Search results for: 5) genetic algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4771

Search results for: 5) genetic algorithm

3571 Subband Coding and Glottal Closure Instant (GCI) Using SEDREAMS Algorithm

Authors: Harisudha Kuresan, Dhanalakshmi Samiappan, T. Rama Rao

Abstract:

In modern telecommunication applications, Glottal Closure Instants location finding is important and is directly evaluated from the speech waveform. Here, we study the GCI using Speech Event Detection using Residual Excitation and the Mean Based Signal (SEDREAMS) algorithm. Speech coding uses parameter estimation using audio signal processing techniques to model the speech signal combined with generic data compression algorithms to represent the resulting modeled in a compact bit stream. This paper proposes a sub-band coder SBC, which is a type of transform coding and its performance for GCI detection using SEDREAMS are evaluated. In SBCs code in the speech signal is divided into two or more frequency bands and each of these sub-band signal is coded individually. The sub-bands after being processed are recombined to form the output signal, whose bandwidth covers the whole frequency spectrum. Then the signal is decomposed into low and high-frequency components and decimation and interpolation in frequency domain are performed. The proposed structure significantly reduces error, and precise locations of Glottal Closure Instants (GCIs) are found using SEDREAMS algorithm.

Keywords: SEDREAMS, GCI, SBC, GOI

Procedia PDF Downloads 360
3570 Multi-Objective Random Drift Particle Swarm Optimization Algorithm Based on RDPSO and Crowding Distance Sorting

Authors: Yiqiong Yuan, Jun Sun, Dongmei Zhou, Jianan Sun

Abstract:

In this paper, we presented a Multi-Objective Random Drift Particle Swarm Optimization algorithm (MORDPSO-CD) based on RDPSO and crowding distance sorting to improve the convergence and distribution with less computation cost. MORDPSO-CD makes the most of RDPSO to approach the true Pareto optimal solutions fast. We adopt the crowding distance sorting technique to update and maintain the archived optimal solutions. Introducing the crowding distance technique into MORDPSO can make the leader particles find the true Pareto solution ultimately. The simulation results reveal that the proposed algorithm has better convergence and distribution

Keywords: multi-objective optimization, random drift particle swarm optimization, crowding distance sorting, pareto optimal solution

Procedia PDF Downloads 259
3569 Global Optimization: The Alienor Method Mixed with Piyavskii-Shubert Technique

Authors: Guettal Djaouida, Ziadi Abdelkader

Abstract:

In this paper, we study a coupling of the Alienor method with the algorithm of Piyavskii-Shubert. The classical multidimensional global optimization methods involves great difficulties for their implementation to high dimensions. The Alienor method allows to transform a multivariable function into a function of a single variable for which it is possible to use efficient and rapid method for calculating the the global optimum. This simplification is based on the using of a reducing transformation called Alienor.

Keywords: global optimization, reducing transformation, α-dense curves, Alienor method, Piyavskii-Shubert algorithm

Procedia PDF Downloads 506
3568 2D-Modeling with Lego Mindstorms

Authors: Miroslav Popelka, Jakub Nozicka

Abstract:

The whole work is based on possibility to use Lego Mindstorms robotics systems to reduce costs. Lego Mindstorms consists of a wide variety of hardware components necessary to simulate, programme and test of robotics systems in practice. To programme algorithm, which simulates space using the ultrasonic sensor, was used development environment supplied with kit. Software Matlab was used to render values afterwards they were measured by ultrasonic sensor. The algorithm created for this paper uses theoretical knowledge from area of signal processing. Data being processed by algorithm are collected by ultrasonic sensor that scans 2D space in front of it. Ultrasonic sensor is placed on moving arm of robot which provides horizontal moving of sensor. Vertical movement of sensor is provided by wheel drive. The robot follows map in order to get correct positioning of measured data. Based on discovered facts it is possible to consider Lego Mindstorm for low-cost and capable kit for real-time modelling.

Keywords: LEGO Mindstorms, ultrasonic sensor, real-time modeling, 2D object, low-cost robotics systems, sensors, Matlab, EV3 Home Edition Software

Procedia PDF Downloads 475
3567 On the Utility of Bidirectional Transformers in Gene Expression-Based Classification

Authors: Babak Forouraghi

Abstract:

A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of the flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on the spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts, as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with an attention mechanism. In previous works on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work, with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on the presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.

Keywords: machine learning, classification and regression, gene circuit design, bidirectional transformers

Procedia PDF Downloads 65
3566 Optimal Capacitor Placement in Distribution Using Cuckoo Optimization Algorithm

Authors: Ali Ravangard, S. Mohammadi

Abstract:

Shunt Capacitors have several uses in the electric power systems. They are utilized as sources of reactive power by connecting them in line-to-neutral. Electric utilities have also connected capacitors in series with long lines in order to reduce its impedance. This is particularly common in the transmission level, where the lines have length in several hundreds of kilometers. However, this post will generally discuss shunt capacitors. In distribution systems, shunt capacitors are used to reduce power losses, to improve voltage profile, and to increase the maximum flow through cables and transformers. This paper presents a new method to determine the optimal locations and economical sizing of fixed and/or switched shunt capacitors with a view to power losses reduction and voltage stability enhancement. For solving the problem, a new enhanced cuckoo optimization algorithm is presented.The proposed method is tested on distribution test system and the results show that the algorithm suitable for practical implementation on real systems with any size.

Keywords: capacitor placement, power losses, voltage stability, radial distribution systems

Procedia PDF Downloads 379
3565 A 5G Architecture Based to Dynamic Vehicular Clustering Enhancing VoD Services Over Vehicular Ad hoc Networks

Authors: Lamaa Sellami, Bechir Alaya

Abstract:

Nowadays, video-on-demand (VoD) applications are becoming one of the tendencies driving vehicular network users. In this paper, considering the unpredictable vehicle density, the unexpected acceleration or deceleration of the different cars included in the vehicular traffic load, and the limited radio range of the employed communication scheme, we introduce the “Dynamic Vehicular Clustering” (DVC) algorithm as a new scheme for video streaming systems over VANET. The proposed algorithm takes advantage of the concept of small cells and the introduction of wireless backhauls, inspired by the different features and the performance of the Long Term Evolution (LTE)- Advanced network. The proposed clustering algorithm considers multiple characteristics such as the vehicle’s position and acceleration to reduce latency and packet loss. Therefore, each cluster is counted as a small cell containing vehicular nodes and an access point that is elected regarding some particular specifications.

Keywords: video-on-demand, vehicular ad-hoc network, mobility, vehicular traffic load, small cell, wireless backhaul, LTE-advanced, latency, packet loss

Procedia PDF Downloads 145
3564 Opportunities Forensics Biology in the Study of Sperm Traces after Washing

Authors: Saule Musabekova

Abstract:

Achievements of modern science, especially genetics, led to a sharp intensification of the process of proof. Footprints, subjected to destruction-related cause-effect relationships, are sources of evidentiary information on the circumstances it was committed and the persons committed it. Currently, with the overall growth in the number of crimes against sexual inviolability or sexual freedom, and increased the proportion of the crimes where to destroy the traces of the crime perpetrators different detergents are used. A characteristic feature of modern synthetic detergents is the presence of biological additives - enzymes that break down and gradually destroy stains of protein origin. To study the nature of the influence of modern washing powders semen stains were put kinds of fabrics and prepared in advance stained sperm of men of different groups according to ABO system. For research washing machines of known manufacturers of household appliances have been used with different production characteristics, in which the test was performed and the washing of various kinds of fabrics with semen stains. After washing the tissue with spots were tested for the presence of semen stains visually preserved, establishing in them surviving sperm or their elements, we studied the possibilities of the group diagnostics on the system ABO or molecular-genetic identification. The subsequent study of these spots by morphological method showed that 100% detection of morphological sperm cells - sperm is not possible. As a result, in 30% of further studies of these traces gave weakly positive results are obtained with an immunoassay test PSA SEMIQUANT. It is noted that the percentage of positive results obtained in the study of semen traces disposed on natural fiber fabrics is higher than sperm traces disposed on synthetic fabrics. Study traces of semen, confirmed by PSA - test 3% possible to establish a genetic profile of the person and obtain any positive findings of the molecular genetic examination. In other cases, it was not a sufficient amount of material for DNA identification. Results of research and the practical expert study found, in most cases, the conclusions of the identification of sperm traces do not seem possible. This a consequence of exposure to semen traces on the material evidence of biological additives contained in modern detergents and further the influence of other effective methods. Resulting in DNA has undergone irreversible changes (degradation) under the influence of external human factors. Using molecular genetic methods can partially solve the problems arising in the study of unlaundered physical evidence for the disclosure and investigation of crimes.

Keywords: study of sperm, modern detergents, washing powders, forensic medicine

Procedia PDF Downloads 300
3563 An Approach to the Assembly Line Balancing Problem with Uncertain Operation Time

Authors: Zhongmin Wang, Lin Wei, Hengshan Zhang, Tianhua Chen, Yimin Zhou

Abstract:

The assembly line balancing problems are signficant in mass production systems. In order to deal with the uncertainties that practically exist but barely mentioned in the literature, this paper develops a mathematic model with an optimisation algorithm to solve the assembly line balancing problem with uncertainty operation time. The developed model is able to work with a variable number of workstations under the uncertain environment, aiming to obtain the minimal number of workstation and minimal idle time for each workstation. In particular, the proposed approach first introduces the concept of protection time that closely works with the uncertain operation time. Four dominance rules and the mechanism of determining up and low bounds are subsequently put forward, which serve as the basis for the proposed branch and bound algorithm. Experimental results show that the proposed work verified on a benchmark data set is able to solve the uncertainties efficiently.

Keywords: assembly lines, SALBP-UOT, uncertain operation time, branch and bound algorithm.

Procedia PDF Downloads 175
3562 A Contrastive Analysis on Hausa and Yoruba Adjectival Phrases

Authors: Abubakar Maikudi

Abstract:

Contrastive analysis is the method of analyzing the structure of any two languages with a view to determining the possible differential aspects of their systems irrespective of their genetic affinity or level of development. Contrastive analysis of two languages becomes useful when it is adequately describing the sound structure and grammatical structure of two languages, with comparative statements giving emphasis to the compatible items in the two systems. This research work uses comparative analysis theory to analyze adjective and adjectival phrases in Hausa and Yorùbá languages. The Hausa language belongs to the Chadic family of the Afro-Asiatic phylum, while the Yorùbá language belongs to the Benue-Congo family of the Niger-Congo phylum. The findings of the research clearly demonstrated that there are significant similarities in the adjectival phrase constructions of the two languages, i.e., nominal (Head) and post-nominal (Post-Head) use of the adjective, predicative function of an adjective, use of the reduplicative adjective, use of the comparative and superlative adjective, etc. However, there are dissimilarities in the adjectival phrase of the two languages in gender/number agreement and pre-nominal (Post-Head) use of adjectives.

Keywords: genetic affinity, contrastive analysis, phylum, pre-head, post-head

Procedia PDF Downloads 235
3561 An Algorithm for Preventing the Irregular Operation Modes of the Drive Synchronous Motor Providing the Ore Grinding

Authors: Baghdasaryan Marinka

Abstract:

The current scientific and engineering interest concerning the problems of preventing the emergency manifestations of drive synchronous motors, ensuring the ore grinding technological process has been justified. The analysis of the known works devoted to the abnormal operation modes of synchronous motors and possibilities of protection against them, has shown that their application is inexpedient for preventing the impermissible displays arising in the electrical drive synchronous motors ensuring the ore-grinding process. The main energy and technological factors affecting the technical condition of synchronous motors are evaluated. An algorithm for preventing the irregular operation modes of the electrical drive synchronous motor applied in the ore-grinding technological process has been developed and proposed for further application which gives an opportunity to provide smart solutions, ensuring the safe operation of the drive synchronous motor by a comprehensive consideration of the energy and technological factors.

Keywords: synchronous motor, abnormal operating mode, electric drive, algorithm, energy factor, technological factor

Procedia PDF Downloads 141
3560 Association of Nuclear – Mitochondrial Epistasis with BMI in Type 1 Diabetes Mellitus Patients

Authors: Agnieszka H. Ludwig-Slomczynska, Michal T. Seweryn, Przemyslaw Kapusta, Ewelina Pitera, Katarzyna Cyganek, Urszula Mantaj, Lucja Dobrucka, Ewa Wender-Ozegowska, Maciej T. Malecki, Pawel Wolkow

Abstract:

Obesity results from an imbalance between energy intake and its expenditure. Genome-Wide Association Study (GWAS) analyses have led to discovery of only about 100 variants influencing body mass index (BMI), which explain only a small portion of genetic variability. Analysis of gene epistasis gives a chance to discover another part. Since it was shown that interaction and communication between nuclear and mitochondrial genome are indispensable for normal cell function, we have looked for epistatic interactions between the two genomes to find their correlation with BMI. Methods: The analysis was performed on 366 T1DM patients using Illumina Infinium OmniExpressExome-8 chip and followed by imputation on Michigan Imputation Server. Only genes which influence mitochondrial functioning (listed in Human MitoCarta 2.0) were included in the analysis – variants of nuclear origin (MAF > 5%) in 1140 genes and 42 mitochondrial variants (MAF > 1%). Gene expression analysis was performed on GTex data. Association analysis between genetic variants and BMI was performed with the use of Linear Mixed Models as implemented in the package 'GENESIS' in R. Analysis of association between mRNA expression and BMI was performed with the use of linear models and standard significance tests in R. Results: Among variants involved in epistasis between mitochondria and nucleus we have identified one in mitochondrial transcription factor, TFB2M (rs6701836). It interacted with mitochondrial variants localized to MT-RNR1 (p=0.0004, MAF=15%), MT-ND2 (p=0.07, MAF=5%) and MT-ND4 (p=0.01, MAF=1.1%). Analysis of the interaction between nuclear variant rs6701836 (nuc) and rs3021088 localized to MT-ND2 mitochondrial gene (mito) has shown that the combination of the two led to BMI decrease (p=0.024). Each of the variants on its own does not correlate with higher BMI [p(nuc)=0.856, p(mito)=0.116)]. Although rs6701836 is intronic, it influences gene expression in the thyroid (p=0.000037). rs3021088 is a missense variant that leads to alanine to threonine substitution in the MT-ND2 gene which belongs to complex I of the electron transport chain. The analysis of the influence of genetic variants on gene expression has confirmed the trend explained above – the interaction of the two genes leads to BMI decrease (p=0.0308). Each of the mRNAs on its own is associated with higher BMI (p(mito)=0.0244 and p(nuc)=0.0269). Conclusıons: Our results show that nuclear-mitochondrial epistasis can influence BMI in T1DM patients. The correlation between transcription factor expression and mitochondrial genetic variants will be subject to further analysis.

Keywords: body mass index, epistasis, mitochondria, type 1 diabetes

Procedia PDF Downloads 180
3559 CMT4G: Rare Form of Charcot-Marie-Tooth Disease in Slovak Roma Patient

Authors: Dana Gabriková, Martin Mistrík, Jarmila Bernasovská, Iveta Tóthová, Jana Kisková

Abstract:

The Roma (Gypsies) is a transnational minority with a high degree of consanguineous marriages. Similar to other genetically isolated founder populations, the Roma harbor a number of unique or rare genetic disorders. This paper discusses about a rare form of Charcot-Marie-Tooth disease – type 4G (CMT4G), also called Hereditary Motor and Sensory Neuropathy type Russe, an autosomal recessive disease caused by mutation private to Roma characterized by abnormally increased density of non-myelinated axons. CMT4G was originally found in Bulgarian Roma and in 2009 two putative causative mutations in the HK1 gene were identified. Since then, several cases were reported in Roma families mainly from Bulgaria and Spain. Here we present a Slovak Roma family in which CMT4G was diagnosed on the basis of clinical examination and genetic testing. This case is a further proof of the role of the HK1 gene in pathogenesis of the disease. It confirms that mutation in the HK1 gene is a common cause of autosomal recessive CMT disease in Roma and should be considered as a common part of a diagnostic procedure.

Keywords: gypsies, HK1, HSMN-Russe, rare disease

Procedia PDF Downloads 391
3558 Power System Stability Enhancement Using Self Tuning Fuzzy PI Controller for TCSC

Authors: Salman Hameed

Abstract:

In this paper, a self-tuning fuzzy PI controller (STFPIC) is proposed for thyristor controlled series capacitor (TCSC) to improve power system dynamic performance. In a STFPIC controller, the output scaling factor is adjusted on-line by an updating factor (α). The value of α is determined from a fuzzy rule-base defined on error (e) and change of error (Δe) of the controlled variable. The proposed self-tuning controller is designed using a very simple control rule-base and the most natural and unbiased membership functions (MFs) (symmetric triangles with equal base and 50% overlap with neighboring MFs). The comparative performances of the proposed STFPIC and the standard fuzzy PI controller (FPIC) have been investigated on a multi-machine power system (namely, 4 machine two area system) through detailed non-linear simulation studies using MATLAB/SIMULINK. From the simulation studies it has been found out that for damping oscillations, the performance of the proposed STFPIC is better than that obtained by the standard FPIC. Moreover, the proposed STFPIC as well as the FPIC have been found to be quite effective in damping oscillations over a wide range of operating conditions and are quite effective in enhancing the power carrying capability of the power system significantly.

Keywords: genetic algorithm, power system stability, self-tuning fuzzy controller, thyristor controlled series capacitor

Procedia PDF Downloads 428
3557 Efficient Reconstruction of DNA Distance Matrices Using an Inverse Problem Approach

Authors: Boris Melnikov, Ye Zhang, Dmitrii Chaikovskii

Abstract:

We continue to consider one of the cybernetic methods in computational biology related to the study of DNA chains. Namely, we are considering the problem of reconstructing the not fully filled distance matrix of DNA chains. When applied in a programming context, it is revealed that with a modern computer of average capabilities, creating even a small-sized distance matrix for mitochondrial DNA sequences is quite time-consuming with standard algorithms. As the size of the matrix grows larger, the computational effort required increases significantly, potentially spanning several weeks to months of non-stop computer processing. Hence, calculating the distance matrix on conventional computers is hardly feasible, and supercomputers are usually not available. Therefore, we started publishing our variants of the algorithms for calculating the distance between two DNA chains; then, we published algorithms for restoring partially filled matrices, i.e., the inverse problem of matrix processing. In this paper, we propose an algorithm for restoring the distance matrix for DNA chains, and the primary focus is on enhancing the algorithms that shape the greedy function within the branches and boundaries method framework.

Keywords: DNA chains, distance matrix, optimization problem, restoring algorithm, greedy algorithm, heuristics

Procedia PDF Downloads 123
3556 Spectral Clustering for Manufacturing Cell Formation

Authors: Yessica Nataliani, Miin-Shen Yang

Abstract:

Cell formation (CF) is an important step in group technology. It is used in designing cellular manufacturing systems using similarities between parts in relation to machines so that it can identify part families and machine groups. There are many CF methods in the literature, but there is less spectral clustering used in CF. In this paper, we propose a spectral clustering algorithm for machine-part CF. Some experimental examples are used to illustrate its efficiency. Overall, the spectral clustering algorithm can be used in CF with a wide variety of machine/part matrices.

Keywords: group technology, cell formation, spectral clustering, grouping efficiency

Procedia PDF Downloads 415
3555 Motion Performance Analyses and Trajectory Planning of the Movable Leg-Foot Lander

Authors: Shan Jia, Jinbao Chen, Jinhua Zhou, Jiacheng Qian

Abstract:

In response to the functional limitations of the fixed landers, those are to expand the detection range by the use of wheeled rovers with unavoidable path-repeatability in deep space exploration currently, a movable lander based on the leg-foot walking mechanism is presented. Firstly, a quadruped landing mechanism based on pushrod-damping is proposed. The configuration is of the bionic characteristics such as hip, knee and ankle joints, and the multi-function main/auxiliary buffers based on the crumple-energy absorption and screw-nut mechanism. Secondly, the workspace of the end of the leg-foot mechanism is solved by Monte Carlo method, and the key points on the desired trajectory of the end of the leg-foot mechanism are fitted by cubic spline curve. Finally, an optimal time-jerk trajectory based on weight coefficient is planned and analyzed by an adaptive genetic algorithm (AGA). The simulation results prove the rationality and stability of walking motion of the movable leg-foot lander in the star catalogue. In addition, this research can also provide a technical solution integrating of soft-landing, large-scale inspection and material transfer for future star catalogue exploration, and can even serve as the technical basis for developing the reusable landers.

Keywords: motion performance, trajectory planning, movable, leg-foot lander

Procedia PDF Downloads 145
3554 Atypical Familial Amyotrophic Lateral Sclerosis Secondary to Superoxide Dismutase 1 Gene Mutation With Coexistent Axonal Polyneuropathy: A Challenging Diagnosis

Authors: Seraj Makkawi, Abdulaziz A. Alqarni, Himyan Alghaythee, Suzan Y. Alharbi, Anmar Fatani, Reem Adas, Ahmad R. Abuzinadah

Abstract:

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, is a neurodegenerative disease that involves both the upper and lower motor neurons. Familial ALS, including superoxide dismutase 1 (SOD1) mutation, accounts for 5-10% of all cases of ALS. Typically, the symptoms of ALS are purely motor, though coexistent sensory symptoms have been reported in rare cases. In this report, we describe the case of a 47- year-old man who presented with progressive bilateral lower limb weakness and numbness for the last four years. A nerve conduction study (NCS) showed evidence of coexistent axonal sensorimotor polyneuropathy in addition to the typical findings of ALS in needle electromyography. Genetic testing confirmed the diagnosis of familial ALS secondary to the SOD1 genetic mutation. This report highlights that the presence of sensory symptoms should not exclude the possibility of ALS in an appropriate clinical setting.

Keywords: Saudi Arabia, polyneuropathy, SOD1 gene mutation, familial amyotrophic lateral sclerosis, amyotrophic lateral sclerosis

Procedia PDF Downloads 151
3553 Developmental Difficulties Prevalence and Management Capacities among Children Including Genetic Disease in a North Coastal District of Andhra Pradesh, India: A Cross-sectional Study

Authors: Koteswara Rao Pagolu, Raghava Rao Tamanam

Abstract:

The present study was aimed to find out the prevalence of DD's in Visakhapatnam, one of the north coastal districts of Andhra Pradesh, India during a span of five years. A cross-sectional investigation was held at District early intervention center (DEIC), Visakhapatnam from 2016 to 2020. To identify the pattern and trend of different DD's including seasonal variations, a retrospective analysis of the health center's inpatient database for the past 5 years was done. Male and female children aged 2 months-18 years are included in the study with the prior permission of the concerned medical officer. The screening tool developed by the Ministry of health and family welfare, India, was used for the study. Among 26,423 cases, children with birth defects are 962, 2229 with deficiencies, 7516 with diseases, and 15716 with disabilities were admitted during the study period. From birth defects, congenital deafness occurred in large numbers with 22.66%, and neural tube defect observed in a small number of cases with 0.83% during the period. From the side of deficiencies, severe acute malnutrition has mostly occurred (66.80 %) and a small number of children were affected with goiter (1.70%). Among the diseases, dental carriers (67.97%) are mostly found and these cases were at peak during the years 2016 and 2019. From disabilities, children with vision impairment (20.55%) have mostly approached the center. Over the past 5 years, the admission rate of down's syndrome and congenital deafness cases showed a rising trend up to 2019 and then declined. Hearing impairment, motor delay, and learning disorder showed a steep rise and gradual decline trend, whereas severe anemia, vitamin-D deficiency, otitis media, reactive airway disease, and attention deficit hyperactivity disorder showed a declining trend. However, congenital heart diseases, dental caries, and vision impairment admission rates showed a zigzag pattern over the past 5 years. This center had inadequate diagnostic facilities related to genetic disease management. For advanced confirmation, the cases are referred to a district government hospital or private diagnostic laboratories in the city for genetic tests. Information regarding the overall burden and pattern of admissions in the health center is obtained by the review of DEIC records. Through this study, it is observed that the incidence of birth defects, as well as genetic disease burden, is high in the Visakhapatnam district. Hence there is a need for strengthening of management services for these diseases in this region.

Keywords: child health screening, developmental delays, district early intervention center, genetic disease management, infrastructural facility, Visakhapatnam district

Procedia PDF Downloads 219
3552 RA-Apriori: An Efficient and Faster MapReduce-Based Algorithm for Frequent Itemset Mining on Apache Flink

Authors: Sanjay Rathee, Arti Kashyap

Abstract:

Extraction of useful information from large datasets is one of the most important research problems. Association rule mining is one of the best methods for this purpose. Finding possible associations between items in large transaction based datasets (finding frequent patterns) is most important part of the association rule mining. There exist many algorithms to find frequent patterns but Apriori algorithm always remains a preferred choice due to its ease of implementation and natural tendency to be parallelized. Many single-machine based Apriori variants exist but massive amount of data available these days is above capacity of a single machine. Therefore, to meet the demands of this ever-growing huge data, there is a need of multiple machines based Apriori algorithm. For these types of distributed applications, MapReduce is a popular fault-tolerant framework. Hadoop is one of the best open-source software frameworks with MapReduce approach for distributed storage and distributed processing of huge datasets using clusters built from commodity hardware. However, heavy disk I/O operation at each iteration of a highly iterative algorithm like Apriori makes Hadoop inefficient. A number of MapReduce-based platforms are being developed for parallel computing in recent years. Among them, two platforms, namely, Spark and Flink have attracted a lot of attention because of their inbuilt support to distributed computations. Earlier we proposed a reduced- Apriori algorithm on Spark platform which outperforms parallel Apriori, one because of use of Spark and secondly because of the improvement we proposed in standard Apriori. Therefore, this work is a natural sequel of our work and targets on implementing, testing and benchmarking Apriori and Reduced-Apriori and our new algorithm ReducedAll-Apriori on Apache Flink and compares it with Spark implementation. Flink, a streaming dataflow engine, overcomes disk I/O bottlenecks in MapReduce, providing an ideal platform for distributed Apriori. Flink's pipelining based structure allows starting a next iteration as soon as partial results of earlier iteration are available. Therefore, there is no need to wait for all reducers result to start a next iteration. We conduct in-depth experiments to gain insight into the effectiveness, efficiency and scalability of the Apriori and RA-Apriori algorithm on Flink.

Keywords: apriori, apache flink, Mapreduce, spark, Hadoop, R-Apriori, frequent itemset mining

Procedia PDF Downloads 302
3551 Modelling Fluoride Pollution of Groundwater Using Artificial Neural Network in the Western Parts of Jharkhand

Authors: Neeta Kumari, Gopal Pathak

Abstract:

Artificial neural network has been proved to be an efficient tool for non-parametric modeling of data in various applications where output is non-linearly associated with input. It is a preferred tool for many predictive data mining applications because of its power , flexibility, and ease of use. A standard feed forward networks (FFN) is used to predict the groundwater fluoride content. The ANN model is trained using back propagated algorithm, Tansig and Logsig activation function having varying number of neurons. The models are evaluated on the basis of statistical performance criteria like Root Mean Squarred Error (RMSE) and Regression coefficient (R2), bias (mean error), Coefficient of variation (CV), Nash-Sutcliffe efficiency (NSE), and the index of agreement (IOA). The results of the study indicate that Artificial neural network (ANN) can be used for groundwater fluoride prediction in the limited data situation in the hard rock region like western parts of Jharkhand with sufficiently good accuracy.

Keywords: Artificial neural network (ANN), FFN (Feed-forward network), backpropagation algorithm, Levenberg-Marquardt algorithm, groundwater fluoride contamination

Procedia PDF Downloads 555
3550 Probabilistic Gathering of Agents with Simple Sensors: Distributed Algorithm for Aggregation of Robots Equipped with Binary On-Board Detectors

Authors: Ariel Barel, Rotem Manor, Alfred M. Bruckstein

Abstract:

We present a probabilistic gathering algorithm for agents that can only detect the presence of other agents in front of or behind them. The agents act in the plane and are identical and indistinguishable, oblivious, and lack any means of direct communication. They do not have a common frame of reference in the plane and choose their orientation (direction of possible motion) at random. The analysis of the gathering process assumes that the agents act synchronously in selecting random orientations that remain fixed during each unit time-interval. Two algorithms are discussed. The first one assumes discrete jumps based on the sensing results given the randomly selected motion direction, and in this case, extensive experimental results exhibit probabilistic clustering into a circular region with radius equal to the step-size in time proportional to the number of agents. The second algorithm assumes agents with continuous sensing and motion, and in this case, we can prove gathering into a very small circular region in finite expected time.

Keywords: control, decentralized, gathering, multi-agent, simple sensors

Procedia PDF Downloads 171
3549 Evaluation of Genetic Potentials of Onion (Allium Cepa L.) Cultivars of North Western Nigeria

Authors: L. Abubakar, B. M. Sokoto, I. U. Mohammed, M. S. Na’allah, A. Mohammad, A. N. Garba, T. S. Bubuche

Abstract:

Onion (Allium cepa var. cepa L.) is the most important species of the Allium group belonging to family Alliaceae and genus Allium. It can be regarded as the single important vegetable species in the world after tomatoes. Despite the similarities, which bring the species together, the genus is a strikingly diverse one, with more than five hundred species, which are perennial and mostly bulbous plants. Out of these, only seven species are in cultivation, and five are the most important species of the cultivated Allium. However, Allium cepa (onion) and Allium sativum (Garlic) are the two major cultivated species grown all over the world of which the onion crop is the most important. North Western Nigeria (Sokoto, Kebbi and Zamfara States) constitute the major onion producing zone in Nigeria, which is primarily during the dry season. However, onion production in the zone is seriously affected by two main factors i.e. diseases and storage losses, in addition to other constraints that limits the cultivation of the crop during the rainy season which include lack of prolonged rainy season to allow for proper maturation of the crop. The major onion disease in this zone is purple blotch caused by a fungus Alternaria porri and currently efforts are on to develop onion hybrids resistant to the disease. Genetic diversity plays an important role in plant breeding either to exploit heterosis or to generate productive recombinants. Assessment of a large number of genotypes for a genetic diversity is the first step in this direction. The objective of this research therefore is to evaluate the genetic potentials of the onion cultivars of North Western Nigeria, with a view of developing new cultivars that address the major production challenges to onion cultivation in North Western, Nigeria. Thirteen onion cultivars were collected during an expedition covering North western Nigeria and Southern part of Niger Republic during 2013, which are areas noted for onion production. The cultivars were evaluated at two locations; Sokoto, in Sokoto State and Jega in Kebbi State all in Nigeria during the 2013/14 onion season (dry season) under irrigation. The objective of the research was to determine the genetic potentials of onion cultivars of north western Nigeria as a basis for breeding purposes. Combined analysis of the results revealed highly significant variation between the cultivars across the locations with respect to plant height, number of leaves/plant, bolting %, bulb height, bulb weight, mean bulb yield and cured bulb weight, with significant variation in terms of bulb diameter. Tasa from Warra Local Government Area of Kebbi State (V4) recorded the greatest mean fresh bulb yield with Jar Albasa (V8) from Illela Local Government Area of Sokoto State recording the least. Similarly Marsa (V5) from Silame Local Government Area recorded the greatest mean cured bulb yield (marketable bulb)with Kiba (V11) from Goronyo Local Government of Sokoto State recording the least. Significant variation was recorded between the locations with respect to all characters, with Sokoto being better in terms of plant height, number of leaves/plant, bolting % and bulb diameter. Jega was better in terms of bulb height, bulb yield and cured bulb weight. Significant variation was therefore observed between the cultivars.

Keywords: evaluation, genetic, onions, North Western Nigeria

Procedia PDF Downloads 414
3548 Age Related Changes in the Neural Substrates of Emotion Regulation: Mechanisms, Consequences, and Interventions

Authors: Yasaman Mohammadi

Abstract:

Emotion regulation is a complex process that allows individuals to manage and modulate their emotional responses in order to adaptively respond to environmental demands. As individuals age, emotion regulation abilities may decline, leading to an increased vulnerability to mood disorders and other negative health outcomes. Advances in neuroimaging techniques have greatly enhanced our understanding of the neural substrates underlying emotion regulation and age-related changes in these neural systems. Additionally, genetic research has identified several candidate genes that may influence age-related changes in emotion regulation. In this paper, we review recent findings from neuroimaging and genetic research on age-related changes in the neural substrates of emotion regulation, highlighting the mechanisms and consequences of these changes. We also discuss potential interventions, including cognitive and behavioral approaches, that may be effective in mitigating age-related declines in emotion regulation. We propose that a better understanding of the mechanisms underlying age-related changes in emotion regulation may lead to the development of more targeted interventions aimed at promoting healthy emotional functioning in older adults. Overall, this paper highlights the importance of studying age-related changes in emotion regulation and provides a roadmap for future research in this field.

Keywords: emotion regulation, aging, neural substrates, neuroimaging, emotional functioning, healthy aging

Procedia PDF Downloads 117
3547 Application of GA Optimization in Analysis of Variable Stiffness Composites

Authors: Nasim Fallahi, Erasmo Carrera, Alfonso Pagani

Abstract:

Variable angle tow describes the fibres which are curvilinearly steered in a composite lamina. Significantly, stiffness tailoring freedom of VAT composite laminate can be enlarged and enabled. Composite structures with curvilinear fibres have been shown to improve the buckling load carrying capability in contrast with the straight laminate composites. However, the optimal design and analysis of VAT are faced with high computational efforts due to the increasing number of variables. In this article, an efficient optimum solution has been used in combination with 1D Carrera’s Unified Formulation (CUF) to investigate the optimum fibre orientation angles for buckling analysis. The particular emphasis is on the LE-based CUF models, which provide a Lagrange Expansions to address a layerwise description of the problem unknowns. The first critical buckling load has been considered under simply supported boundary conditions. Special attention is lead to the sensitivity of buckling load corresponding to the fibre orientation angle in comparison with the results which obtain through the Genetic Algorithm (GA) optimization frame and then Artificial Neural Network (ANN) is applied to investigate the accuracy of the optimized model. As a result, numerical CUF approach with an optimal solution demonstrates the robustness and computational efficiency of proposed optimum methodology.

Keywords: beam structures, layerwise, optimization, variable stiffness

Procedia PDF Downloads 149
3546 Frequent Itemset Mining Using Rough-Sets

Authors: Usman Qamar, Younus Javed

Abstract:

Frequent pattern mining is the process of finding a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set. It was proposed in the context of frequent itemsets and association rule mining. Frequent pattern mining is used to find inherent regularities in data. What products were often purchased together? Its applications include basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis. However, one of the bottlenecks of frequent itemset mining is that as the data increase the amount of time and resources required to mining the data increases at an exponential rate. In this investigation a new algorithm is proposed which can be uses as a pre-processor for frequent itemset mining. FASTER (FeAture SelecTion using Entropy and Rough sets) is a hybrid pre-processor algorithm which utilizes entropy and rough-sets to carry out record reduction and feature (attribute) selection respectively. FASTER for frequent itemset mining can produce a speed up of 3.1 times when compared to original algorithm while maintaining an accuracy of 71%.

Keywords: rough-sets, classification, feature selection, entropy, outliers, frequent itemset mining

Procedia PDF Downloads 441
3545 Seamless Mobility in Heterogeneous Mobile Networks

Authors: Mohab Magdy Mostafa Mohamed

Abstract:

The objective of this paper is to introduce a vertical handover (VHO) algorithm between wireless LANs (WLANs) and LTE mobile networks. The proposed algorithm is based on the fuzzy control theory and takes into consideration power level, subscriber velocity, and target cell load instead of only power level in traditional algorithms. Simulation results show that network performance in terms of number of handovers and handover occurrence distance is improved.

Keywords: vertical handover, fuzzy control theory, power level, speed, target cell load

Procedia PDF Downloads 358
3544 Evolved Bat Algorithm Based Adaptive Fuzzy Sliding Mode Control with LMI Criterion

Authors: P.-W. Tsai, C.-Y. Chen, C.-W. Chen

Abstract:

In this paper, the stability analysis of a GA-Based adaptive fuzzy sliding model controller for a nonlinear system is discussed. First, a nonlinear plant is well-approximated and described with a reference model and a fuzzy model, both involving FLC rules. Then, FLC rules and the consequent parameter are decided on via an Evolved Bat Algorithm (EBA). After this, we guarantee a new tracking performance inequality for the control system. The tracking problem is characterized to solve an eigenvalue problem (EVP). Next, an adaptive fuzzy sliding model controller (AFSMC) is proposed to stabilize the system so as to achieve good control performance. Lyapunov’s direct method can be used to ensure the stability of the nonlinear system. It is shown that the stability analysis can reduce nonlinear systems into a linear matrix inequality (LMI) problem. Finally, a numerical simulation is provided to demonstrate the control methodology.

Keywords: adaptive fuzzy sliding mode control, Lyapunov direct method, swarm intelligence, evolved bat algorithm

Procedia PDF Downloads 447
3543 Familial Exome Sequencing to Decipher the Complex Genetic Basis of Holoprosencephaly

Authors: Artem Kim, Clara Savary, Christele Dubourg, Wilfrid Carre, Houda Hamdi-Roze, Valerie Dupé, Sylvie Odent, Marie De Tayrac, Veronique David

Abstract:

Holoprosencephaly (HPE) is a rare congenital brain malformation resulting from the incomplete separation of the two cerebral hemispheres. It is characterized by a wide phenotypic spectrum and a high degree of locus heterogeneity. Genetic defects in 16 genes have already been implicated in HPE, but account for only 30% of cases, suggesting that a large part of genetic factors remains to be discovered. HPE has been recently redefined as a complex multigenic disorder, requiring the joint effect of multiple mutational events in genes belonging to one or several developmental pathways. The onset of HPE may result from accumulation of the effects of multiple rare variants in functionally-related genes, each conferring a moderate increase in the risk of HPE onset. In order to decipher the genetic basis of HPE, unconventional patterns of inheritance involving multiple genetic factors need to be considered. The primary objective of this study was to uncover possible disease causing combinations of multiple rare variants underlying HPE by performing trio-based Whole Exome Sequencing (WES) of familial cases where no molecular diagnosis could be established. 39 families were selected with no fully-penetrant causal mutation in known HPE gene, no chromosomic aberrations/copy number variants and without any implication of environmental factors. As the main challenge was to identify disease-related variants among a large number of nonpathogenic polymorphisms detected by WES classical scheme, a novel variant prioritization approach was established. It combined WES filtering with complementary gene-level approaches: transcriptome-driven (RNA-Seq data) and clinically-driven (public clinical data) strategies. Briefly, a filtering approach was performed to select variants compatible with disease segregation, population frequency and pathogenicity prediction to identify an exhaustive list of rare deleterious variants. The exome search space was then reduced by restricting the analysis to candidate genes identified by either transcriptome-driven strategy (genes sharing highly similar expression patterns with known HPE genes during cerebral development) or clinically-driven strategy (genes associated to phenotypes of interest overlapping with HPE). Deeper analyses of candidate variants were then performed on a family-by-family basis. These included the exploration of clinical information, expression studies, variant characteristics, recurrence of mutated genes and available biological knowledge. A novel bioinformatics pipeline was designed. Applied to the 39 families, this final integrated workflow identified an average of 11 candidate variants per family. Most of candidate variants were inherited from asymptomatic parents suggesting a multigenic inheritance pattern requiring the association of multiple mutational events. The manual analysis highlighted 5 new strong HPE candidate genes showing recurrences in distinct families. Functional validations of these genes are foreseen.

Keywords: complex genetic disorder, holoprosencephaly, multiple rare variants, whole exome sequencing

Procedia PDF Downloads 207
3542 Simulation of the Visco-Elasto-Plastic Deformation Behaviour of Short Glass Fibre Reinforced Polyphthalamides

Authors: V. Keim, J. Spachtholz, J. Hammer

Abstract:

The importance of fibre reinforced plastics continually increases due to the excellent mechanical properties, low material and manufacturing costs combined with significant weight reduction. Today, components are usually designed and calculated numerically by using finite element methods (FEM) to avoid expensive laboratory tests. These programs are based on material models including material specific deformation characteristics. In this research project, material models for short glass fibre reinforced plastics are presented to simulate the visco-elasto-plastic deformation behaviour. Prior to modelling specimens of the material EMS Grivory HTV-5H1, consisting of a Polyphthalamide matrix reinforced by 50wt.-% of short glass fibres, are characterized experimentally in terms of the highly time dependent deformation behaviour of the matrix material. To minimize the experimental effort, the cyclic deformation behaviour under tensile and compressive loading (R = −1) is characterized by isothermal complex low cycle fatigue (CLCF) tests. Combining cycles under two strain amplitudes and strain rates within three orders of magnitude and relaxation intervals into one experiment the visco-elastic deformation is characterized. To identify visco-plastic deformation monotonous tensile tests either displacement controlled or strain controlled (CERT) are compared. All relevant modelling parameters for this complex superposition of simultaneously varying mechanical loadings are quantified by these experiments. Subsequently, two different material models are compared with respect to their accuracy describing the visco-elasto-plastic deformation behaviour. First, based on Chaboche an extended 12 parameter model (EVP-KV2) is used to model cyclic visco-elasto-plasticity at two time scales. The parameters of the model including a total separation of elastic and plastic deformation are obtained by computational optimization using an evolutionary algorithm based on a fitness function called genetic algorithm. Second, the 12 parameter visco-elasto-plastic material model by Launay is used. In detail, the model contains a different type of a flow function based on the definition of the visco-plastic deformation as a part of the overall deformation. The accuracy of the models is verified by corresponding experimental LCF testing.

Keywords: complex low cycle fatigue, material modelling, short glass fibre reinforced polyphthalamides, visco-elasto-plastic deformation

Procedia PDF Downloads 219