samples. This presentation is intended for classroom teachers with or without the basic knowledge of implementing critical thinking in academic settings. Participants will also learn tips how various features of critical thinking can be developed among students. After the session, the participants will be able to use or adapt the rubric according to their needs to find evidence of critical thinking in SAW within their context.Keywords: critical thinking, Rubric, student academic writing, argumentation, text analysis
Procedia PDF Downloads 809365 Effect of Heating Rate on Microstructural Developments in Cold Heading Quality Steel Used for Automotive Applications
Authors: Shahid Hussain Abro, F. Mufadi, A. Boodi
Abstract:
Microstructural study and phase transformation in steels is a basic and important step during the design of structural steel. There are huge efforts and study has been done so far on phase transformations, due to so many steel grades available commercially the phase development in steel has different consequences. In the present work an effort has been made to study the effect of heating rate on microstructural features of cold heading quality steel. The SEM, optical microscopy, and heat treatment techniques have been applied to observe the microstructural features in the experimental steel. It was observed that heating rate has the strong influence on phase transformation of CHQ steel under investigation. Heating rate increases the austenite formation kinetics with respect to holding time, and this austenite has been transformed to martensite upon cooling. Heating rate also plays a vital role on nucleation sites of austenite formation in the experimental steel.Keywords: CHQ steel, austenite formation, heating rate, nucleation
Procedia PDF Downloads 4149364 Effect of Depth on Texture Features of Ultrasound Images
Authors: M. A. Alqahtani, D. P. Coleman, N. D. Pugh, L. D. M. Nokes
Abstract:
In diagnostic ultrasound, the echo graphic B-scan texture is an important area of investigation since it can be analyzed to characterize the histological state of internal tissues. An important factor requiring consideration when evaluating ultrasonic tissue texture is the depth. The effect of attenuation with depth of ultrasound, the size of the region of interest, gain, and dynamic range are important variables to consider as they can influence the analysis of texture features. These sources of variability have to be considered carefully when evaluating image texture as different settings might influence the resultant image. The aim of this study is to investigate the effect of depth on the texture features in-vivo using a 3D ultrasound probe. The left leg medial head of the gastrocnemius muscle of 10 healthy subjects were scanned. Two regions A and B were defined at different depth within the gastrocnemius muscle boundary. The size of both ROI’s was 280*20 pixels and the distance between region A and B was kept constant at 5 mm. Texture parameters include gray level, variance, skewness, kurtosis, co-occurrence matrix; run length matrix, gradient, autoregressive (AR) model and wavelet transform were extracted from the images. The paired t –test was used to test the depth effect for the normally distributed data and the Wilcoxon–Mann-Whitney test was used for the non-normally distributed data. The gray level, variance, and run length matrix were significantly lowered when the depth increased. The other texture parameters showed similar values at different depth. All the texture parameters showed no significant difference between depths A and B (p > 0.05) except for gray level, variance and run length matrix (p < 0.05). This indicates that gray level, variance, and run length matrix are depth dependent.Keywords: ultrasound image, texture parameters, computational biology, biomedical engineering
Procedia PDF Downloads 2989363 Efficient Method for Inducing Embryos from Isolated Microspores of Durum Wheat
Authors: Zelikha Labbani
Abstract:
Durum wheat represents an attractive species to study androgenesis via isolated microspore culture in order to increase the efficiency of androgenic yield in recalcitrant species such as in induction embryogenesis. We describe here an efficient method for inducing embryos from isolated microspores of durum wheat. It is shown that this method, associated with cold alone or cold plus mannitol pretreatment, or mannitol alone of the spikes kept within their sheath leaves during different times, has significant positive effects on embryo production. The aim of this study was, therefore, to test the effect of mannitol 0,3M and cold pretreatment on the quality and quantity of embryos produced from microspore culture from wheat cultivars.Keywords: in vitro embryogenesis, isolated microspores culture, durum wheat, pretreatments, mannitol 0.3m, cold pretreatment
Procedia PDF Downloads 629362 Automation of Embodied Energy Calculations for Buildings through Building Information Modelling
Authors: Ahmad Odeh
Abstract:
Researchers are currently more concerned about the calculations of energy at the operational stage, mainly due to its larger environmental impact, but the fact remains, embodied energies represent a substantial contributor unaccounted for in the overall energy computation method. The calculation of materials’ embodied energy during the construction stage is complicated. This is due to the various factors involved. The equipment used, fuel needed, and electricity required for each type of materials varies with location and thus the embodied energy will differ for each project. Moreover, the method used in manufacturing, transporting and putting in place will have significant influence on the materials’ embodied energy. This anomaly has made it difficult to calculate or even bench mark the usage of such energies. This paper presents a model aimed at calculating embodied energies based on such variabilities. It presents a systematic approach that uses an efficient method of calculation to provide a new insight for the selection of construction materials. The model is developed in a BIM environment. The quantification of materials’ energy is determined over the three main stages of their lifecycle: manufacturing, transporting and placing. The model uses three major databases each of which contains set of the construction materials that are most commonly used in building projects. The first dataset holds information about the energy required to manufacture any type of materials, the second includes information about the energy required for transporting the materials while the third stores information about the energy required by machinery to place the materials in their intended locations. Through geospatial data analysis, the model automatically calculates the distances between the suppliers and construction sites and then uses dataset information for energy computations. The computational sum of all the energies is automatically calculated and then the model provides designers with a list of usable equipment along with the associated embodied energies.Keywords: BIM, lifecycle energy assessment, building automation, energy conservation
Procedia PDF Downloads 1979361 Sixth-Order Two-Point Efficient Family of Super-Halley Type Methods
Authors: Ramandeep Behl, S. S. Motsa
Abstract:
The main focus of this manuscript is to provide a highly efficient two-point sixth-order family of super-Halley type methods that do not require any second-order derivative evaluation for obtaining simple roots of nonlinear equations, numerically. Each member of the proposed family requires two evaluations of the given function and two evaluations of the first-order derivative per iteration. By using Mathematica-9 with its high precision compatibility, a variety of concrete numerical experiments and relevant results are extensively treated to confirm t he t heoretical d evelopment. From their basins of attraction, it has been observed that the proposed methods have better stability and robustness as compared to the other sixth-order methods available in the literature.Keywords: basins of attraction, nonlinear equations, simple roots, super-Halley
Procedia PDF Downloads 5229360 Energy-Aware Scheduling in Real-Time Systems: An Analysis of Fair Share Scheduling and Priority-Driven Preemptive Scheduling
Authors: Su Xiaohan, Jin Chicheng, Liu Yijing, Burra Venkata Durga Kumar
Abstract:
Energy-aware scheduling in real-time systems aims to minimize energy consumption, but issues related to resource reservation and timing constraints remain challenges. This study focuses on analyzing two scheduling algorithms, Fair-Share Scheduling (FFS) and Priority-Driven Preemptive Scheduling (PDPS), for solving these issues and energy-aware scheduling in real-time systems. Based on research on both algorithms and the processes of solving two problems, it can be found that Fair-Share Scheduling ensures fair allocation of resources but needs to improve with an imbalanced system load, and Priority-Driven Preemptive Scheduling prioritizes tasks based on criticality to meet timing constraints through preemption but relies heavily on task prioritization and may not be energy efficient. Therefore, improvements to both algorithms with energy-aware features will be proposed. Future work should focus on developing hybrid scheduling techniques that minimize energy consumption through intelligent task prioritization, resource allocation, and meeting time constraints.Keywords: energy-aware scheduling, fair-share scheduling, priority-driven preemptive scheduling, real-time systems, optimization, resource reservation, timing constraints
Procedia PDF Downloads 1239359 The Modern Paradigm Features of Social Management Based on Postindustrial Theory
Authors: Yulia Totskaya
Abstract:
Nowadays, society is in a postindustrial/informational phase of its development. Certain changes have occurred in different parts of society life as a result of the social reality transformations due to the influence of changes in the productive forces. As a result, the personality has received autonomy and independence, as in her or his hands appeared new means of production–information, knowledge, creativity. In such a society, there is a new middle class, which is called meritocratic. It consists of personalities, who are engaged in highly intelligent, creative work; who independently pursue their own well-being and status; who are active in the economic and social spheres. At the forefront there are such qualities as independence, commitment and self-actualization. This modern, intellectual and sovereign personality is no longer in need of care. The role of management has transformed from a paternalistic to the "service", which is aimed at creating the conditions for citizens’ self-realization to meet their needs through the rendering of public services. Such society alterations motivate the need to change the key parameters of social management, which are identified in this article on the basis of the postindustrial society key features.Keywords: informational society, postindustrial society, postindustrial sociality, public services, social management
Procedia PDF Downloads 2799358 Research on the Aeration Systems’ Efficiency of a Lab-Scale Wastewater Treatment Plant
Authors: Oliver Marunțălu, Elena Elisabeta Manea, Lăcrămioara Diana Robescu, Mihai Necșoiu, Gheorghe Lăzăroiu, Dana Andreya Bondrea
Abstract:
In order to obtain efficient pollutants removal in small-scale wastewater treatment plants, uniform water flow has to be achieved. The experimental setup, designed for treating high-load wastewater (leachate), consists of two aerobic biological reactors and a lamellar settler. Both biological tanks were aerated by using three different types of aeration systems - perforated pipes, membrane air diffusers and tube ceramic diffusers. The possibility of homogenizing the water mass with each of the air diffusion systems was evaluated comparatively. The oxygen concentration was determined by optical sensors with data logging. The experimental data was analyzed comparatively for all three different air dispersion systems aiming to identify the oxygen concentration variation during different operational conditions. The Oxygenation Capacity was calculated for each of the three systems and used as performance and selection parameter. The global mass transfer coefficients were also evaluated as important tools in designing the aeration system. Even though using the tubular porous diffusers leads to higher oxygen concentration compared to the perforated pipe system (which provides medium-sized bubbles in the aqueous solution), it doesn’t achieve the threshold limit of 80% oxygen saturation in less than 30 minutes. The study has shown that the optimal solution for the studied configuration was the radial air diffusers which ensure an oxygen saturation of 80% in 20 minutes. An increment of the values was identified when the air flow was increased.Keywords: flow, aeration, bioreactor, oxygen concentration
Procedia PDF Downloads 3909357 Identification of Clinical Characteristics from Persistent Homology Applied to Tumor Imaging
Authors: Eashwar V. Somasundaram, Raoul R. Wadhwa, Jacob G. Scott
Abstract:
The use of radiomics in measuring geometric properties of tumor images such as size, surface area, and volume has been invaluable in assessing cancer diagnosis, treatment, and prognosis. In addition to analyzing geometric properties, radiomics would benefit from measuring topological properties using persistent homology. Intuitively, features uncovered by persistent homology may correlate to tumor structural features. One example is necrotic cavities (corresponding to 2D topological features), which are markers of very aggressive tumors. We develop a data pipeline in R that clusters tumors images based on persistent homology is used to identify meaningful clinical distinctions between tumors and possibly new relationships not captured by established clinical categorizations. A preliminary analysis was performed on 16 Magnetic Resonance Imaging (MRI) breast tissue segments downloaded from the 'Investigation of Serial Studies to Predict Your Therapeutic Response with Imaging and Molecular Analysis' (I-SPY TRIAL or ISPY1) collection in The Cancer Imaging Archive. Each segment represents a patient’s breast tumor prior to treatment. The ISPY1 dataset also provided the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) status data. A persistent homology matrix up to 2-dimensional features was calculated for each of the MRI segmentation. Wasserstein distances were then calculated between all pairwise tumor image persistent homology matrices to create a distance matrix for each feature dimension. Since Wasserstein distances were calculated for 0, 1, and 2-dimensional features, three hierarchal clusters were constructed. The adjusted Rand Index was used to see how well the clusters corresponded to the ER/PR/HER2 status of the tumors. Triple-negative cancers (negative status for all three receptors) significantly clustered together in the 2-dimensional features dendrogram (Adjusted Rand Index of .35, p = .031). It is known that having a triple-negative breast tumor is associated with aggressive tumor growth and poor prognosis when compared to non-triple negative breast tumors. The aggressive tumor growth associated with triple-negative tumors may have a unique structure in an MRI segmentation, which persistent homology is able to identify. This preliminary analysis shows promising results in the use of persistent homology on tumor imaging to assess the severity of breast tumors. The next step is to apply this pipeline to other tumor segment images from The Cancer Imaging Archive at different sites such as the lung, kidney, and brain. In addition, whether other clinical parameters, such as overall survival, tumor stage, and tumor genotype data are captured well in persistent homology clusters will be assessed. If analyzing tumor MRI segments using persistent homology consistently identifies clinical relationships, this could enable clinicians to use persistent homology data as a noninvasive way to inform clinical decision making in oncology.Keywords: cancer biology, oncology, persistent homology, radiomics, topological data analysis, tumor imaging
Procedia PDF Downloads 1389356 Evaluation of Easy-to-Use Energy Building Design Tools for Solar Access Analysis in Urban Contexts: Comparison of Friendly Simulation Design Tools for Architectural Practice in the Early Design Stage
Abstract:
Current building sector is focused on reduction of energy requirements, on renewable energy generation and on regeneration of existing urban areas. These targets need to be solved with a systemic approach, considering several aspects simultaneously such as climate conditions, lighting conditions, solar radiation, PV potential, etc. The solar access analysis is an already known method to analyze the solar potentials, but in current years, simulation tools have provided more effective opportunities to perform this type of analysis, in particular in the early design stage. Nowadays, the study of the solar access is related to the easiness of the use of simulation tools, in rapid and easy way, during the design process. This study presents a comparison of three simulation tools, from the point of view of the user, with the aim to highlight differences in the easy-to-use of these tools. Using a real urban context as case study, three tools; Ecotect, Townscope and Heliodon, are tested, performing models and simulations and examining the capabilities and output results of solar access analysis. The evaluation of the ease-to-use of these tools is based on some detected parameters and features, such as the types of simulation, requirements of input data, types of results, etc. As a result, a framework is provided in which features and capabilities of each tool are shown. This framework shows the differences among these tools about functions, features and capabilities. The aim of this study is to support users and to improve the integration of simulation tools for solar access with the design process.Keywords: energy building design tools, solar access analysis, solar potential, urban planning
Procedia PDF Downloads 3449355 OILU Tag: A Projective Invariant Fiducial System
Authors: Youssef Chahir, Messaoud Mostefai, Salah Khodja
Abstract:
This paper presents the development of a 2D visual marker, derived from a recent patented work in the field of numbering systems. The proposed fiducial uses a group of projective invariant straight-line patterns, easily detectable and remotely recognizable. Based on an efficient data coding scheme, the developed marker enables producing a large panel of unique real time identifiers with highly distinguishable patterns. The proposed marker Incorporates simultaneously decimal and binary information, making it readable by both humans and machines. This important feature opens up new opportunities for the development of efficient visual human-machine communication and monitoring protocols. Extensive experiment tests validate the robustness of the marker against acquisition and geometric distortions.Keywords: visual markers, projective invariants, distance map, level sets
Procedia PDF Downloads 1679354 Local Image Features Emerging from Brain Inspired Multi-Layer Neural Network
Authors: Hui Wei, Zheng Dong
Abstract:
Object recognition has long been a challenging task in computer vision. Yet the human brain, with the ability to rapidly and accurately recognize visual stimuli, manages this task effortlessly. In the past decades, advances in neuroscience have revealed some neural mechanisms underlying visual processing. In this paper, we present a novel model inspired by the visual pathway in primate brains. This multi-layer neural network model imitates the hierarchical convergent processing mechanism in the visual pathway. We show that local image features generated by this model exhibit robust discrimination and even better generalization ability compared with some existing image descriptors. We also demonstrate the application of this model in an object recognition task on image data sets. The result provides strong support for the potential of this model.Keywords: biological model, feature extraction, multi-layer neural network, object recognition
Procedia PDF Downloads 5459353 Event Data Representation Based on Time Stamp for Pedestrian Detection
Authors: Yuta Nakano, Kozo Kajiwara, Atsushi Hori, Takeshi Fujita
Abstract:
In association with the wave of electric vehicles (EV), low energy consumption systems have become more and more important. One of the key technologies to realize low energy consumption is a dynamic vision sensor (DVS), or we can call it an event sensor, neuromorphic vision sensor and so on. This sensor has several features, such as high temporal resolution, which can achieve 1 Mframe/s, and a high dynamic range (120 DB). However, the point that can contribute to low energy consumption the most is its sparsity; to be more specific, this sensor only captures the pixels that have intensity change. In other words, there is no signal in the area that does not have any intensity change. That is to say, this sensor is more energy efficient than conventional sensors such as RGB cameras because we can remove redundant data. On the other side of the advantages, it is difficult to handle the data because the data format is completely different from RGB image; for example, acquired signals are asynchronous and sparse, and each signal is composed of x-y coordinate, polarity (two values: +1 or -1) and time stamp, it does not include intensity such as RGB values. Therefore, as we cannot use existing algorithms straightforwardly, we have to design a new processing algorithm to cope with DVS data. In order to solve difficulties caused by data format differences, most of the prior arts make a frame data and feed it to deep learning such as Convolutional Neural Networks (CNN) for object detection and recognition purposes. However, even though we can feed the data, it is still difficult to achieve good performance due to a lack of intensity information. Although polarity is often used as intensity instead of RGB pixel value, it is apparent that polarity information is not rich enough. Considering this context, we proposed to use the timestamp information as a data representation that is fed to deep learning. Concretely, at first, we also make frame data divided by a certain time period, then give intensity value in response to the timestamp in each frame; for example, a high value is given on a recent signal. We expected that this data representation could capture the features, especially of moving objects, because timestamp represents the movement direction and speed. By using this proposal method, we made our own dataset by DVS fixed on a parked car to develop an application for a surveillance system that can detect persons around the car. We think DVS is one of the ideal sensors for surveillance purposes because this sensor can run for a long time with low energy consumption in a NOT dynamic situation. For comparison purposes, we reproduced state of the art method as a benchmark, which makes frames the same as us and feeds polarity information to CNN. Then, we measured the object detection performances of the benchmark and ours on the same dataset. As a result, our method achieved a maximum of 7 points greater than the benchmark in the F1 score.Keywords: event camera, dynamic vision sensor, deep learning, data representation, object recognition, low energy consumption
Procedia PDF Downloads 1049352 Seismic Perimeter Surveillance System (Virtual Fence) for Threat Detection and Characterization Using Multiple ML Based Trained Models in Weighted Ensemble Voting
Authors: Vivek Mahadev, Manoj Kumar, Neelu Mathur, Brahm Dutt Pandey
Abstract:
Perimeter guarding and protection of critical installations require prompt intrusion detection and assessment to take effective countermeasures. Currently, visual and electronic surveillance are the primary methods used for perimeter guarding. These methods can be costly and complicated, requiring careful planning according to the location and terrain. Moreover, these methods often struggle to detect stealthy and camouflaged insurgents. The object of the present work is to devise a surveillance technique using seismic sensors that overcomes the limitations of existing systems. The aim is to improve intrusion detection, assessment, and characterization by utilizing seismic sensors. Most of the similar systems have only two types of intrusion detection capability viz., human or vehicle. In our work we could even categorize further to identify types of intrusion activity such as walking, running, group walking, fence jumping, tunnel digging and vehicular movements. A virtual fence of 60 meters at GCNEP, Bahadurgarh, Haryana, India, was created by installing four underground geophones at a distance of 15 meters each. The signals received from these geophones are then processed to find unique seismic signatures called features. Various feature optimization and selection methodologies, such as LightGBM, Boruta, Random Forest, Logistics, Recursive Feature Elimination, Chi-2 and Pearson Ratio were used to identify the best features for training the machine learning models. The trained models were developed using algorithms such as supervised support vector machine (SVM) classifier, kNN, Decision Tree, Logistic Regression, Naïve Bayes, and Artificial Neural Networks. These models were then used to predict the category of events, employing weighted ensemble voting to analyze and combine their results. The models were trained with 1940 training events and results were evaluated with 831 test events. It was observed that using the weighted ensemble voting increased the efficiency of predictions. In this study we successfully developed and deployed the virtual fence using geophones. Since these sensors are passive, do not radiate any energy and are installed underground, it is impossible for intruders to locate and nullify them. Their flexibility, quick and easy installation, low costs, hidden deployment and unattended surveillance make such systems especially suitable for critical installations and remote facilities with difficult terrain. This work demonstrates the potential of utilizing seismic sensors for creating better perimeter guarding and protection systems using multiple machine learning models in weighted ensemble voting. In this study the virtual fence achieved an intruder detection efficiency of over 97%.Keywords: geophone, seismic perimeter surveillance, machine learning, weighted ensemble method
Procedia PDF Downloads 859351 The Impact of Access to Microcredit Programme on Women Empowerment: A Case Study of Cowries Microfinance Bank in Lagos State, Nigeria
Authors: Adijat Olubukola Olateju
Abstract:
Women empowerment is an essential developmental tool in every economy especially in less developed countries; as it helps to enhance women's socio-economic well-being. Some empirical evidence has shown that microcredit has been an effective tool in enhancing women empowerment, especially in developing countries. This paper therefore, investigates the impact of microcredit programme on women empowerment in Lagos State, Nigeria. The study used Cowries Microfinance Bank (CMB) as a case study bank, and a total of 359 women entrepreneurs were selected by simple random sampling technique from the list of Cowries Microfinance Bank. Selection bias which could arise from non-random selection of participants or non-random placement of programme, was adjusted for by dividing the data into participant women entrepreneurs and non-participant women entrepreneurs. The data were analyzed with a Propensity Score Matching (PSM) technique. The result of the Average Treatment Effect on the Treated (ATT) obtained from the PSM indicates that the credit programme has a significant effect on the empowerment of women in the study area. It is therefore, recommended that microfinance banks should be encouraged to give loan to women and for more impact of the loan to be felt by the beneficiaries the loan programme should be complemented with other programmes such as training, grant, and periodic monitoring of programme should be encouraged.Keywords: empowerment, microcredit, socio-economic wellbeing, development
Procedia PDF Downloads 3119350 Importance of Punctuation in Communicative Competence
Authors: Khayriniso Bakhtiyarovna Ganiyeva
Abstract:
The article explores the significance of punctuation in achieving communicative competence. It underscores that effective communication goes beyond simply using punctuation correctly. In the successful completion of a communicative activity, it is important not that the writer correctly uses punctuation marks but that he was able to achieve a goal aimed at expressing a certain meaning. The unanimity of the writer and the reader in the mutual understanding of the text is of primary importance. It should also be taken into account that situational communication provides special informative content and expressiveness of speech. Also, the norms of the situation are determined by the nature of the information in the text, and the punctuation marks expressed in accordance with the norm perform logical-semantic, highlighting expressive-emotional and signaling functions. It is a mistake to classify the signs subject to the norm of the situation as created by the author because they functionally reflect the general stylistic features of different texts. Such signs are among the common signs that are codified only by the semantics and structure of the created text.Keywords: communicative-pragmatic approach, expressiveness of speech, stylistic features, comparative analysis
Procedia PDF Downloads 589349 Understanding the Impact of Ephemerality and Mobility on Social Media News: A Content Analysis of News on Snapchat
Authors: Chelsea Peterson-Salahuddin
Abstract:
Over the past decade, news outlets have increasingly used social media as a means to create and distribute news content to audiences. Ephemerality, the transitory nature of media, and mobility, media viewing on mobile technologies, are two increasingly salient attributes of social media content; yet little is known about how these features influence news selection practices of news outlets when distributing news via social media. To account for this gap, this study examines the influences of ephemerality and mobility on social media news content on the social media application Snapchat, in order to understand how these qualities of digital media influence and shape news content. Findings from this study suggest that understandings of ephemerality and mobility play a key role in influencing social media news. This paper suggests that as these factors become increasingly salient in our dominant news viewing environments, being able to understand how they manifest themselves in online news reporting practices is critical for both scholars and practitioners of news as they aim to understand what 'newsworthiness' means in the current, digital age. Findings from this study also enhance our current understandings of how the technological affordances of online and digital media platforms play a key role in shaping the kinds being produced and what information is being prioritized and highlighted in our contemporary news media environment. This is especially important in our current era where new mediums and technologies for news dissemination are continuously arising, and reorienting our understandings of what is considered ‘news'. As a key site of mass communication, discourse, and stories highlighted in the news do critical work in defining culture and ideology. Thus, better understanding the contours of news in our contemporary moment is critical in understanding cultural norms and meaning-making.Keywords: content analysis, ephemerality, mobile communication, social media news
Procedia PDF Downloads 1449348 Sleep Apnea Hypopnea Syndrom Diagnosis Using Advanced ANN Techniques
Authors: Sachin Singh, Thomas Penzel, Dinesh Nandan
Abstract:
Accurate identification of Sleep Apnea Hypopnea Syndrom Diagnosis is difficult problem for human expert because of variability among persons and unwanted noise. This paper proposes the diagonosis of Sleep Apnea Hypopnea Syndrome (SAHS) using airflow, ECG, Pulse and SaO2 signals. The features of each type of these signals are extracted using statistical methods and ANN learning methods. These extracted features are used to approximate the patient's Apnea Hypopnea Index(AHI) using sample signals in model. Advance signal processing is also applied to snore sound signal to locate snore event and SaO2 signal is used to support whether determined snore event is true or noise. Finally, Apnea Hypopnea Index (AHI) event is calculated as per true snore event detected. Experiment results shows that the sensitivity can reach up to 96% and specificity to 96% as AHI greater than equal to 5.Keywords: neural network, AHI, statistical methods, autoregressive models
Procedia PDF Downloads 1249347 A Comprehensive Review of Axial Flux Machines and Its Applications
Authors: Shahbaz Amin, Sabir Hussain Shah, Sahib Khan
Abstract:
This paper presents a thorough review concerning the design types of axial flux permanent magnet machines (AFPM) in terms of different features such as construction, design, materials, and manufacturing. Particular emphasis is given on the design and performance analysis of AFPM machines. A comparison among different permanent magnet machines is also provided. First of all, early and modern axial flux machines are mentioned. Secondly, rotor construction of different axial flux machines is described, then different stator constructions are mentioned depending upon the presence of slots and stator back iron. Then according to the arrangement of the rotor stator structure the machines are classified into single, double and multi-stack arrangements. Advantages, disadvantages and applications of each type of rotor and stator are pointed out. Finally on the basis of the reviewed literature merits, demerits, features and application of different axial flux machines structures are explained and clarified. Thus, this paper provides connection between the machines that are currently being used in industry and the developments of AFPM throughout the years.Keywords: axial flux machines, axial flux applications, coreless machines, PM machines
Procedia PDF Downloads 2259346 BiVO₄‑Decorated Graphite Felt as Highly Efficient Negative Electrode for All-Vanadium Redox Flow Batteries
Authors: Daniel Manaye Kabtamu, Anteneh Wodaje Bayeh
Abstract:
With the development and utilization of new energy technology, people’s demand for large-scale energy storage system has become increasingly urgent. Vanadium redox flow battery (VRFB) is one of the most promising technologies for grid-scale energy storage applications because of numerous attractive features, such as long cycle life, high safety, and flexible design. However, the relatively low energy efficiency and high production cost of the VRFB still limit its practical implementations. It is of great attention to enhance its energy efficiency and reduce its cost. One of the main components of VRFB that can impressively impact the efficiency and final cost is the electrode materials, which provide the reactions sites for redox couples (V₂₊/V³⁺ and VO²⁺/VO₂⁺). Graphite felt (GF) is a typical carbon-based material commonly employed as electrode for VRFB due to low-cost, good chemical and mechanical stability. However, pristine GF exhibits insufficient wettability, low specific surface area, and poor kinetics reversibility, leading to low energy efficiency of the battery. Therefore, it is crucial to further modify the GF electrode to improve its electrochemical performance towards VRFB by employing active electrocatalysts, such as less expensive metal oxides. This study successfully fabricates low-cost plate-like bismuth vanadate (BiVO₄) material through a simple one-step hydrothermal route, employed as an electrocatalyst to adorn the GF for use as the negative electrode in VRFB. The experimental results show that BiVO₄-3h exhibits the optimal electrocatalytic activity and reversibility for the vanadium redox couples among all samples. The energy efficiency of the VRFB cell assembled with BiVO₄-decorated GF as the negative electrode is found to be 75.42% at 100 mA cm−2, which is about 10.24% more efficient than that of the cell assembled with heat-treated graphite felt (HT-GF) electrode. The possible reasons for the activity enhancement can be ascribed to the existence of oxygen vacancies in the BiVO₄ lattice structure and the relatively high surface area of BiVO₄, which provide more active sites for facilitating the vanadium redox reactions. Furthermore, the BiVO₄-GF electrode obstructs the competitive irreversible hydrogen evolution reaction on the negative side of the cell, and it also has better wettability. Impressively, BiVO₄-GF as the negative electrode shows good stability over 100 cycles. Thus, BiVO₄-GF is a promising negative electrode candidate for practical VRFB applications.Keywords: BiVO₄ electrocatalyst, electrochemical energy storage, graphite felt, vanadium redox flow battery
Procedia PDF Downloads 15789345 A Framework for Railway Passenger Station Site Selection Using Transit-Oriented Development and Urban Regeneration Approaches
Authors: M. Taghavi Zavareh, H. Saremi
Abstract:
Railway transportation is one of the types of transportation systems which, due to the advantages such as the ability to transport a large number of passengers, environmental protection, low energy consumption, and contribution to tourism, has importance. The existence of suitable and accessible stations is one of the requirements that leads to better performance and plays a significant role in the economic, social, political, and cultural development of urban areas. This paper aims to propose a framework for locating railway passenger stations. This research used descriptive-analytical methods and library tools to answer which definitions and theoretical approaches are suitable for the location of railway passenger stations. The results showed that theoretical approaches such as Transit-Oriented Development and Urban Regeneration are of the utmost importance theoretical bases in the field of research. Moreover, we studied three stations in Iran to find out about real trends and criteria in this research. This study also proposed four major criteria including accessibility, development, rail related and economics, and environmental harmony. Ultimately with an emphasis on the proposed criteria, the study concludes that the combination of Transit-Oriented Development and Urban Regeneration is the most suitable framework to locate railway passenger stations.Keywords: railway passenger station, railway station, site selection, transit-oriented development, urban regeneration
Procedia PDF Downloads 2749344 An Improved Face Recognition Algorithm Using Histogram-Based Features in Spatial and Frequency Domains
Authors: Qiu Chen, Koji Kotani, Feifei Lee, Tadahiro Ohmi
Abstract:
In this paper, we propose an improved face recognition algorithm using histogram-based features in spatial and frequency domains. For adding spatial information of the face to improve recognition performance, a region-division (RD) method is utilized. The facial area is firstly divided into several regions, then feature vectors of each facial part are generated by Binary Vector Quantization (BVQ) histogram using DCT coefficients in low frequency domains, as well as Local Binary Pattern (LBP) histogram in spatial domain. Recognition results with different regions are first obtained separately and then fused by weighted averaging. Publicly available ORL database is used for the evaluation of our proposed algorithm, which is consisted of 40 subjects with 10 images per subject containing variations in lighting, posing, and expressions. It is demonstrated that face recognition using RD method can achieve much higher recognition rate.Keywords: binary vector quantization (BVQ), DCT coefficients, face recognition, local binary patterns (LBP)
Procedia PDF Downloads 3559343 Umbrella Reinforcement Learning – A Tool for Hard Problems
Authors: Egor E. Nuzhin, Nikolay V. Brilliantov
Abstract:
We propose an approach for addressing Reinforcement Learning (RL) problems. It combines the ideas of umbrella sampling, borrowed from Monte Carlo technique of computational physics and chemistry, with optimal control methods, and is realized on the base of neural networks. This results in a powerful algorithm, designed to solve hard RL problems – the problems, with long-time delayed reward, state-traps sticking and a lack of terminal states. It outperforms the prominent algorithms, such as PPO, RND, iLQR and VI, which are among the most efficient for the hard problems. The new algorithm deals with a continuous ensemble of agents and expected return, that includes the ensemble entropy. This results in a quick and efficient search of the optimal policy in terms of ”exploration-exploitation trade-off” in the state-action space.Keywords: umbrella sampling, reinforcement learning, policy gradient, dynamic programming
Procedia PDF Downloads 329342 A Biophysical Model of CRISPR/Cas9 on- and off-Target Binding for Rational Design of Guide RNAs
Authors: Iman Farasat, Howard M. Salis
Abstract:
The CRISPR/Cas9 system has revolutionized genome engineering by enabling site-directed and high-throughput genome editing, genome insertion, and gene knockdowns in several species, including bacteria, yeast, flies, worms, and human cell lines. This technology has the potential to enable human gene therapy to treat genetic diseases and cancer at the molecular level; however, the current CRISPR/Cas9 system suffers from seemingly sporadic off-target genome mutagenesis that prevents its use in gene therapy. A comprehensive mechanistic model that explains how the CRISPR/Cas9 functions would enable the rational design of the guide-RNAs responsible for target site selection while minimizing unexpected genome mutagenesis. Here, we present the first quantitative model of the CRISPR/Cas9 genome mutagenesis system that predicts how guide-RNA sequences (crRNAs) control target site selection and cleavage activity. We used statistical thermodynamics and law of mass action to develop a five-step biophysical model of cas9 cleavage, and examined it in vivo and in vitro. To predict a crRNA's binding specificities and cleavage rates, we then compiled a nearest neighbor (NN) energy model that accounts for all possible base pairings and mismatches between the crRNA and the possible genomic DNA sites. These calculations correctly predicted crRNA specificity across 5518 sites. Our analysis reveals that cas9 activity and specificity are anti-correlated, and, the trade-off between them is the determining factor in performing an RNA-mediated cleavage with minimal off-targets. To find an optimal solution, we first created a scheme of safe-design criteria for Cas9 target selection by systematic analysis of available high throughput measurements. We then used our biophysical model to determine the optimal Cas9 expression levels and timing that maximizes on-target cleavage and minimizes off-target activity. We successfully applied this approach in bacterial and mammalian cell lines to reduce off-target activity to near background mutagenesis level while maintaining high on-target cleavage rate.Keywords: biophysical model, CRISPR, Cas9, genome editing
Procedia PDF Downloads 4099341 Energy-Led Sustainability Assessment Approach for Energy-Efficient Manufacturing
Authors: Aldona Kluczek
Abstract:
In recent years, manufacturing processes have interacted with sustainability issues realized in the cost-effective ways that minimalize energy, decrease negative impacts on the environment and are safe for society. However, the attention has been on separate sustainability assessment methods considering energy and material flow, energy consumption, and emission release or process control. In this paper, the energy-led sustainability assessment approach combining the methods: energy Life Cycle Assessment to assess environmental impact, Life Cycle Cost to analyze costs, and Social Life Cycle Assessment through ‘energy LCA-based value stream map’, is used to assess the energy sustainability of the hardwood lumber manufacturing process in terms of technologies. The approach integrating environmental, economic and social issues can be visualized in the considered energy-efficient technologies on the map of an energy LCA-related (input and output) inventory data. It will enable the identification of efficient technology of a given process to be reached, through the effective analysis of energy flow. It is also indicated that interventions in the considered technology should focus on environmental, economic improvements to achieve energy sustainability. The results have indicated that the most intense energy losses are caused by a cogeneration technology. The environmental impact analysis shows that a substantial reduction by 34% can be achieved with the improvement of it. From the LCC point of view, the result seems to be cost-effective, when done at that plant where the improvement is used. By demonstrating the social dimension, every component of the energy of plant labor use in the life-cycle process of the lumber production has positive energy benefits. The energy required to install the energy-efficient technology amounts to 30.32 kJ compared to others components of the energy of plant labor and it has the highest value in terms of energy-related social indicators. The paper depicts an example of hardwood lumber production in order to prove the applicability of a sustainability assessment method.Keywords: energy efficiency, energy life cycle assessment, life cycle cost, social life cycle analysis, manufacturing process, sustainability assessment
Procedia PDF Downloads 2519340 Prison Reforms: An Overview of the Nigerian Prisons as a Key Component of an Efficient Criminal Justice Delivery System
Authors: Foluke Dada
Abstract:
Prisons all over the world are set up by law to provide restraint and custody for individuals accused or convicted of crimes by the state. The Nigerian prison dates back to the colonial era and is modelled after the British system. It is a system that lays emphasis on punishment and deterrence. It emphasises retribution rather than reformation. These, it can be argued, results in the inhuman conditions of Nigerian prisons and the conscienceless treatment of convicts and awaiting trial inmates in Nigerian prisons. This paper attempts an examination of the challenges currently beguiling Nigerian prisons, the need for reforms in the prison systems and the imperative of these reforms to an efficient criminal justice delivery system in the country. This paper further postulates that rehabilitation should be favoured as against retribution f the development of the Nigerian criminal justice system in line with the shift towards reform.Keywords: criminal justice, human rights, prison reforms, rehabilitation and retribution
Procedia PDF Downloads 672