Search results for: cancer detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5321

Search results for: cancer detection

4121 Identification of Potent and Selective SIRT7 Anti-Cancer Inhibitor via Structure-Based Virtual Screening and Molecular Dynamics Simulation

Authors: Md. Fazlul Karim, Ashik Sharfaraz, Aysha Ferdoushi

Abstract:

Background: Computational medicinal chemistry approaches are used for designing and identifying new drug-like molecules, predicting properties and pharmacological activities, and optimizing lead compounds in drug development. SIRT7, a nicotinamide adenine dinucleotide (NAD+)-dependent deacylase which regulates aging, is an emerging target for cancer therapy with mounting evidence that SIRT7 downregulation plays important roles in reversing cancer phenotypes and suppressing tumor growth. Activation or altered expression of SIRT7 is associated with the progression and invasion of various cancers, including liver, breast, gastric, prostate, and non-small cell lung cancer. Objectives: The goal of this work was to identify potent and selective bioactive candidate inhibitors of SIRT7 by in silico screening of small molecule compounds obtained from Nigella sativa (N. sativa). Methods: SIRT7 structure was retrieved from The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), and its active site was identified using CASTp and metaPocket. Molecular docking simulation was performed with PyRx 0.8 virtual screening software. Drug-likeness properties were tested using SwissADME and pkCSM. In silico toxicity was evaluated by Osiris Property Explorer. Bioactivity was predicted by Molinspiration software. Antitumor activity was screened for Prediction of Activity Spectra for Substances (PASS) using Way2Drug web server. Molecular dynamics (MD) simulation was carried out by Desmond v3.6 package. Results: A total of 159 bioactive compounds from the N. Sativa were screened against the SIRT7 enzyme. Five bioactive compounds: chrysin (CID:5281607), pinocembrin (CID:68071), nigellidine (CID:136828302), nigellicine (CID:11402337), and epicatechin (CID:72276) were identified as potent SIRT7 anti-cancer candidates after docking score evaluation and applying Lipinski's Rule of Five. Finally, MD simulation identified Chrysin as the top SIRT7 anti-cancer candidate molecule. Conclusion: Chrysin, which shows a potential inhibitory effect against SIRT7, can act as a possible anti-cancer drug candidate. This inhibitor warrants further evaluation to check its pharmacokinetics and pharmacodynamics properties both in vitro and in vivo.

Keywords: SIRT7, antitumor, molecular docking, molecular dynamics simulation

Procedia PDF Downloads 76
4120 Off-Topic Text Detection System Using a Hybrid Model

Authors: Usama Shahid

Abstract:

Be it written documents, news columns, or students' essays, verifying the content can be a time-consuming task. Apart from the spelling and grammar mistakes, the proofreader is also supposed to verify whether the content included in the essay or document is relevant or not. The irrelevant content in any document or essay is referred to as off-topic text and in this paper, we will address the problem of off-topic text detection from a document using machine learning techniques. Our study aims to identify the off-topic content from a document using Echo state network model and we will also compare data with other models. The previous study uses Convolutional Neural Networks and TFIDF to detect off-topic text. We will rearrange the existing datasets and take new classifiers along with new word embeddings and implement them on existing and new datasets in order to compare the results with the previously existing CNN model.

Keywords: off topic, text detection, eco state network, machine learning

Procedia PDF Downloads 85
4119 Comprehensive Analysis of RNA m5C Regulator ALYREF as a Suppressive Factor of Anti-tumor Immune and a Potential Tumor Prognostic Marker in Pan-Cancer

Authors: Yujie Yuan, Yiyang Fan, Hong Fan

Abstract:

Objective: The RNA methylation recognition protein Aly/REF export factor (ALYREF) is considered one type of “reader” protein acting as a recognition protein of m5C, has been reported involved in several biological progresses including cancer initiation and progression. 5-methylcytosine (m5C) is a conserved and prevalent RNA modification in all species, as accumulating evidence suggests its role in the promotion of tumorigenesis. It has been claimed that ALYREF mediates nuclear export of mRNA with m5C modification and regulates biological effects of cancer cells. However, the systematical regulatory pathways of ALYREF in cancer tissues have not been clarified, yet. Methods: The expression level of ALYREF in pan-cancer and their normal tissues was compared through the data acquired from The Cancer Genome Atlas (TCGA). The University of Alabama at Birmingham Cancer data analysis Portal UALCAN was used to analyze the relationship between ALYREF and clinical pathological features. The relationship between the expression level of ALYREF and prognosis of pan-cancer, and the correlation genes of ALYREF were figured out by using Gene Expression Correlation Analysis database GEPIA. Immune related genes were obtained from TISIDB (an integrated repository portal for tumor-immune system interactions). Immune-related research was conducted by using Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) and TIMER. Results: Based on the data acquired from TCGA, ALYREF has an obviously higher-level expression in various types of cancers compared with relevant normal tissues excluding thyroid carcinoma and kidney chromophobe. The immunohistochemical images on The Human Protein Atlas showed that ALYREF can be detected in cytoplasm, membrane, but mainly located in nuclear. In addition, a higher expression level of ALYREF in tumor tissue generates a poor prognosis in majority of cancers. According to the above results, cancers with a higher expression level of ALYREF compared with normal tissues and a significant correlation between ALYREF and prognosis were selected for further analysis. By using TISIDB, we found that portion of ALYREF co-expression genes (such as BIRC5, H2AFZ, CCDC137, TK1, and PPM1G) with high Pearson correlation coefficient (PCC) were involved in anti-tumor immunity or affect resistance or sensitivity to T cell-mediated killing. Furthermore, based on the results acquired from GEPIA, there was significant correlation between ALYREF and PD-L1. It was exposed that there is a negative correlation between the expression level of ALYREF and ESTIMATE score. Conclusion: The present study indicated that ALYREF plays a vital and universal role in cancer initiation and progression of pan-cancer through regulating mitotic progression, DNA synthesis and metabolic process, and RNA processing. The correlation between ALYREF and PD-L1 implied ALYREF may affect the therapeutic effect of immunotherapy of tumor. More evidence revealed that ALYREF may play an important role in tumor immunomodulation. The correlation between ALYREF and immune cell infiltration level indicated that ALYREF can be a potential therapeutic target. Exploring the regulatory mechanism of ALYREF in tumor tissues may expose the reason for poor efficacy of immunotherapy and offer more directions of tumor treatment.

Keywords: ALYREF, pan-cancer, immunotherapy, PD-L1

Procedia PDF Downloads 69
4118 A Comprehensive Approach to Mitigate Return-Oriented Programming Attacks: Combining Operating System Protection Mechanisms and Hardware-Assisted Techniques

Authors: Zhang Xingnan, Huang Jingjia, Feng Yue, Burra Venkata Durga Kumar

Abstract:

This paper proposes a comprehensive approach to mitigate ROP (Return-Oriented Programming) attacks by combining internal operating system protection mechanisms and hardware-assisted techniques. Through extensive literature review, we identify the effectiveness of ASLR (Address Space Layout Randomization) and LBR (Last Branch Record) in preventing ROP attacks. We present a process involving buffer overflow detection, hardware-assisted ROP attack detection, and the use of Turing detection technology to monitor control flow behavior. We envision a specialized tool that views and analyzes the last branch record, compares control flow with a baseline, and outputs differences in natural language. This tool offers a graphical interface, facilitating the prevention and detection of ROP attacks. The proposed approach and tool provide practical solutions for enhancing software security.

Keywords: operating system, ROP attacks, returning-oriented programming attacks, ASLR, LBR, CFI, DEP, code randomization, hardware-assisted CFI

Procedia PDF Downloads 94
4117 MAGE-A3 and PRAME Gene Expression and EGFR Mutation Status in Non-Small-Cell Lung Cancer

Authors: Renata Checiches, Thierry Coche, Nicolas F. Delahaye, Albert Linder, Fernando Ulloa Montoya, Olivier Gruselle, Karen Langfeld, An de Creus, Bart Spiessens, Vincent G. Brichard, Jamila Louahed, Frédéric F. Lehmann

Abstract:

Background: The RNA-expression levels of cancer-testis antigens MAGE A3 and PRAME were determined in resected tissue from patients with primary non-small-cell lung cancer (NSCLC) and related to clinical outcome. EGFR, KRAS and BRAF mutation status was determined in a subset to investigate associations with MAGE A3 and PRAME expression. Methods: We conducted a single-centre, uncontrolled, retrospective study of 1260 tissue-bank samples from stage IA-III resected NSCLC. The prognostic value of antigen expression (qRT-PCR) was determined by hazard-ratio and Kaplan-Meier curves. Results: Thirty-seven percent (314/844) of tumours expressed MAGE-A3, 66% (723/1092) expressed PRAME and 31% (239/839) expressed both. Respective frequencies in squamous-cell tumours and adenocarcinomas were 43%/30% for MAGE A3 and 80%/44% for PRAME. No correlation with stage, tumour size or patient age was found. Overall, no prognostic value was identified for either antigen. A trend to poorer overall survival was associated with MAGE-A3 in stage IIIB and with PRAME in stage IB. EGFR and KRAS mutations were found in 10.1% (28/311) and 33.8% (97/311) of tumours, respectively. EGFR (but not KRAS) mutation status was negatively associated with PRAME expression. Conclusion: No clear prognostic value for either PRAME or MAGE A3 was observed in the overall population, although some observed trends may warrant further investigation.

Keywords: MAGE A3, PRAME, cancer-testis gene, NSCLC, survival, EGFR

Procedia PDF Downloads 381
4116 Designed Purine Molecules and in-silico Evaluation of Aurora Kinase Inhibition in Breast Cancer

Authors: Pooja Kumari, Anandkumar Tengli

Abstract:

Aurora kinase enzyme, a protein on overexpression, leads to metastasis and is extremely important for women’s health in terms of prevention or treatment. While creating a targeted technique, the aim of the work is to design purine molecules that inhibit in aurora kinase enzyme and helps to suppress breast cancer. Purine molecules attached to an amino acid in DNA block protein synthesis or halt the replication and metastasis caused by the aurora kinase enzyme. Various protein related to the overexpression of aurora protein was docked with purine molecule using Biovia Drug Discovery, the perpetual software. Various parameters like X-ray crystallographic structure, presence of ligand, Ramachandran plot, resolution, etc., were taken into consideration for selecting the target protein. A higher negative binding scored molecule has been taken for simulation studies. According to the available research and computational analyses, purine compounds may be powerful enough to demonstrate a greater affinity for the aurora target. Despite being clinically effective now, purines were originally meant to fight breast cancer by inhibiting the aurora kinase enzyme. In in-silico studies, it is observed that purine compounds have a moderate to high potency compared to other molecules, and our research into the literature revealed that purine molecules have a lower risk of side effects. The research involves the design, synthesis, and identification of active purine molecules against breast cancer. Purines are structurally similar to the normal metabolites of adenine and guanine; hence interfere/compete with protein synthesis and suppress the abnormal proliferation of cells/tissues. As a result, purine target metastasis cells and stop the growth of kinase; purine derivatives bind with DNA and aurora protein which may stop the growth of protein or inhibits replication and stop metastasis of overexpressed aurora kinase enzyme.

Keywords: aurora kinases, in silico studies, medicinal chemistry, combination therapies, chronic cancer, clinical translation

Procedia PDF Downloads 84
4115 Graphene-Based Nanobiosensors and Lab on Chip for Sensitive Pesticide Detection

Authors: Martin Pumera

Abstract:

Graphene materials are being widely used in electrochemistry due to their versatility and excellent properties as platforms for biosensing. Here we present current trends in the electrochemical biosensing of pesticides and other toxic compounds. We explore two fundamentally different designs, (i) using graphene and other 2-D nanomaterials as an electrochemical platform and (ii) using these nanomaterials in the laboratory on chip design, together with paramagnetic beads. More specifically: (i) We explore graphene as transducer platform with very good conductivity, large surface area, and fast heterogeneous electron transfer for the biosensing. We will present the comparison of these materials and of the immobilization techniques. (ii) We present use of the graphene in the laboratory on chip systems. Laboratory on the chip had a huge advantage due to small footprint, fast analysis times and sample handling. We will show the application of these systems for pesticide detection and detection of other toxic compounds.

Keywords: graphene, 2D nanomaterials, biosensing, chip design

Procedia PDF Downloads 548
4114 A Novel Bio-ceramic Using Hyperthermia for Bone Cancer Therapy, Ferro-substituted Silicate Calcium Materials

Authors: hassan gheisari

Abstract:

Ferro silicate calcium nano particles are prepared through the sol-gel method using polyvinyl alcohol (PVA) as a chelating agent. The powder, as prepared, is annealed at three different temperatures (900 ºC, 1000 ºC, and 1100 ºC) for 3 h. The XRD patterns of the samples indicate broad peaks, and the full width at half maximum decreased with increasing annealing temperature. FTIR spectra of the samples confirm the presence of metal - oxygen complexes within the structure. The average particle size obtained from PSA curve demonstrates ultrafine particles. SEM micrographs indicate the particles synthesized have spherical morphology. The saturation magnetization (Ms) and remnant magnetization (Mr) of the samples show dependence on particle size and crystallinity of the samples. The highest saturation magnetization is achieved for the sample annealed at 1100 ºC having maximum average particle size. The high saturation magnetization of the samples suggests the present method is suitable for obtaining nano particles magnetic ferro bioceramic, which is desirable for practical applications such as hyperthermia bone cancer therapy.

Keywords: hyperthermia, bone cancer, bio ceramic; magnetic materials; sol– gel, silicate calcium

Procedia PDF Downloads 73
4113 Ferro-Substituted Silicate Calcium Materials, a Novel Bio-Ceramic Using Hyperthermia for Bone Cancer Therapy

Authors: Hassan Gheisari

Abstract:

Ferro silicate calcium nano particles are prepared through the sol-gel method using polyvinyl alcohol (PVA) as a chelating agent. The powder as prepared is annealed at three different temperatures (900 ºC, 1000 ºC and 1100 ºC) for 3 h. The XRD patterns of the samples indicate broad peaks and the full width at half maximum decreased with increasing annealing temperature. FTIR spectra of the samples confirm the presence of metal - oxygen complexes within the structure. The average particle size obtained from PSA curve demonstrates ultrafine particles. SEM micrographs indicate the particles synthesized have spherical morphology. The saturation magnetization (Ms) and remnant magnetization (Mr) of the samples show dependence on particle size and crystallinity of the samples. The highest saturation magnetization is achieved for the sample annealed at 1100 ºC having maximum average particle size. The high saturation magnetization of the samples suggests the present method is suitable for obtaining nano particles magnetic ferro bioceramic which is desirable for practical applications such as hyperthermia bone cancer therapy.

Keywords: hyperthermia, bone cancer, bio ceramic, magnetic materials, sol– gel, silicate calcium

Procedia PDF Downloads 308
4112 Instance Segmentation of Wildfire Smoke Plumes using Mask-RCNN

Authors: Jamison Duckworth, Shankarachary Ragi

Abstract:

Detection and segmentation of wildfire smoke plumes from remote sensing imagery are being pursued as a solution for early fire detection and response. Smoke plume detection can be automated and made robust by the application of artificial intelligence methods. Specifically, in this study, the deep learning approach Mask Region-based Convolutional Neural Network (RCNN) is being proposed to learn smoke patterns across different spectral bands. This method is proposed to separate the smoke regions from the background and return masks placed over the smoke plumes. Multispectral data was acquired using NASA’s Earthdata and WorldView and services and satellite imagery. Due to the use of multispectral bands along with the three visual bands, we show that Mask R-CNN can be applied to distinguish smoke plumes from clouds and other landscape features that resemble smoke.

Keywords: deep learning, mask-RCNN, smoke plumes, spectral bands

Procedia PDF Downloads 126
4111 Effect of Radiotherapy/Chemotherapy Protocol on the Gut Microbiome in Pediatric Cancer Patients

Authors: Nourhan G. Sahly, Ahmed Moustafa, Mohamed S. Zaghloul, Tamer Z. Salem

Abstract:

The gut microbiome plays important roles in the human body that includes but not limited to digestion, immunity, homeostasis and response to some drugs such as chemotherapy and immunotherapy. Its role has also been linked to radiotherapy and associated gastrointestinal injuries, where the microbial dysbiosis could be the driving force for dose determination or the complete suspension of the treatment protocol. Linking the gut microbiota alterations to different cancer treatment protocols is not easy especially in humans. However, enormous effort was exerted to understand this complex relationship. In the current study, we described the gut microbiota dysbiosis in pediatric sarcoma patients, in the pelvic region, with regards to radiotherapy and antibiotics. Fecal samples were collected as a source of microbial DNA for which the gene encoding for V3-V5 regions of 16S rRNA was sequenced. Two of the three patients understudy had experienced an increase in alpha diversity post exposure to 50.4 Gy. Although phylum Firmicutes overall relative abundance has generally decreased, six of its taxa increased in all patients. Our results may indicate the possibility of radiosensitivity or enrichment of the antibiotic resistance of the elevated taxa. Further studies are needed to describe the extent of radiosensitivity with regards to antibiotic resistance.

Keywords: combined radiotherapy and chemotherapy, gut microbiome, pediatric cancer, radiosensitivity

Procedia PDF Downloads 147
4110 Advanced Concrete Crack Detection Using Light-Weight MobileNetV2 Neural Network

Authors: Li Hui, Riyadh Hindi

Abstract:

Concrete structures frequently suffer from crack formation, a critical issue that can significantly reduce their lifespan by allowing damaging agents to enter. Traditional methods of crack detection depend on manual visual inspections, which heavily relies on the experience and expertise of inspectors using tools. In this study, a more efficient, computer vision-based approach is introduced by using the lightweight MobileNetV2 neural network. A dataset of 40,000 images was used to develop a specialized crack evaluation algorithm. The analysis indicates that MobileNetV2 matches the accuracy of traditional CNN methods but is more efficient due to its smaller size, making it well-suited for mobile device applications. The effectiveness and reliability of this new method were validated through experimental testing, highlighting its potential as an automated solution for crack detection in concrete structures.

Keywords: Concrete crack, computer vision, deep learning, MobileNetV2 neural network

Procedia PDF Downloads 65
4109 Spontaneous and Posed Smile Detection: Deep Learning, Traditional Machine Learning, and Human Performance

Authors: Liang Wang, Beste F. Yuksel, David Guy Brizan

Abstract:

A computational model of affect that can distinguish between spontaneous and posed smiles with no errors on a large, popular data set using deep learning techniques is presented in this paper. A Long Short-Term Memory (LSTM) classifier, a type of Recurrent Neural Network, is utilized and compared to human classification. Results showed that while human classification (mean of 0.7133) was above chance, the LSTM model was more accurate than human classification and other comparable state-of-the-art systems. Additionally, a high accuracy rate was maintained with small amounts of training videos (70 instances). The derivation of important features to further understand the success of our computational model were analyzed, and it was inferred that thousands of pairs of points within the eyes and mouth are important throughout all time segments in a smile. This suggests that distinguishing between a posed and spontaneous smile is a complex task, one which may account for the difficulty and lower accuracy of human classification compared to machine learning models.

Keywords: affective computing, affect detection, computer vision, deep learning, human-computer interaction, machine learning, posed smile detection, spontaneous smile detection

Procedia PDF Downloads 124
4108 Advanced Techniques in Semiconductor Defect Detection: An Overview of Current Technologies and Future Trends

Authors: Zheng Yuxun

Abstract:

This review critically assesses the advancements and prospective developments in defect detection methodologies within the semiconductor industry, an essential domain that significantly affects the operational efficiency and reliability of electronic components. As semiconductor devices continue to decrease in size and increase in complexity, the precision and efficacy of defect detection strategies become increasingly critical. Tracing the evolution from traditional manual inspections to the adoption of advanced technologies employing automated vision systems, artificial intelligence (AI), and machine learning (ML), the paper highlights the significance of precise defect detection in semiconductor manufacturing by discussing various defect types, such as crystallographic errors, surface anomalies, and chemical impurities, which profoundly influence the functionality and durability of semiconductor devices, underscoring the necessity for their precise identification. The narrative transitions to the technological evolution in defect detection, depicting a shift from rudimentary methods like optical microscopy and basic electronic tests to more sophisticated techniques including electron microscopy, X-ray imaging, and infrared spectroscopy. The incorporation of AI and ML marks a pivotal advancement towards more adaptive, accurate, and expedited defect detection mechanisms. The paper addresses current challenges, particularly the constraints imposed by the diminutive scale of contemporary semiconductor devices, the elevated costs associated with advanced imaging technologies, and the demand for rapid processing that aligns with mass production standards. A critical gap is identified between the capabilities of existing technologies and the industry's requirements, especially concerning scalability and processing velocities. Future research directions are proposed to bridge these gaps, suggesting enhancements in the computational efficiency of AI algorithms, the development of novel materials to improve imaging contrast in defect detection, and the seamless integration of these systems into semiconductor production lines. By offering a synthesis of existing technologies and forecasting upcoming trends, this review aims to foster the dialogue and development of more effective defect detection methods, thereby facilitating the production of more dependable and robust semiconductor devices. This thorough analysis not only elucidates the current technological landscape but also paves the way for forthcoming innovations in semiconductor defect detection.

Keywords: semiconductor defect detection, artificial intelligence in semiconductor manufacturing, machine learning applications, technological evolution in defect analysis

Procedia PDF Downloads 49
4107 Breast Cancer Cellular Immunotherapies

Authors: Zahra Shokrolahi, Mohammad Reza Atashzar

Abstract:

The goals of treating patients with breast cancer are to cure the disease, prolong survival, and improve quality of life. Immune cells in the tumor microenvironment have an important role in regulating tumor progression. The term of cellular immunotherapy refers to the administration of living cells to a patient; this type of immunotherapy can be active, such as a dendritic cell (DC) vaccine, in that the cells can stimulate an anti-tumour response in the patient, or the therapy can be passive, whereby the cells have intrinsic anti-tumour activity; this is known as adoptive cell transfer (ACT) and includes the use of autologous or allogeneic lymphocytes that may, or may not, be modified. The most important breast cancer cellular immunotherapies involving the use of T cells and natural killer (NK) cells in adoptive cell transfer, as well as dendritic cells vaccines. T cell-based therapies including tumour-infiltrating lymphocytes (TILs), engineered TCR-T cells, chimeric antigen receptor (CAR T cell), Gamma-delta (γδ) T cells, natural killer T (NKT) cells. NK cell-based therapies including lymphokine-activated killers (LAK), cytokine-induced killer (CIK) cells, CAR-NK cells. Adoptive cell therapy has some advantages and disadvantages some. TILs cell strictly directed against tumor-specific antigens but are inactive against tumor changes due to immunoediting. CIK cell have MHC-independent cytotoxic effect and also need concurrent high dose IL-2 administration. CAR T cell are MHC-independent; overcome tumor MHC molecule downregulation; potent in recognizing any cell surface antigen (protein, carbohydrate or glycolipid); applicable to a broad range of patients and T cell populations; production of large numbers of tumor-specific cells in a moderately short period of time. Meanwhile CAR T cells capable of targeting only cell surface antigens; lethal toxicity due to cytokine storm reported. Here we present the most popular cancer cellular immunotherapy approaches and discuss their clinical relevance referring to data acquired from clinical trials .To date, clinical experience and efficacy suggest that combining more than one immunotherapy interventions, in conjunction with other treatment options like chemotherapy, radiotherapy and targeted or epigenetic therapy, should guide the way to cancer cure.

Keywords: breast cancer , cell therapy , CAR T cell , CIK cells

Procedia PDF Downloads 129
4106 Detection and Identification of Chlamydophila psittaci in Asymptomatic and Symptomatic Parrots in Isfahan

Authors: Mehdi Moradi Sarmeidani, Peyman Keyhani, Hasan Momtaz

Abstract:

Chlamydophila psittaci is a avian pathogen that may cause respiratory disorders in humans. Conjunctival and cloacal swabs from 54 captive psittacine birds presented at veterinary clinics were collected to determine the prevalence of C. psittaci in domestic birds in Isfahan. Samples were collected during 2014 from a total of 10 different species of parrots, with African gray(33), Cockatiel lutino(3), Cockatiel gray(2), Cockatiel cinnamon(1), Pearl cockatiel(6), Timneh African grey(1), Ringneck parakeet(2), Melopsittacus undulatus(1), Alexander parakeet(2), Green Parakeet(3) being the most representative species sampled. C. psittaci was detected in 27 (50%) birds using molecular detection (PCR) method. The detection of this bacterium in captive psittacine birds shows that there is a potential risk for human whom has a direct contact and there is a possibility of infecting other birds.

Keywords: chlamydophila psittaci, psittacine birds, PCR, Isfahan

Procedia PDF Downloads 369
4105 Failure Detection in an Edge Cracked Tapered Pipe Conveying Fluid Using Finite Element Method

Authors: Mohamed Gaith, Zaid Haddadin, Abdulah Wahbe, Mahmoud Hamam, Mahmoud Qunees, Mohammad Al Khatib, Mohammad Bsaileh, Abd Al-Aziz Jaber, Ahmad Aqra’a

Abstract:

The crack is one of the most common types of failure in pipelines that convey fluid, and early detection of the crack may assist to avoid the piping system from experiencing catastrophic damage, which would otherwise be fatal. The influence of flow velocity and the presence of a crack on the performance of a tapered simply supported pipe containing moving fluid is explored using the finite element approach in this study. ANSYS software is used to simulate the pipe as Bernoulli's beam theory. In this paper, the fluctuation of natural frequencies and matching mode shapes for various scenarios owing to changes in fluid speed and the presence of damage is discussed in detail.

Keywords: damage detection, finite element, tapered pipe, vibration characteristics

Procedia PDF Downloads 167
4104 Nanomaterial Based Electrochemical Sensors for Endocrine Disrupting Compounds

Authors: Gaurav Bhanjana, Ganga Ram Chaudhary, Sandeep Kumar, Neeraj Dilbaghi

Abstract:

Main sources of endocrine disrupting compounds in the ecosystem are hormones, pesticides, phthalates, flame retardants, dioxins, personal-care products, coplanar polychlorinated biphenyls (PCBs), bisphenol A, and parabens. These endocrine disrupting compounds are responsible for learning disabilities, brain development problems, deformations of the body, cancer, reproductive abnormalities in females and decreased sperm count in human males. Although discharge of these chemical compounds into the environment cannot be stopped, yet their amount can be retarded through proper evaluation and detection techniques. The available techniques for determination of these endocrine disrupting compounds mainly include high performance liquid chromatography (HPLC), mass spectroscopy (MS) and gas chromatography-mass spectrometry (GC–MS). These techniques are accurate and reliable but have certain limitations like need of skilled personnel, time consuming, interference and requirement of pretreatment steps. Moreover, these techniques are laboratory bound and sample is required in large amount for analysis. In view of above facts, new methods for detection of endocrine disrupting compounds should be devised that promise high specificity, ultra sensitivity, cost effective, efficient and easy-to-operate procedure. Nowadays, electrochemical sensors/biosensors modified with nanomaterials are gaining high attention among researchers. Bioelement present in this system makes the developed sensors selective towards analyte of interest. Nanomaterials provide large surface area, high electron communication feature, enhanced catalytic activity and possibilities of chemical modifications. In most of the cases, nanomaterials also serve as an electron mediator or electrocatalyst for some analytes.

Keywords: electrochemical, endocrine disruptors, microscopy, nanoparticles, sensors

Procedia PDF Downloads 272
4103 Performance Parameters of an Abbreviated Breast MRI Protocol

Authors: Andy Ho

Abstract:

Breast cancer is a common cancer in Australia. Early diagnosis is crucial for improving patient outcomes, as later-stage detection correlates with poorer prognoses. While multiparametric MRI offers superior sensitivity in detecting invasive and high-grade breast cancers compared to conventional mammography, its extended scan duration and high costs limit widespread application. As a result, full protocol MRI screening is typically reserved for patients at elevated risk. Recent advancements in imaging technology have facilitated the development of Abbreviated MRI protocols, which dramatically reduce scan times (<10 minutes compared to >30 minutes for full protocol). The potential for Abbreviated MRI to offer a more time- and cost-efficient alternative has implications for improving patient accessibility, reducing appointment durations, and enhancing compliance—especially relevant for individuals requiring regular annual screening over several decades. The purpose of this study is to assess the diagnostic efficacy of Abbreviated MRI for breast cancer screening among high-risk patients at the Royal Prince Alfred Hospital (RPA). This study aims to determine the sensitivity, specificity, and inter-reader variability of Abbreviated MRI protocols when interpreted by subspecialty-trained Breast Radiologists. A systematic review of the RPA’s electronic Picture Archive and Communication System identified high-risk patients, defined by Australian ‘Medicare Benefits Schedule’ criteria, who underwent Breast MRI from 2021 to 2022. Eligible participants included asymptomatic patients under 50 years old and referred by the High-Risk Clinic due to a high-risk genetic profile or relevant familial history. The MRIs were anonymized, randomized, and interpreted by four Breast Radiologists, each independently completing standardized proforma evaluations. Radiological findings were compared against histopathology as the gold standard or follow-up imaging if biopsies were unavailable. Statistical metrics, including sensitivity, specificity, and inter-reader variability, were assessed. The Fleiss-Kappa analysis demonstrated a fair inter-reader agreement (kappa = 0.25; 95% CI: 0.19–0.32; p < 0.0001). The sensitivity for detecting malignancies was 0.72, with a specificity of 0.92. For benign lesions, sensitivity and specificity were 0.844 and 0.73, respectively. These findings underline the potential of Abbreviated MRI as a reliable screening tool for malignancies with significant specificity, though reduced sensitivity highlights the importance of robust radiologist training and consistent evaluation standards. Abbreviated MRI protocols exhibit promise as a viable screening option for high-risk patients, combining reduced scan times and acceptable diagnostic accuracy. Further work to refine interpretation practices and optimize training is essential to maximize the protocol’s utility in routine clinical screening and facilitate broader accessibility.

Keywords: abbreviated, breast, cancer, MRI

Procedia PDF Downloads 6
4102 Analysis of Detection Concealed Objects Based on Multispectral and Hyperspectral Signatures

Authors: M. Kastek, M. Kowalski, M. Szustakowski, H. Polakowski, T. Sosnowski

Abstract:

Development of highly efficient security systems is one of the most urgent topics for science and engineering. There are many kinds of threats and many methods of prevention. It is very important to detect a threat as early as possible in order to neutralize it. One of the very challenging problems is detection of dangerous objects hidden under human’s clothing. This problem is particularly important for safety of airport passengers. In order to develop methods and algorithms to detect hidden objects it is necessary to determine the thermal signatures of such objects of interest. The laboratory measurements were conducted to determine the thermal signatures of dangerous tools hidden under various clothes in different ambient conditions. Cameras used for measurements were working in spectral range 0.6-12.5 μm An infrared imaging Fourier transform spectroradiometer was also used, working in spectral range 7.7-11.7 μm. Analysis of registered thermograms and hyperspectral datacubes has yielded the thermal signatures for two types of guns, two types of knives and home-made explosive bombs. The determined thermal signatures will be used in the development of method and algorithms of image analysis implemented in proposed monitoring systems.

Keywords: hyperspectral detection, nultispectral detection, image processing, monitoring systems

Procedia PDF Downloads 347
4101 Automatic Seizure Detection Using Weighted Permutation Entropy and Support Vector Machine

Authors: Noha Seddik, Sherine Youssef, Mohamed Kholeif

Abstract:

The automated epileptic seizure detection research field has emerged in the recent years; this involves analyzing the Electroencephalogram (EEG) signals instead of the traditional visual inspection performed by expert neurologists. In this study, a Support Vector Machine (SVM) that uses Weighted Permutation Entropy (WPE) as the input feature is proposed for classifying normal and seizure EEG records. WPE is a modified statistical parameter of the permutation entropy (PE) that measures the complexity and irregularity of a time series. It incorporates both the mapped ordinal pattern of the time series and the information contained in the amplitude of its sample points. The proposed system utilizes the fact that entropy based measures for the EEG segments during epileptic seizure are lower than in normal EEG.

Keywords: electroencephalogram (EEG), epileptic seizure detection, weighted permutation entropy (WPE), support vector machine (SVM)

Procedia PDF Downloads 366
4100 Survey of Indoor Radon/Thoron Concentrations in High Lung Cancer Incidence Area in India

Authors: Zoliana Bawitlung, P. C. Rohmingliana, L. Z. Chhangte, Remlal Siama, Hming Chungnunga, Vanram Lawma, L. Hnamte, B. K. Sahoo, B. K. Sapra, J. Malsawma

Abstract:

Mizoram state has the highest lung cancer incidence rate in India due to its high-level consumption of tobacco and its products which is supplemented by the food habits. While smoking is mainly responsible for this incidence, the effect of inhalation of indoor radon gas cannot be discarded as the hazardous nature of this radioactive gas and its progenies on human population have been well-established worldwide where the radiation damage to bronchial cells eventually can be the second leading cause of lung cancer next to smoking. It is also known that the effect of radiation, however, small may be the concentration, cannot be neglected as they can bring about the risk of cancer incidence. Hence, estimation of indoor radon concentration is important to give a useful reference against radiation effects as well as establishing its safety measures and to create a baseline for further case-control studies. The indoor radon/thoron concentrations in Mizoram had been measured in 41 dwellings selected on the basis of spot gamma background radiation and construction type of the houses during 2015-2016. The dwellings were monitored for one year, in 4 months cycles to indicate seasonal variations, for the indoor concentration of radon gas and its progenies, outdoor gamma dose, and indoor gamma dose respectively. A time-integrated method using Solid State Nuclear Track Detector (SSNTD) based single entry pin-hole dosimeters were used for measurement of indoor Radon/Thoron concentration. Gamma dose measurements for indoor as well as outdoor were carried out using Geiger Muller survey meters. Seasonal variation of indoor radon/ thoron concentration was monitored. The results show that the annual average radon concentrations varied from 54.07 – 144.72 Bq/m³ with an average of 90.20 Bq/m³ and the annual average thoron concentration varied from 17.39 – 54.19 Bq/m³ with an average of 35.91 Bq/m³ which are below the permissible limit. The spot survey of gamma background radiation level varies between 9 to 24 µR/h inside and outside the dwellings throughout Mizoram which are all within acceptable limits. From the above results, there is no direct indication that radon/thoron is responsible for the high lung cancer incidence in the area. In order to find epidemiological evidence of natural radiations to high cancer incidence in the area, one may need to conduct a case-control study which is beyond this scope. However, the derived data of measurement will provide baseline data for further studies.

Keywords: background gamma radiation, indoor radon/thoron, lung cancer, seasonal variation

Procedia PDF Downloads 140
4099 An Autopilot System for Static Zone Detection

Authors: Yanchun Zuo, Yingao Liu, Wei Liu, Le Yu, Run Huang, Lixin Guo

Abstract:

Electric field detection is important in many application scenarios. The traditional strategy is measuring the electric field with a man walking around in the area under test. This strategy cannot provide a satisfactory measurement accuracy. To solve the mentioned problem, an autopilot measurement system is divided. A mini-car is produced, which can travel in the area under test according to respect to the program within the CPU. The electric field measurement platform (EFMP) carries a central computer, two horn antennas, and a vector network analyzer. The mini-car stop at the sampling points according to the preset. When the car stops, the EFMP probes the electric field and stores data on the hard disk. After all the sampling points are traversed, an electric field map can be plotted. The proposed system can give an accurate field distribution description of the chamber.

Keywords: autopilot mini-car measurement system, electric field detection, field map, static zone measurement

Procedia PDF Downloads 99
4098 Lexical Based Method for Opinion Detection on Tripadvisor Collection

Authors: Faiza Belbachir, Thibault Schienhinski

Abstract:

The massive development of online social networks allows users to post and share their opinions on various topics. With this huge volume of opinion, it is interesting to extract and interpret these information for different domains, e.g., product and service benchmarking, politic, system of recommendation. This is why opinion detection is one of the most important research tasks. It consists on differentiating between opinion data and factual data. The difficulty of this task is to determine an approach which returns opinionated document. Generally, there are two approaches used for opinion detection i.e. Lexical based approaches and Machine Learning based approaches. In Lexical based approaches, a dictionary of sentimental words is used, words are associated with weights. The opinion score of document is derived by the occurrence of words from this dictionary. In Machine learning approaches, usually a classifier is trained using a set of annotated document containing sentiment, and features such as n-grams of words, part-of-speech tags, and logical forms. Majority of these works are based on documents text to determine opinion score but dont take into account if these texts are really correct. Thus, it is interesting to exploit other information to improve opinion detection. In our work, we will develop a new way to consider the opinion score. We introduce the notion of trust score. We determine opinionated documents but also if these opinions are really trustable information in relation with topics. For that we use lexical SentiWordNet to calculate opinion and trust scores, we compute different features about users like (numbers of their comments, numbers of their useful comments, Average useful review). After that, we combine opinion score and trust score to obtain a final score. We applied our method to detect trust opinions in TRIPADVISOR collection. Our experimental results report that the combination between opinion score and trust score improves opinion detection.

Keywords: Tripadvisor, opinion detection, SentiWordNet, trust score

Procedia PDF Downloads 198
4097 A Left Testicular Cancer with Multiple Metastases Nursing Experience

Authors: Syue-Wen Lin

Abstract:

Objective:This article reviews the care experience of a 40-year-old male patient who underwent a thoracoscopic right lower lobectomy following a COVID-19 infection. His complex medical history included multiple metastases (lungs, liver, spleen, and left kidney) and lung damage from COVID-19, which complicated the weaning process from mechanical ventilation. The care involved managing cancer treatment, postoperative pain, wound care, and palliative care. Methods:Nursing care was provided from August 16 to August 17, 2024. Challenges included difficulty with sputum clearance, which exacerbated the patient's anxiety and fear of reintubation. Pain management strategies combined analgesic drugs, non-drug methods, essential oil massages with family members, and playing the patient’s favorite music to reduce pain and anxiety. Progressive rehabilitation began with stabilizing vital signs, followed by assistance with sitting on the edge of the bed and walking within the ward. Strict sterile procedures and advanced wound care technology were used for daily dressing changes, with meticulous documentation of wound conditions and appropriate dressing selection. Holistic cancer care and palliative measures were integrated to address the patient’s physical and psychological needs. Results:The interdisciplinary care team developed a comprehensive plan addressing both physical and psychological aspects. Respiratory therapy, lung expansion exercises, and a high-frequency chest wall oscillation vest facilitated sputum expulsion and assisted in weaning from mechanical ventilation. The integration of cancer care, pain management, wound care, and palliative care led to improved quality of life and recovery. The collaborative approach between nursing staff and family ensured that the patient received compassionate and effective care. Conclusion: The complex interplay of emergency surgery, COVID-19, and advanced cancer required a multifaceted care strategy. The care team’s approach, combining critical care with tailored cancer and palliative care, effectively improved the patient’s quality of life and facilitated recovery. The comprehensive care plan, developed with family collaboration, provided both high-quality medical care and compassionate support for the terminally ill patient.

Keywords: multiple metastases, testicular cancer, palliative care, nursing experience

Procedia PDF Downloads 21
4096 Hybrid Hierarchical Clustering Approach for Community Detection in Social Network

Authors: Radhia Toujani, Jalel Akaichi

Abstract:

Social Networks generally present a hierarchy of communities. To determine these communities and the relationship between them, detection algorithms should be applied. Most of the existing algorithms, proposed for hierarchical communities identification, are based on either agglomerative clustering or divisive clustering. In this paper, we present a hybrid hierarchical clustering approach for community detection based on both bottom-up and bottom-down clustering. Obviously, our approach provides more relevant community structure than hierarchical method which considers only divisive or agglomerative clustering to identify communities. Moreover, we performed some comparative experiments to enhance the quality of the clustering results and to show the effectiveness of our algorithm.

Keywords: agglomerative hierarchical clustering, community structure, divisive hierarchical clustering, hybrid hierarchical clustering, opinion mining, social network, social network analysis

Procedia PDF Downloads 364
4095 In silico Repopulation Model of Various Tumour Cells during Treatment Breaks in Head and Neck Cancer Radiotherapy

Authors: Loredana G. Marcu, David Marcu, Sanda M. Filip

Abstract:

Advanced head and neck cancers are aggressive tumours, which require aggressive treatment. Treatment efficiency is often hindered by cancer cell repopulation during radiotherapy, which is due to various mechanisms triggered by the loss of tumour cells and involves both stem and differentiated cells. The aim of the current paper is to present in silico simulations of radiotherapy schedules on a virtual head and neck tumour grown with biologically realistic kinetic parameters. Using the linear quadratic formalism of cell survival after radiotherapy, altered fractionation schedules employing various treatment breaks for normal tissue recovery are simulated and repopulation mechanism implemented in order to evaluate the impact of various cancer cell contribution on tumour behaviour during irradiation. The model has shown that the timing of treatment breaks is an important factor influencing tumour control in rapidly proliferating tissues such as squamous cell carcinomas of the head and neck. Furthermore, not only stem cells but also differentiated cells, via the mechanism of abortive division, can contribute to malignant cell repopulation during treatment.

Keywords: radiation, tumour repopulation, squamous cell carcinoma, stem cell

Procedia PDF Downloads 265
4094 Evaluation of the Cytotoxicity and Cellular Uptake of a Cyclodextrin-Based Drug Delivery System for Cancer Therapy

Authors: Caroline Mendes, Mary McNamara, Orla Howe

Abstract:

Drug delivery systems are proposed for use in cancer treatment to specifically target cancer cells and deliver a therapeutic dose without affecting normal cells. For that purpose, the use of folate receptors (FR) can be considered a key strategy, since they are commonly over-expressed in cancer cells. In this study, cyclodextrins (CD) have being used as vehicles to target FR and deliver the chemotherapeutic drug, methotrexate (MTX). CDs have the ability to form inclusion complexes, in which molecules of suitable dimensions are included within their cavities. Here, β-CD has been modified using folic acid so as to specifically target the FR. Thus, this drug delivery system consists of β-CD, folic acid and MTX (CDEnFA:MTX). Cellular uptake of folic acid is mediated with high affinity by folate receptors while the cellular uptake of antifolates, such as MTX, is mediated with high affinity by the reduced folate carriers (RFCs). This study addresses the gene (mRNA) and protein expression levels of FRs and RFCs in the cancer cell lines CaCo-2, SKOV-3, HeLa, MCF-7, A549 and the normal cell line BEAS-2B, quantified by real-time polymerase chain reaction (real-time PCR) and flow cytometry, respectively. From that, four cell lines with different levels of FRs, were chosen for cytotoxicity assays of MTX and CDEnFA:MTX using the MTT assay. Real-time PCR and flow cytometry data demonstrated that all cell lines ubiquitously express moderate levels of RFC. These experiments have also shown that levels of FR protein in CaCo-2 cells are high, while levels in SKOV-3, HeLa and MCF-7 cells are moderate. A549 and BEAS-2B cells express low levels of FR protein. FRs are highly expressed in all the cancer cell lines analysed when compared to the normal cell line BEAS-2B. The cell lines CaCo-2, MCF-7, A549 and BEAS-2B were used in the cell viability assays. 48 hours treatment with the free drug and the complex resulted in IC50 values of 93.9 µM ± 15.2 and 56.0 µM ± 4.0 for CaCo-2 for free MTX and CDEnFA:MTX respectively, 118.2 µM ± 16.8 and 97.8 µM ± 12.3 for MCF-7, 36.4 µM ± 6.9 and 75.0 µM ± 10.5 for A549 and 132.6 µM ± 16.1 and 288.1 µM ± 26.3 for BEAS-2B. These results demonstrate that free MTX is more toxic towards cell lines expressing low levels of FR, such as the BEAS-2B. More importantly, these results demonstrate that the inclusion complex CDEnFA:MTX showed greater cytotoxicity than the free drug towards the high FR expressing CaCo-2 cells, indicating that it has potential to target this receptor, enhancing the specificity and the efficiency of the drug. The use of cell imaging by confocal microscopy has allowed visualisation of FR targeting in cancer cells, as well as the identification of the interlisation pathway of the drug. Hence, the cellular uptake and internalisation process of this drug delivery system is being addressed.

Keywords: cancer treatment, cyclodextrins, drug delivery, folate receptors, reduced folate carriers

Procedia PDF Downloads 309
4093 CsPbBr₃@MOF-5-Based Single Drop Microextraction for in-situ Fluorescence Colorimetric Detection of Dechlorination Reaction

Authors: Yanxue Shang, Jingbin Zeng

Abstract:

Chlorobenzene homologues (CBHs) are a category of environmental pollutants that can not be ignored. They can stay in the environment for a long period and are potentially carcinogenic. The traditional degradation method of CBHs is dechlorination followed by sample preparation and analysis. This is not only time-consuming and laborious, but the detection and analysis processes are used in conjunction with large-scale instruments. Therefore, this can not achieve rapid and low-cost detection. Compared with traditional sensing methods, colorimetric sensing is simpler and more convenient. In recent years, chromaticity sensors based on fluorescence have attracted more and more attention. Compared with sensing methods based on changes in fluorescence intensity, changes in color gradients are easier to recognize by the naked eye. Accordingly, this work proposes to use single drop microextraction (SDME) technology to solve the above problems. After the dechlorination reaction was completed, the organic droplet extracts Cl⁻ and realizes fluorescence colorimetric sensing at the same time. This method was integrated sample processing and visual in-situ detection, simplifying the detection process. As a fluorescence colorimetric sensor material, CsPbBr₃ was encapsulated in MOF-5 to construct CsPbBr₃@MOF-5 fluorescence colorimetric composite. Then the fluorescence colorimetric sensor was constructed by dispersing the composite in SDME organic droplets. When the Br⁻ in CsPbBr₃ exchanges with Cl⁻ produced by the dechlorination reactions, it is converted into CsPbCl₃. The fluorescence color of the single droplet of SDME will change from green to blue emission, thereby realizing visual observation. Therein, SDME can enhance the concentration and enrichment of Cl⁻ and instead of sample pretreatment. The fluorescence color change of CsPbBr₃@MOF-5 can replace the detection process of large-scale instruments to achieve real-time rapid detection. Due to the absorption ability of MOF-5, it can not only improve the stability of CsPbBr₃, but induce the adsorption of Cl⁻. Simultaneously, accelerate the exchange of Br- and Cl⁻ in CsPbBr₃ and the detection process of Cl⁻. The absorption process was verified by density functional theory (DFT) calculations. This method exhibits exceptional linearity for Cl⁻ in the range of 10⁻² - 10⁻⁶ M (10000 μM - 1 μM) with a limit of detection of 10⁻⁷ M. Whereafter, the dechlorination reactions of different kinds of CBHs were also carried out with this method, and all had satisfactory detection ability. Also verified the accuracy by gas chromatography (GC), and it was found that the SDME we developed in this work had high credibility. In summary, the in-situ visualization method of dechlorination reaction detection was a combination of sample processing and fluorescence colorimetric sensing. Thus, the strategy researched herein represents a promising method for the visual detection of dechlorination reactions and can be extended for applications in environments, chemical industries, and foods.

Keywords: chlorobenzene homologues, colorimetric sensor, metal halide perovskite, metal-organic frameworks, single drop microextraction

Procedia PDF Downloads 142
4092 Pegylated Liposomes of Trans Resveratrol, an Anticancer Agent, for Enhancing Therapeutic Efficacy and Long Circulation

Authors: M. R. Vijayakumar, Sanjay Kumar Singh, Lakshmi, Hithesh Dewangan, Sanjay Singh

Abstract:

Trans resveratrol (RES) is a natural molecule proved for cancer preventive and therapeutic activities devoid of any potential side effects. However, the therapeutic application of RES in disease management is limited because of its rapid elimination from blood circulation thereby low biological half life in mammals. Therefore, the main objective of this study is to enhance the circulation as well as therapeutic efficacy using PEGylated liposomes. D-α-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS) is applied as steric surface decorating agent to prepare RES liposomes by thin film hydration method. The prepared nanoparticles were evaluated by various state of the art techniques such as dynamic light scattering (DLS) technique for particle size and zeta potential, TEM for shape, differential scanning calorimetry (DSC) for interaction analysis and XRD for crystalline changes of drug. Encapsulation efficiency and invitro drug release were determined by dialysis bag method. Cancer cell viability studies were performed by MTT assay, respectively. Pharmacokinetic studies were performed in sprague dawley rats. The prepared liposomes were found to be spherical in shape. Particle size and zeta potential of prepared formulations varied from 64.5±3.16 to 262.3±7.45 nm and -2.1 to 1.76 mV, respectively. DSC study revealed absence of potential interaction. XRD study revealed presence of amorphous form in liposomes. Entrapment efficiency was found to be 87.45±2.14 % and the drug release was found to be controlled up to 24 hours. Minimized MEC in MTT assay and tremendous enhancement in circulation time of RES PEGylated liposomes than its pristine form revealed that the stearic stabilized PEGylated liposomes can be an alternative tool to commercialize this molecule for chemopreventive and therapeutic applications in cancer.

Keywords: trans resveratrol, cancer nanotechnology, long circulating liposomes, bioavailability enhancement, liposomes for cancer therapy, PEGylated liposomes

Procedia PDF Downloads 586