Search results for: cover image
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3909

Search results for: cover image

2709 Land Use Land Cover Changes in Response to Urban Sprawl within North-West Anatolia, Turkey

Authors: Melis Inalpulat, Levent Genc

Abstract:

In the present study, an attempt was made to state the Land Use Land Cover (LULC) transformation over three decades around the urban regions of Balıkesir, Bursa, and Çanakkale provincial centers (PCs) in Turkey. Landsat imageries acquired in 1984, 1999 and 2014 were used to determine the LULC change. Images were classified using the supervised classification technique and five main LULC classes were considered including forest (F), agricultural land (A), residential area (urban) - bare soil (R-B), water surface (W), and other (O). Change detection analyses were conducted for 1984-1999 and 1999-2014, and the results were evaluated. Conversions of LULC types to R-B class were investigated. In addition, population changes (1985-2014) were assessed depending on census data, the relations between population and the urban areas were stated, and future populations and urban area needs were forecasted for 2030. The results of LULC analysis indicated that urban areas, which are covered under R-B class, were expanded in all PCs. During 1984-1999 R-B class within Balıkesir, Bursa and Çanakkale PCs were found to have increased by 7.1%, 8.4%, and 2.9%, respectively. The trend continued in the 1999-2014 term and the increment percentages reached to 15.7%, 15.5%, and 10.2% at the end of 30-year period (1984-2014). Furthermore, since A class in all provinces was found to be the principal contributor for the R-B class, urban sprawl lead to the loss of agricultural lands. Moreover, the areas of R-B classes were highly correlated with population within all PCs (R2>0.992). Depending on this situation, both future populations and R-B class areas were forecasted. The estimated values of increase in the R-B class areas for Balıkesir, Bursa, and Çanakkale PCs were 1,586 ha, 7,999 ha and 854 ha, respectively. Due to this fact, the forecasted values for 2,030 are 7,838 ha, 27,866, and 2,486 ha for Balıkesir, Bursa, and Çanakkale, and thus, 7.7%, 8.2%, and 9.7% more R-B class areas are expected to locate in PCs in respect to the same order.

Keywords: landsat, LULC change, population, urban sprawl

Procedia PDF Downloads 263
2708 Development of a Computer Vision System for the Blind and Visually Impaired Person

Authors: Rodrigo C. Belleza, Jr., Roselyn A. Maaño, Karl Patrick E. Camota, Darwin Kim Q. Bulawan

Abstract:

Eyes are an essential and conspicuous organ of the human body. Human eyes are outward and inward portals of the body that allows to see the outside world and provides glimpses into ones inner thoughts and feelings. Inevitable blindness and visual impairments may result from eye-related disease, trauma, or congenital or degenerative conditions that cannot be corrected by conventional means. The study emphasizes innovative tools that will serve as an aid to the blind and visually impaired (VI) individuals. The researchers fabricated a prototype that utilizes the Microsoft Kinect for Windows and Arduino microcontroller board. The prototype facilitates advanced gesture recognition, voice recognition, obstacle detection and indoor environment navigation. Open Computer Vision (OpenCV) performs image analysis, and gesture tracking to transform Kinect data to the desired output. A computer vision technology device provides greater accessibility for those with vision impairments.

Keywords: algorithms, blind, computer vision, embedded systems, image analysis

Procedia PDF Downloads 319
2707 Morphometrics Study of Apis florea and Apis mellifera from Different Locations in Sudan

Authors: Mohammed M. Ibrahim, A. A. Yusuf, Manuel Du, Fiona Mumoki

Abstract:

The traditional honey bee species of Sudan is Apis mellifera, but in 1985, the dwarf bee Apis florea was introduced to the country, so now there are two species present. However, there are conflicting assessments regarding the subspecies of Apis mellifera colonies in Sudan. Likewise, it is unclear if, in the 40 years since its introduction, Apis florea has already developed regional differences or ecotypes. To shed light on these questions, we performed a morphology study on Sudanese honeybees. Samples of 10 to 20 honeybee workers per colony of the two species were collected from 16 locations, spanning different climatic zones in Sudan during 2021. Measurements were taken from 16 morphometric characteristics using a stereo-microscope equipped with an Image Analysis System (Moticam Image Plus 5.0 Digital Microscope Camera) to study their variability. The results indicate that in both species, the general means of various characters showed significant differences (p < 0.05) within a species between different locations, indicating that there might indeed be regional differences. However, more taxonomic investigation and, ideally also, molecular studies are needed in order to confirm the proper identification of subspecies and their ecotypes.

Keywords: Apis, subspecies, morphology, Sudan

Procedia PDF Downloads 103
2706 An Evaluation on the Effectiveness of a 3D Printed Composite Compression Mold

Authors: Peng Hao Wang, Garam Kim, Ronald Sterkenburg

Abstract:

The applications of composite materials within the aviation industry has been increasing at a rapid pace.  However, the growing applications of composite materials have also led to growing demand for more tooling to support its manufacturing processes. Tooling and tooling maintenance represents a large portion of the composite manufacturing process and cost. Therefore, the industry’s adaptability to new techniques for fabricating high quality tools quickly and inexpensively will play a crucial role in composite material’s growing popularity in the aviation industry. One popular tool fabrication technique currently being developed involves additive manufacturing such as 3D printing. Although additive manufacturing and 3D printing are not entirely new concepts, the technique has been gaining popularity due to its ability to quickly fabricate components, maintain low material waste, and low cost. In this study, a team of Purdue University School of Aviation and Transportation Technology (SATT) faculty and students investigated the effectiveness of a 3D printed composite compression mold. A 3D printed composite compression mold was fabricated by 3D scanning a steel valve cover of an aircraft reciprocating engine. The 3D printed composite compression mold was used to fabricate carbon fiber versions of the aircraft reciprocating engine valve cover. The 3D printed composite compression mold was evaluated for its performance, durability, and dimensional stability while the fabricated carbon fiber valve covers were evaluated for its accuracy and quality. The results and data gathered from this study will determine the effectiveness of the 3D printed composite compression mold in a mass production environment and provide valuable information for future understanding, improvements, and design considerations of 3D printed composite molds.

Keywords: additive manufacturing, carbon fiber, composite tooling, molds

Procedia PDF Downloads 200
2705 Efficient Residual Road Condition Segmentation Network Based on Reconstructed Images

Authors: Xiang Shijie, Zhou Dong, Tian Dan

Abstract:

This paper focuses on the application of real-time semantic segmentation technology in complex road condition recognition, aiming to address the critical issue of how to improve segmentation accuracy while ensuring real-time performance. Semantic segmentation technology has broad application prospects in fields such as autonomous vehicle navigation and remote sensing image recognition. However, current real-time semantic segmentation networks face significant technical challenges and optimization gaps in balancing speed and accuracy. To tackle this problem, this paper conducts an in-depth study and proposes an innovative Guided Image Reconstruction Module. By resampling high-resolution images into a set of low-resolution images, this module effectively reduces computational complexity, allowing the network to more efficiently extract features within limited resources, thereby improving the performance of real-time segmentation tasks. In addition, a dual-branch network structure is designed in this paper to fully leverage the advantages of different feature layers. A novel Hybrid Attention Mechanism is also introduced, which can dynamically capture multi-scale contextual information and effectively enhance the focus on important features, thus improving the segmentation accuracy of the network in complex road condition. Compared with traditional methods, the proposed model achieves a better balance between accuracy and real-time performance and demonstrates competitive results in road condition segmentation tasks, showcasing its superiority. Experimental results show that this method not only significantly improves segmentation accuracy while maintaining real-time performance, but also remains stable across diverse and complex road conditions, making it highly applicable in practical scenarios. By incorporating the Guided Image Reconstruction Module, dual-branch structure, and Hybrid Attention Mechanism, this paper presents a novel approach to real-time semantic segmentation tasks, which is expected to further advance the development of this field.

Keywords: hybrid attention mechanism, image reconstruction, real-time, road status recognition

Procedia PDF Downloads 25
2704 Design and Simulation of 3-Transistor Active Pixel Sensor Using MATLAB Simulink

Authors: H. Alheeh, M. Alameri, A. Al Tarabsheh

Abstract:

There has been a growing interest in CMOS-based sensors technology in cameras as they afford low-power, small-size, and cost-effective imaging systems. This article describes the CMOS image sensor pixel categories and presents the design and the simulation of the 3-Transistor (3T) Active Pixel Sensor (APS) in MATLAB/Simulink tool. The analysis investigates the conversion of the light into an electrical signal for a single pixel sensing circuit, which consists of a photodiode and three NMOS transistors. The paper also proposes three modes for the pixel operation; reset, integration, and readout modes. The simulations of the electrical signals for each of the studied modes of operation show how the output electrical signals are correlated to the input light intensities. The charging/discharging speed for the photodiodes is also investigated. The output voltage for different light intensities, including in dark case, is calculated and showed its inverse proportionality with the light intensity.

Keywords: APS, CMOS image sensor, light intensities photodiode, simulation

Procedia PDF Downloads 178
2703 Evolution of Pop Art Pattern on Modern Ao Dai

Authors: Mai Anh Pham Ho

Abstract:

Ao Dai is the traditional dress of Vietnamese women that consists of a long tunic with slits on either side and wide trousers. This is the Vietnamese national costume which most common worn by women in daily life. The Vietnamese men may wear Ao Dai on special occasions like New Year Eve or Wedding Ceremony. Ao Dai is one of the few Vietnamese words that appear in English language dictionaries. Nowadays, there are variations in modern Ao Dai that consist of a short tunic on knee and slim trousers with the other materials like kaki or jeans. This paper aims to apply Pop art pattern on modern Ao Dai through the image of Vietnamese women by modifying the creation process of fashion design. It reflects on how modern culture is involved in Ao Dai and how it affects on fashion design. The research method of this paper is done through surveying the various examples of technological applications to fashion design, then the pop art pattern with the image of Vietnamese women is applied on modern Ao Dai. The results of this paper have shown through the collection of modern Ao Dai with three artworks applied the pop art pattern. In conclusion, the role of fashion technology supports and evolves the traditional value in order to establish the Vietnamese national personality as well as distinguish to other cultural values in the world.

Keywords: pop art pattern, Vietnamese national costume, modern ao dai, fashion design

Procedia PDF Downloads 283
2702 NFResNet: Multi-Scale and U-Shaped Networks for Deblurring

Authors: Tanish Mittal, Preyansh Agrawal, Esha Pahwa, Aarya Makwana

Abstract:

Multi-Scale and U-shaped Networks are widely used in various image restoration problems, including deblurring. Keeping in mind the wide range of applications, we present a comparison of these architectures and their effects on image deblurring. We also introduce a new block called as NFResblock. It consists of a Fast Fourier Transformation layer and a series of modified Non-Linear Activation Free Blocks. Based on these architectures and additions, we introduce NFResnet and NFResnet+, which are modified multi-scale and U-Net architectures, respectively. We also use three differ-ent loss functions to train these architectures: Charbonnier Loss, Edge Loss, and Frequency Reconstruction Loss. Extensive experiments on the Deep Video Deblurring dataset, along with ablation studies for each component, have been presented in this paper. The proposed architectures achieve a considerable increase in Peak Signal to Noise (PSNR) ratio and Structural Similarity Index (SSIM) value.

Keywords: multi-scale, Unet, deblurring, FFT, resblock, NAF-block, nfresnet, charbonnier, edge, frequency reconstruction

Procedia PDF Downloads 138
2701 Biofeedback-Driven Sound and Image Generation

Authors: Claudio Burguez, María Castelló, Mikaela Pisani, Marcos Umpiérrez

Abstract:

BIOFEEDBACK exhibition offers a unique experience for each visitor, combining art, neuroscience, and technology in an interactive way. Using a headband that captures the bioelectric activity of the brain, the visitors are able to generate sound and images in a sequence loop, making them an integral part of the artwork. Through this interactive exhibit, visitors gain a deeper appreciation of the beauty and complexity of the brain. As a special takeaway, visitors will receive an NFT as a present, allowing them to continue their engagement with the exhibition beyond the physical space. We used the EEG Biofeedback technique following a closed-loop neuroscience approach, transforming EEG data captured by a Muse S headband in real-time into audiovisual stimulation. PureData is used for sound generation and Generative Adversarial Networks (GANs) for image generation. Thirty participants have experienced the exhibition. For some individuals, it was easier to focus than others. Participants who said they could focus during the exhibit stated that at one point, they felt that they could control the sound, while images were more abstract, and they did not feel that they were able to control them.

Keywords: art, audiovisual, biofeedback, EEG, NFT, neuroscience, technology

Procedia PDF Downloads 73
2700 Design of a New Package for Saffron Using Kansei Engineering

Authors: Sotiris Papantonopoulos, Marianna Bortziou

Abstract:

This study aimed at developing a new package of saffron using emotional design and specifically the Kansei Engineering method. Kansei Engineering is a proactive product development methodology, which aims to improve the product development process and to translate consumers' feelings and image of a product into design elements. A survey was conducted with two major purposes: (1) to determine the target group of saffron use and to collect information about the adequacy of the product’s promotion and the importance of its packaging, (2) to collect the most important properties of a package according to consumers and to evaluate the existing saffron packages according to these properties (benchmarking). The interaction with the general public conducted by the distribution of online questionnaires and personal interviews as well as the statistical analysis of the results were performed using the SPSS software. The results of the survey were used in all stages of Kansei Engineering. Based on the results, a new saffron package was designed by using various designing and image processing software. This improved package is expected to achieve a better promotion and increased sales of the product.

Keywords: design, emotional design, Kansei Engineering, packaging, saffron

Procedia PDF Downloads 164
2699 A Robust System for Foot Arch Type Classification from Static Foot Pressure Distribution Data Using Linear Discriminant Analysis

Authors: R. Periyasamy, Deepak Joshi, Sneh Anand

Abstract:

Foot posture assessment is important to evaluate foot type, causing gait and postural defects in all age groups. Although different methods are used for classification of foot arch type in clinical/research examination, there is no clear approach for selecting the most appropriate measurement system. Therefore, the aim of this study was to develop a system for evaluation of foot type as clinical decision-making aids for diagnosis of flat and normal arch based on the Arch Index (AI) and foot pressure distribution parameter - Power Ratio (PR) data. The accuracy of the system was evaluated for 27 subjects with age ranging from 24 to 65 years. Foot area measurements (hind foot, mid foot, and forefoot) were acquired simultaneously from foot pressure intensity image using portable PedoPowerGraph system and analysis of the image in frequency domain to obtain foot pressure distribution parameter - PR data. From our results, we obtain 100% classification accuracy of normal and flat foot by using the linear discriminant analysis method. We observe there is no misclassification of foot types because of incorporating foot pressure distribution data instead of only arch index (AI). We found that the mid-foot pressure distribution ratio data and arch index (AI) value are well correlated to foot arch type based on visual analysis. Therefore, this paper suggests that the proposed system is accurate and easy to determine foot arch type from arch index (AI), as well as incorporating mid-foot pressure distribution ratio data instead of physical area of contact. Hence, such computational tool based system can help the clinicians for assessment of foot structure and cross-check their diagnosis of flat foot from mid-foot pressure distribution.

Keywords: arch index, computational tool, static foot pressure intensity image, foot pressure distribution, linear discriminant analysis

Procedia PDF Downloads 500
2698 Artificial Generation of Visual Evoked Potential to Enhance Visual Ability

Authors: A. Vani, M. N. Mamatha

Abstract:

Visual signal processing in human beings occurs in the occipital lobe of the brain. The signals that are generated in the brain are universal for all the human beings and they are called Visual Evoked Potential (VEP). Generally, the visually impaired people lose sight because of severe damage to only the eyes natural photo sensors, but the occipital lobe will still be functioning. In this paper, a technique of artificially generating VEP is proposed to enhance the visual ability of the subject. The system uses the electrical photoreceptors to capture image, process the image, to detect and recognize the subject or object. This voltage is further processed and can transmit wirelessly to a BIOMEMS implanted into occipital lobe of the patient’s brain. The proposed BIOMEMS consists of array of electrodes that generate the neuron potential which is similar to VEP of normal people. Thus, the neurons get the visual data from the BioMEMS which helps in generating partial vision or sight for the visually challenged patient. 

Keywords: BioMEMS, neuro-prosthetic, openvibe, visual evoked potential

Procedia PDF Downloads 317
2697 Realistic Modeling of the Preclinical Small Animal Using Commercial Software

Authors: Su Chul Han, Seungwoo Park

Abstract:

As the increasing incidence of cancer, the technology and modality of radiotherapy have advanced and the importance of preclinical model is increasing in the cancer research. Furthermore, the small animal dosimetry is an essential part of the evaluation of the relationship between the absorbed dose in preclinical small animal and biological effect in preclinical study. In this study, we carried out realistic modeling of the preclinical small animal phantom possible to verify irradiated dose using commercial software. The small animal phantom was modeling from 4D Digital Mouse whole body phantom. To manipulate Moby phantom in commercial software (Mimics, Materialise, Leuven, Belgium), we converted Moby phantom to DICOM image file of CT by Matlab and two- dimensional of CT images were converted to the three-dimensional image and it is possible to segment and crop CT image in Sagittal, Coronal and axial view). The CT images of small animals were modeling following process. Based on the profile line value, the thresholding was carried out to make a mask that was connection of all the regions of the equal threshold range. Using thresholding method, we segmented into three part (bone, body (tissue). lung), to separate neighboring pixels between lung and body (tissue), we used region growing function of Mimics software. We acquired 3D object by 3D calculation in the segmented images. The generated 3D object was smoothing by remeshing operation and smoothing operation factor was 0.4, iteration value was 5. The edge mode was selected to perform triangle reduction. The parameters were that tolerance (0.1mm), edge angle (15 degrees) and the number of iteration (5). The image processing 3D object file was converted to an STL file to output with 3D printer. We modified 3D small animal file using 3- Matic research (Materialise, Leuven, Belgium) to make space for radiation dosimetry chips. We acquired 3D object of realistic small animal phantom. The width of small animal phantom was 2.631 cm, thickness was 2.361 cm, and length was 10.817. Mimics software supported efficiency about 3D object generation and usability of conversion to STL file for user. The development of small preclinical animal phantom would increase reliability of verification of absorbed dose in small animal for preclinical study.

Keywords: mimics, preclinical small animal, segmentation, 3D printer

Procedia PDF Downloads 367
2696 Applying Image Schemas and Cognitive Metaphors to Teaching/Learning Italian Preposition a in Foreign/Second Language Context

Authors: Andrea Fiorista

Abstract:

The learning of prepositions is a quite problematic aspect in foreign language instruction, and Italian is certainly not an exception. In their prototypical function, prepositions express schematic relations of two entities in a highly abstract, typically image-schematic way. In other terms, prepositions assume concepts such as directionality, collocation of objects in space and time and, in Cognitive Linguistics’ terms, the position of a trajector with respect to a landmark. Learners of different native languages may conceptualize them differently, implying that they are supposed to operate a recategorization (or create new categories) fitting with the target language. However, most current Italian Foreign/Second Language handbooks and didactic grammars do not facilitate learners in carrying out the task, as they tend to provide partial and idiosyncratic descriptions, with the consequent learner’s effort to memorize them, most of the time without success. In their prototypical meaning, prepositions are used to specify precise topographical positions in the physical environment which become less and less accurate as they radiate out from what might be termed a concrete prototype. According to that, the present study aims to elaborate a cognitive and conceptually well-grounded analysis of some extensive uses of the Italian preposition a, in order to propose effective pedagogical solutions in the Teaching/Learning process. Image schemas, cognitive metaphors and embodiment represent efficient cognitive tools in a task like this. Actually, while learning the merely spatial use of the preposition a (e.g. Sono a Roma = I am in Rome; vado a Roma = I am going to Rome,…) is quite straightforward, it is more complex when a appears in constructions such as verbs of motion +a + infinitive (e.g. Vado a studiare = I am going to study), inchoative periphrasis (e.g. Tra poco mi metto a leggere = In a moment I will read), causative construction (e.g. Lui mi ha mandato a lavorare = He sent me to work). The study reports data from a teaching intervention of Focus on Form, in which a basic cognitive schema is used to facilitate both teachers and students to respectively explain/understand the extensive uses of a. The educational material employed translates Cognitive Linguistics’ theoretical assumptions, such as image schemas and cognitive metaphors, into simple images or proto-scenes easily comprehensible for learners. Illustrative material, indeed, is supposed to make metalinguistic contents more accessible. Moreover, the concept of embodiment is pedagogically applied through activities including motion and learners’ bodily involvement. It is expected that replacing rote learning with a methodology that gives grammatical elements a proper meaning, makes learning process more effective both in the short and long term.

Keywords: cognitive approaches to language teaching, image schemas, embodiment, Italian as FL/SL

Procedia PDF Downloads 88
2695 High Fidelity Interactive Video Segmentation Using Tensor Decomposition, Boundary Loss, Convolutional Tessellations, and Context-Aware Skip Connections

Authors: Anthony D. Rhodes, Manan Goel

Abstract:

We provide a high fidelity deep learning algorithm (HyperSeg) for interactive video segmentation tasks using a dense convolutional network with context-aware skip connections and compressed, 'hypercolumn' image features combined with a convolutional tessellation procedure. In order to maintain high output fidelity, our model crucially processes and renders all image features in high resolution, without utilizing downsampling or pooling procedures. We maintain this consistent, high grade fidelity efficiently in our model chiefly through two means: (1) we use a statistically-principled, tensor decomposition procedure to modulate the number of hypercolumn features and (2) we render these features in their native resolution using a convolutional tessellation technique. For improved pixel-level segmentation results, we introduce a boundary loss function; for improved temporal coherence in video data, we include temporal image information in our model. Through experiments, we demonstrate the improved accuracy of our model against baseline models for interactive segmentation tasks using high resolution video data. We also introduce a benchmark video segmentation dataset, the VFX Segmentation Dataset, which contains over 27,046 high resolution video frames, including green screen and various composited scenes with corresponding, hand-crafted, pixel-level segmentations. Our work presents a improves state of the art segmentation fidelity with high resolution data and can be used across a broad range of application domains, including VFX pipelines and medical imaging disciplines.

Keywords: computer vision, object segmentation, interactive segmentation, model compression

Procedia PDF Downloads 120
2694 Assessing the Indicators Influencing Port Resilience: A Comprehensive Literature Review

Authors: Guo Rui, Cao Xinhu

Abstract:

In recent decades, the world has endured severe challenges in light of climate change, epidemics, geopolitics, terrorism, economic uncertainties, as well as regional conflicts and rivalries. The appropriate use of critical infrastructures (Cis) is confronted. Ports, as typical Cis cover more than 80% of the global freight movement. Within this context, even the minimal disruption of port operations could cause malfunction of the holistic supply chain network and substantial economic losses. Hence, it is crucial to evaluate port performance from the perspective of resilience. Research on resilience and risk/safety management has been increasing, however, it needs more attention, as it could prevent potential socio-economic losses and inspire decision-makers to make resilience-based decisions to answer the challenges, such as COVID-19. To facilitate better moves from decision-makers, ports need to identify proper factors influencing port resilience. Inappropriately influenced factor selection could have a cascading effect on undesirable port performances. Thus, a systematic evaluation of factors is essential to stimulate the improvement process of port resilience investigation. This study zooms into container ports considering their critical role in international trade and global supply chains. 440 articles are selected after relevance ranking, and consequently, 62 articles are scrutinized after the title and abstract screening. Forty-one articles are included for bibliographic analysis in the end. It is found that there is no standardized index system to measure port resilience. And most studies evaluate port resilience merely in the recovery phase. Only two articles cover absorption, adaption and recovery state. However, no literature involves the prevention state. Hence, a uniform resilience index system is expected with a clear resilience definition. And port safety and security should also be considered while evaluating port resilience.

Keywords: port resilience, port safety and security, literature review, index system, port performance

Procedia PDF Downloads 127
2693 Detection and Classification of Rubber Tree Leaf Diseases Using Machine Learning

Authors: Kavyadevi N., Kaviya G., Gowsalya P., Janani M., Mohanraj S.

Abstract:

Hevea brasiliensis, also known as the rubber tree, is one of the foremost assets of crops in the world. One of the most significant advantages of the Rubber Plant in terms of air oxygenation is its capacity to reduce the likelihood of an individual developing respiratory allergies like asthma. To construct such a system that can properly identify crop diseases and pests and then create a database of insecticides for each pest and disease, we must first give treatment for the illness that has been detected. We shall primarily examine three major leaf diseases since they are economically deficient in this article, which is Bird's eye spot, algal spot and powdery mildew. And the recommended work focuses on disease identification on rubber tree leaves. It will be accomplished by employing one of the superior algorithms. Input, Preprocessing, Image Segmentation, Extraction Feature, and Classification will be followed by the processing technique. We will use time-consuming procedures that they use to detect the sickness. As a consequence, the main ailments, underlying causes, and signs and symptoms of diseases that harm the rubber tree are covered in this study.

Keywords: image processing, python, convolution neural network (CNN), machine learning

Procedia PDF Downloads 77
2692 Temporality, Place and Autobiography in J.M. Coetzee’s 'Summertime'

Authors: Barbara Janari

Abstract:

In this paper it is argued that the effect of the disjunctive temporality in Summertime (the third of J.M. Coetzee’s fictionalised memoirs) is two-fold: firstly, it reflects the memoir’s ambivalent, contradictory representations of place in order to emphasize the fractured sense of self growing up in South Africa during apartheid entailed for Coetzee. Secondly, it reconceives the autobiographical discourse as one that foregrounds the inherent fictionality of all texts. The memoir’s narrative is filtered through intricate textual strategies that disrupt the chronological movement of the narrative, evoking the labyrinthine ways in which the past and present intersect and interpenetrate each other. It is framed by entries from Coetzee’s Notebooks: it opens with entries that cover the years 1972–1975, and ends with a number of undated fragments from his Notebooks. Most of the entries include a short ‘memo’ at the end, added between 1999 and 2000. While the memos follow the Notebook entries in the text, they are separated by decades. Between the Notebook entries is a series of interviews conducted by Vincent, the text’s putative biographer, between 2007 and 2008, based on recollections from five people who had known Coetzee in the 1970s – a key period in John’s life as it marks both his return to South Africa after a failed emigration attempt to America, and the beginning of his writing career, with the publication of Dusklands in 1974. The relationship between the memoir’s various parts is a key feature of Coetzee’s representation of place in Summertime, which is constructed as a composite one in which the principle of reflexive referencing has to be adopted. In other words, readers have to suspend individual references temporarily until the relationships between the parts have been connected to each other. In order to apprehend meaning in the text, the disparate narrative elements have to first be tied together. In this text, then, the experience of time as ordered and chronological is ruptured. Instead, the memoir’s themes and patterns become apparent most clearly through reflexive referencing, by which relationships between disparate sections of the text are linked. The image of the fictional John that emerges from the text is a composite of this John and the author, J.M. Coetzee, and is one which embodies Coetzee’s often fraught relationship with his home country, South Africa.

Keywords: autobiography, place, reflexive referencing, temporality

Procedia PDF Downloads 76
2691 Land Subsidence Monitoring in Semarang and Demak Coastal Area Using Persistent Scatterer Interferometric Synthetic Aperture Radar

Authors: Reyhan Azeriansyah, Yudo Prasetyo, Bambang Darmo Yuwono

Abstract:

Land subsidence is one of the problems that occur in the coastal areas of Java Island, one of which is the Semarang and Demak areas located in the northern region of Central Java. The impact of sea erosion, rising sea levels, soil structure vulnerable and economic development activities led to both these areas often occurs on land subsidence. To know how much land subsidence that occurred in the region needs to do the monitoring carried out by remote sensing methods such as PS-InSAR method. PS-InSAR is a remote sensing technique that is the development of the DInSAR method that can monitor the movement of the ground surface that allows users to perform regular measurements and monitoring of fixed objects on the surface of the earth. PS InSAR processing is done using Standford Method of Persistent Scatterers (StaMPS). Same as the recent analysis technique, Persistent Scatterer (PS) InSAR addresses both the decorrelation and atmospheric problems of conventional InSAR. StaMPS identify and extract the deformation signal even in the absence of bright scatterers. StaMPS is also applicable in areas undergoing non-steady deformation, with no prior knowledge of the variations in deformation rate. In addition, this method can also cover a large area so that the decline in the face of the land can cover all coastal areas of Semarang and Demak. From the PS-InSAR method can be known the impact on the existing area in Semarang and Demak region per year. The PS-InSAR results will also be compared with the GPS monitoring data to determine the difference in land decline that occurs between the two methods. By utilizing remote sensing methods such as PS-InSAR method, it is hoped that the PS-InSAR method can be utilized in monitoring the land subsidence and can assist other survey methods such as GPS surveys and the results can be used in policy determination in the affected coastal areas of Semarang and Demak.

Keywords: coastal area, Demak, land subsidence, PS-InSAR, Semarang, StaMPS

Procedia PDF Downloads 267
2690 The Use of X-Ray Computed Microtomography in Petroleum Geology: A Case Study of Unconventional Reservoir Rocks in Poland

Authors: Tomasz Wejrzanowski, Łukasz Kaczmarek, Michał Maksimczuk

Abstract:

High-resolution X-ray computed microtomography (µCT) is a non-destructive technique commonly used to determine the internal structure of reservoir rock sample. This study concerns µCT analysis of Silurian and Ordovician shales and mudstones from a borehole in the Baltic Basin, north of Poland. The spatial resolution of the µCT images obtained was 27 µm, which enabled the authors to create accurate 3-D visualizations and to calculate the ratio of pores and fractures volume to the total sample volume. A total of 1024 µCT slices were used to create a 3-D volume of sample structure geometry. These µCT slices were processed to obtain a clearly visible image and the volume ratio. A copper X-ray source filter was used to reduce image artifacts. Due to accurate technical settings of µCT it was possible to obtain high-resolution 3-D µCT images of low X-ray transparency samples. The presented results confirm the utility of µCT implementations in geoscience and show that µCT has still promising applications for reservoir exploration and characterization.

Keywords: fractures, material density, pores, structure

Procedia PDF Downloads 257
2689 Reflection of Landscape Agrogenization in the Soil Cover Structure and Profile Morphology: Example of Lithuania Agroecosystem

Authors: Jonas Volungevicius, Kristina Amaleviciute, Rimantas Vaisvalavicius, Alvyra Slepetiene, Darijus Veteikis

Abstract:

Lithuanian territory is characterized by landscape with prevailing morain hills and clayey lowlands. The largest part of it has endured agrogenization of various degrees which was the cause of changes both in the structure of landscape and soil cover, transformations of soil profile and degradation of natural background soils. These changes influence negatively geoecological potential of landscape and soil and contribute to the weakening of the sustainability of agroecosystems. Research objective: to reveal the landscape agrogenization induced alterations of catenae and their appendant soil profiles in Lithuanian morain hills and clayey lowlands. Methods: Soil cover analysis and catenae charting was conducted using landscape profiling; soil morphology detected and soil type identified following WRB 2014. Granulometric composition of soil profiles was obtained by laser diffraction method (lazer diffractometer Mastersizer 2000). pH was measured in H2O extraction using potentiometric titration; SOC was determined by the Tyurin method modified by Nikitin, measuring with spectrometer Cary 50 (VARIAN) in 590 nm wavelength using glucose standards. Results: analysis showed that the decrease of forest vegetation and the other natural landscape components following the agrogenization of the research area influenced differently but significantly the structural alterations in soil cover and vertical soil profile. The research detected that due to landscape agrogenization, the suppression of zone-specific processes and the intensification of inter-zone processes determined by agrogenic factors take place in Lithuanian agroecosystems. In forested hills historically prevailing Retisols and Histosols territorial complex is transforming into the territorial complex of Regosols, Deluvial soils and drained Histosols. Processes taking place are simplification of vertical profile structure, intensive rejuvenation of profile, disappearance of the features of zone-specific soil-forming processes (podzolization, lessivage, gley formation). Erosion and deluvial processes manifest more intensively and weakly accumulating organic material more intensively spread in a vertical soil profile. The territorial soil complex of Gleyic Luvisols and Gleysols dominating in forested clayey lowlands subjected to agrogenization is transformed into the catena of drained Luvisols and pseudo Cambisols. The best expressed are their changes in moisture regime (morphological features of gley and stagnic properties are on decline) together with alterations of pH and distribution and intensity of accumulation of organic matter in profile. A specific horizon, antraquic, uncharacteristic to natural soil formation is appearing. Important to note that due to deep ploughing and other agrotechnical measures, the natural vertical differentiation of clay particles in a soil profile is destroyed which leads not only to alterations of physical qualities of soil, but also encumbers the identification of Luvisols by creating presumptions to misidentify them as Cambisols. The latter have never developed in these ecosystems under the present climatic conditions. Acknowledgements: This work was supported by the National Science Program: The effect of long-term, different-intensity management of resources on the soils of different genesis and on other components of the agro-ecosystems [grant number SIT-9/2015] funded by the Research Council of Lithuania.

Keywords: agroecosystems, landscape agrogenization, luvisols, retisols, transformation of soil profile

Procedia PDF Downloads 260
2688 Seasonal Assessment of Snow Cover Dynamics Based on Aerospace Multispectral Data on Livingston Island, South Shetland Islands in Antarctica and on Svalbard in Arctic

Authors: Temenuzhka Spasova, Nadya Yanakieva

Abstract:

Snow modulates the hydrological cycle and influences the functioning of ecosystems and is a significant resource for many populations whose water is harvested from cold regions. Snow observations are important for validating climate models. The accumulation and rapid melt of snow are two of the most dynamical seasonal environmental changes on the Earth’s surface. The actuality of this research is related to the modern tendencies of the remote sensing application in the solution of problems of different nature in the ecological monitoring of the environment. The subject of the study is the dynamic during the different seasons on Livingstone Island, South Shetland Islands in Antarctica and on Svalbard in Arctic. The objects were analyzed and mapped according to the Еuropean Space Agency data (ESA), acquired by sensors Sentinel-1 SAR (Synthetic Aperture Radar), Sentinel 2 MSI and GIS. Results have been obtained for changes in snow coverage during the summer-winter transition and its dynamics in the two hemispheres. The data used is of high time-spatial resolution, which is an advantage when looking at the snow cover. The MSI images are with different spatial resolution at the Earth surface range. The changes of the environmental objects are shown with the SAR images and different processing approaches. The results clearly show that snow and snow melting can be best registered by using SAR data via hh- horizontal polarization. The effect of the researcher on aerospace data and technology enables us to obtain different digital models, structuring and analyzing results excluding the subjective factor. Because of the large extent of terrestrial snow coverage and the difficulties in obtaining ground measurements over cold regions, remote sensing and GIS represent an important tool for studying snow areas and properties from regional to global scales.

Keywords: climate changes, GIS, remote sensing, SAR images, snow coverage

Procedia PDF Downloads 219
2687 Subjective versus Objective Assessment for Magnetic Resonance (MR) Images

Authors: Heshalini Rajagopal, Li Sze Chow, Raveendran Paramesran

Abstract:

Magnetic Resonance Imaging (MRI) is one of the most important medical imaging modality. Subjective assessment of the image quality is regarded as the gold standard to evaluate MR images. In this study, a database of 210 MR images which contains ten reference images and 200 distorted images is presented. The reference images were distorted with four types of distortions: Rician Noise, Gaussian White Noise, Gaussian Blur and DCT compression. The 210 images were assessed by ten subjects. The subjective scores were presented in Difference Mean Opinion Score (DMOS). The DMOS values were compared with four FR-IQA metrics. We have used Pearson Linear Coefficient (PLCC) and Spearman Rank Order Correlation Coefficient (SROCC) to validate the DMOS values. The high correlation values of PLCC and SROCC shows that the DMOS values are close to the objective FR-IQA metrics.

Keywords: medical resonance (MR) images, difference mean opinion score (DMOS), full reference image quality assessment (FR-IQA)

Procedia PDF Downloads 459
2686 A Topological Approach for Motion Track Discrimination

Authors: Tegan H. Emerson, Colin C. Olson, George Stantchev, Jason A. Edelberg, Michael Wilson

Abstract:

Detecting small targets at range is difficult because there is not enough spatial information present in an image sub-region containing the target to use correlation-based methods to differentiate it from dynamic confusers present in the scene. Moreover, this lack of spatial information also disqualifies the use of most state-of-the-art deep learning image-based classifiers. Here, we use characteristics of target tracks extracted from video sequences as data from which to derive distinguishing topological features that help robustly differentiate targets of interest from confusers. In particular, we calculate persistent homology from time-delayed embeddings of dynamic statistics calculated from motion tracks extracted from a wide field-of-view video stream. In short, we use topological methods to extract features related to target motion dynamics that are useful for classification and disambiguation and show that small targets can be detected at range with high probability.

Keywords: motion tracks, persistence images, time-delay embedding, topological data analysis

Procedia PDF Downloads 114
2685 Nature of Body Image Distortion in Eating Disorders

Authors: Katri K. Cornelissen, Lise Gulli Brokjob, Kristofor McCarty, Jiri Gumancik, Martin J. Tovee, Piers L. Cornelissen

Abstract:

Recent research has shown that body size estimation of healthy women is driven by independent attitudinal and perceptual components. The attitudinal component represents psychological concerns about body, coupled to low self-esteem and a tendency towards depressive symptomatology, leading to over-estimation of body size, independent of the Body Mass Index (BMI) someone actually has. The perceptual component is a normal bias known as contraction bias, which, for bodies is dependent on actual BMI. Women with a BMI less than the population norm tend to overestimate their size, while women with a BMI greater than the population norm tend to underestimate their size. Women whose BMI is close to the population mean are most accurate. This is indexed by a regression of estimated BMI on actual BMI with a slope less than one. It is well established that body dissatisfaction, i.e. an attitudinal distortion, leads to body size overestimation in eating disordered individuals. However, debate persists as to whether women with eating disorders may also suffer a perceptual body distortion. Therefore, the current study was set to ask whether women with eating disorders exhibit the normal contraction bias when they estimate their own body size. If they do not, this would suggest differences in the way that women with eating disorders process the perceptual aspects of body shape and size in comparison to healthy controls. 100 healthy controls and 33 women with a history of eating disorders were recruited. Critically, it was ensured that both groups of participants represented comparable and adequate ranges of actual BMI (e.g. ~18 to ~40). Of those with eating disorders, 19 had a history of anorexia nervosa, 6 bulimia nervosa, and 8 OSFED. 87.5% of the women with a history of eating disorders self-reported that they were either recovered or recovering, and 89.7% of them self-reported that they had had one or more instances of relapse. The mean time lapsed since first diagnosis was 5 years and on average participants had experienced two relapses. Participants were asked to fill number of psychometric measures (EDE-Q, BSQ, RSE, BDI) to establish the attitudinal component of their body image as well as their tendency to internalize socio-cultural body ideals. Additionally, participants completed a method of adjustment psychophysical task, using photorealistic avatars calibrated for BMI, in order to provide an estimate of their own body size and shape. The data from the healthy controls replicate previous findings, revealing independent contributions to body size estimation from both attitudinal and perceptual (i.e. contraction bias) body image components, as described above. For the eating disorder group, once the adequacy of their actual BMI ranges was established, a regression of estimated BMI on actual BMI had a slope greater than 1, significantly different to that from controls. This suggests that (some) eating disordered individuals process the perceptual aspects of body image differently from healthy controls. It therefore is necessary to develop interventions which are specific to the perceptual processing of body shape and size for the management of (some) individuals with eating disorders.

Keywords: body image distortion, perception, recovery, relapse, BMI, eating disorders

Procedia PDF Downloads 68
2684 Electrochemical Deposition of Pb and PbO2 on Polymer Composites Electrodes

Authors: A. Merzouki, N. Haddaoui

Abstract:

Polymers have a large reputation as electric insulators. These materials are characterized by weak weight, reduced price and a large domain of physical and chemical properties. They conquered new application domains that were until a recent past the exclusivity of metals. In this work, we used some composite materials (polymers/conductive fillers), as electrodes and we try to cover them with metallic lead layers in order to use them as courant collector grids in lead-acid battery plates.

Keywords: electrodeposition, polymer composites, carbon black, acetylene black

Procedia PDF Downloads 457
2683 Micro-Scale Digital Image Correlation-Driven Finite Element Simulations of Deformation and Damage Initiation in Advanced High Strength Steels

Authors: Asim Alsharif, Christophe Pinna, Hassan Ghadbeigi

Abstract:

The development of next-generation advanced high strength steels (AHSS) used in the automotive industry requires a better understanding of local deformation and damage development at the scale of their microstructures. This work is focused on dual-phase DP1000 steels and involves micro-mechanical tensile testing inside a scanning electron microscope (SEM) combined with digital image correlation (DIC) to quantify the heterogeneity of deformation in both ferrite and martensite and its evolution up to fracture. Natural features of the microstructure are used for the correlation carried out using Davis LaVision software. Strain localization is observed in both phases with tensile strain values up to 130% and 110% recorded in ferrite and martensite respectively just before final fracture. Damage initiation sites have been observed during deformation in martensite but could not be correlated to local strain values. A finite element (FE) model of the microstructure has then been developed using Abaqus to map stress distributions over representative areas of the microstructure by forcing the model to deform as in the experiment using DIC-measured displacement maps as boundary conditions. A MATLAB code has been developed to automatically mesh the microstructure from SEM images and to map displacement vectors from DIC onto the FE mesh. Results show a correlation of damage initiation at the interface between ferrite and martensite with local principal stress values of about 1700MPa in the martensite phase. Damage in ferrite is now being investigated, and results are expected to bring new insight into damage development in DP steels.

Keywords: advanced high strength steels, digital image correlation, finite element modelling, micro-mechanical testing

Procedia PDF Downloads 146
2682 Variation of Manning’s Coefficient in a Meandering Channel with Emergent Vegetation Cover

Authors: Spandan Sahu, Amiya Kumar Pati, Kishanjit Kumar Khatua

Abstract:

Vegetation plays a major role in deciding the flow parameters in an open channel. It enhances the aesthetic view of the revetments. The major types of vegetation in river typically comprises of herbs, grasses, weeds, trees, etc. The vegetation in an open channel usually consists of aquatic plants with complete submergence, partial submergence, floating plants. The presence of vegetative plants can have both benefits and problems. The major benefits of aquatic plants are they reduce the soil erosion, which provides the water with a free surface to move on without hindrance. The obvious problems are they retard the flow of water and reduce the hydraulic capacity of the channel. The degree to which the flow parameters are affected depends upon the density of the vegetation, degree of submergence, pattern of vegetation, vegetation species. Vegetation in open channel tends to provide resistance to flow, which in turn provides a background to study the varying trends in flow parameters having vegetative growth in the channel surface. In this paper, an experiment has been conducted on a meandering channel having sinuosity of 1.33 with rigid vegetation cover to investigate the effect on flow parameters, variation of manning’s n with degree of the denseness of vegetation, vegetation pattern and submergence criteria. The measurements have been carried out in four different cross-sections two on trough portion of the meanders, two on the crest portion. In this study, the analytical solution of Shiono and knight (SKM) for lateral distributions of depth-averaged velocity and bed shear stress have been taken into account. Dimensionless eddy viscosity and bed friction have been incorporated to modify the SKM to provide more accurate results. A mathematical model has been formulated to have a comparative analysis with the results obtained from Shiono-Knight Method.

Keywords: bed friction, depth averaged velocity, eddy viscosity, SKM

Procedia PDF Downloads 137
2681 Segmented Pupil Phasing with Deep Learning

Authors: Dumont Maxime, Correia Carlos, Sauvage Jean-François, Schwartz Noah, Gray Morgan

Abstract:

Context: The concept of the segmented telescope is unavoidable to build extremely large telescopes (ELT) in the quest for spatial resolution, but it also allows one to fit a large telescope within a reduced volume of space (JWST) or into an even smaller volume (Standard Cubesat). Cubesats have tight constraints on the computational burden available and the small payload volume allowed. At the same time, they undergo thermal gradients leading to large and evolving optical aberrations. The pupil segmentation comes nevertheless with an obvious difficulty: to co-phase the different segments. The CubeSat constraints prevent the use of a dedicated wavefront sensor (WFS), making the focal-plane images acquired by the science detector the most practical alternative. Yet, one of the challenges for the wavefront sensing is the non-linearity between the image intensity and the phase aberrations. Plus, for Earth observation, the object is unknown and unrepeatable. Recently, several studies have suggested Neural Networks (NN) for wavefront sensing; especially convolutional NN, which are well known for being non-linear and image-friendly problem solvers. Aims: We study in this paper the prospect of using NN to measure the phasing aberrations of a segmented pupil from the focal-plane image directly without a dedicated wavefront sensing. Methods: In our application, we take the case of a deployable telescope fitting in a CubeSat for Earth observations which triples the aperture size (compared to the 10cm CubeSat standard) and therefore triples the angular resolution capacity. In order to reach the diffraction-limited regime in the visible wavelength, typically, a wavefront error below lambda/50 is required. The telescope focal-plane detector, used for imaging, will be used as a wavefront-sensor. In this work, we study a point source, i.e. the Point Spread Function [PSF] of the optical system as an input of a VGG-net neural network, an architecture designed for image regression/classification. Results: This approach shows some promising results (about 2nm RMS, which is sub lambda/50 of residual WFE with 40-100nm RMS of input WFE) using a relatively fast computational time less than 30 ms which translates a small computation burder. These results allow one further study for higher aberrations and noise.

Keywords: wavefront sensing, deep learning, deployable telescope, space telescope

Procedia PDF Downloads 106
2680 Vision Aided INS for Soft Landing

Authors: R. Sri Karthi Krishna, A. Saravana Kumar, Kesava Brahmaji, V. S. Vinoj

Abstract:

The lunar surface may contain rough and non-uniform terrain with dips and peaks. Soft-landing is a method of landing the lander on the lunar surface without any damage to the vehicle. This project focuses on finding a safe landing site for the vehicle by developing a method for the lateral velocity determination of the lunar lander. This is done by processing the real time images obtained by means of an on-board vision sensor. The hazard avoidance phase of the soft-landing starts when the vehicle is about 200 m above the lunar surface. Here, the lander has a very low velocity of about 10 cm/s:vertical and 5 m/s:horizontal. On the detection of a hazard the lander is navigated by controlling the vertical and lateral velocity. In order to find an appropriate landing site and to accordingly navigate, the lander image processing is performed continuously. The images are taken continuously until the landing site is determined, and the lander safely lands on the lunar surface. By integrating this vision-based navigation with the INS a better accuracy for the soft-landing of the lunar lander can be obtained.

Keywords: vision aided INS, image processing, lateral velocity estimation, materials engineering

Procedia PDF Downloads 468