Search results for: population characteristics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12688

Search results for: population characteristics

508 Rheological Characterization of Polysaccharide Extracted from Camelina Meal as a New Source of Thickening Agent

Authors: Mohammad Anvari, Helen S. Joyner (Melito)

Abstract:

Camelina sativa (L.) Crantz is an oilseed crop currently used for the production of biofuels. However, the low price of diesel and gasoline has made camelina an unprofitable crop for farmers, leading to declining camelina production in the US. Hence, the ability to utilize camelina byproduct (defatted meal) after oil extraction would be a pivotal factor for promoting the economic value of the plant. Camelina defatted meal is rich in proteins and polysaccharides. The great diversity in the polysaccharide structural features provides a unique opportunity for use in food formulations as thickeners, gelling agents, emulsifiers, and stabilizers. There is currently a great degree of interest in the study of novel plant polysaccharides, as they can be derived from readily accessible sources and have potential application in a wide range of food formulations. However, there are no published studies on the polysaccharide extracted from camelina meal, and its potential industrial applications remain largely underexploited. Rheological properties are a key functional feature of polysaccharides and are highly dependent on the material composition and molecular structure. Therefore, the objective of this study was to evaluate the rheological properties of the polysaccharide extracted from camelina meal at different conditions to obtain insight on the molecular characteristics of the polysaccharide. Flow and dynamic mechanical behaviors were determined under different temperatures (5-50°C) and concentrations (1-6% w/v). Additionally, the zeta potential of the polysaccharide dispersion was measured at different pHs (2-11) and a biopolymer concentration of 0.05% (w/v). Shear rate sweep data revealed that the camelina polysaccharide displayed shear thinning (pseudoplastic) behavior, which is typical of polymer systems. The polysaccharide dispersion (1% w/v) showed no significant changes in viscosity with temperature, which makes it a promising ingredient in products requiring texture stability over a range of temperatures. However, the viscosity increased significantly with increased concentration, indicating that camelina polysaccharide can be used in food products at different concentrations to produce a range of textures. Dynamic mechanical spectra showed similar trends. The temperature had little effect on viscoelastic moduli. However, moduli were strongly affected by concentration: samples exhibited concentrated solution behavior at low concentrations (1-2% w/v) and weak gel behavior at higher concentrations (4-6% w/v). These rheological properties can be used for designing and modeling of liquid and semisolid products. Zeta potential affects the intensity of molecular interactions and molecular conformation and can alter solubility, stability, and eventually, the functionality of the materials as their environment changes. In this study, the zeta potential value significantly decreased from 0.0 to -62.5 as pH increased from 2 to 11, indicating that pH may affect the functional properties of the polysaccharide. The results obtained in the current study showed that camelina polysaccharide has significant potential for application in various food systems and can be introduced as a novel anionic thickening agent with unique properties.

Keywords: Camelina meal, polysaccharide, rheology, zeta potential

Procedia PDF Downloads 245
507 Evaluation of Airborne Particulate Matter Early Biological Effects in Children with Micronucleus Cytome Assay: The MAPEC_LIFE Project

Authors: E. Carraro, Sa. Bonetta, Si. Bonetta, E. Ceretti, G. C. V. Viola, C. Pignata, S. Levorato, T. Salvatori, S. Vannini, V. Romanazzi, A. Carducci, G. Donzelli, T. Schilirò, A. De Donno, T. Grassi, S. Bonizzoni, A. Bonetti, G. Gilli, U. Gelatti

Abstract:

In 2013, air pollution and particulate matter were classified as carcinogenic to human by the IARC. At present, PM is Europe's most problematic pollutant in terms of harm to health, as reported by European Environmental Agency (EEA) in the EEA Technical Report on Air quality in Europe, 2015. A percentage between 17-30 of the EU urban population lives in areas where the EU air quality 24-hour limit value for PM10 is exceeded. Many studies have found a consistent association between exposure to PM and the incidence and mortality for some chronic diseases (i.e. lung cancer, cardiovascular diseases). Among the mechanisms responsible for these adverse effects, genotoxic damage is of particular concern. Children are a high-risk group in terms of the health effects of air pollution and early exposure during childhood can increase the risk of developing chronic diseases in adulthood. The MAPEC_LIFE (Monitoring Air Pollution Effects on Children for supporting public health policy) is a project founded by EU Life+ Programme (LIFE12 ENV/IT/000614) which intends to evaluate the associations between air pollution and early biological effects in children and to propose a model for estimating the global risk of early biological effects due to air pollutants and other factors in children. This work is focused on the micronuclei frequency in child buccal cells in association with airborne PM levels taking into account the influence of other factors associated with the lifestyle of children. The micronucleus test was performed in exfoliated buccal cells of 6–8 years old children from 5 Italian towns with different air pollution levels. Data on air quality during the study period were obtained from the Regional Agency for Environmental Protection. A questionnaire administered to children’s parents was used to obtain details on family socio-economic status, children health condition, exposures to other indoor and outdoor pollutants (i.e. passive smoke) and life-style, with particular reference to eating habits. During the first sampling campaign (winter 2014-15) 1315 children were recruited and sampled for Micronuclei test in buccal cells. In the sampling period the levels of the main pollutants and PM10 were, as expected, higher in the North of Italy (PM10 mean values 62 μg/m3 in Torino and 40 μg/m3 in Brescia) than in the other towns (Pisa, Perugia, Lecce). A higher Micronucleus frequency in buccal cells of children was found in Brescia (0.6/1000 cells) than in the other towns (range 0.3-0.5/1000 cells). The statistical analysis underlines a relation of the micronuclei frequency with PM concentrations, traffic level near child residence, and level of education of parents. The results suggest that, in addition to air pollution exposure, some other factors, related to lifestyle or further exposures, may influence micronucleus frequency and cellular response to air pollutants.

Keywords: air pollution, buccal cells, children, micronucleus cytome assay

Procedia PDF Downloads 253
506 Academia as Creator of Emerging, Innovative Communities of Practice and Learning

Authors: Francisco Julio Batle Lorente

Abstract:

The present paper aims at presenting a new category of role for academia: proactive creator/promoter of communities of practice in emerging areas of innovation. It is based in research among practitioners in three different areas: social entrepreneurship, alumni engaged in entrepreneurship and innovation, and digital nomads. The concept of CoP is related to an intentionally created space to share experiences and collectively reflect on the cases arising from practice. Such an endeavour is not contemplated in the literature on academic roles in an explicit way. The goal of the paper is providing a framework for this function and throw some light on the perception and priorities of members of emerging communities (78 alumni, 154 social entrepreneurs, and 231 digital nomads) regarding community, learning, engagement, and networking, areas in which the university can help and, by doing so, contributing to signal the emerging area and creating new opportunities for the academia. The research methodology was based in Survey research. It is a specific type of field study that involves the collection of data from a sample of elements drawn from a well-defined population through the use of a questionnaire. It was considered that survey research might be valuable to the present project and help outline the utility of various study designs and future projects with the emerging communities that are the object of the investigation. Open questions were used for different topics, as well as critical incident technique. It was used a standard technique for survey sampling and questionnaire design. Finally, it was defined a procedure for pretesting questionnaires and for data collection. The questionnaire was channelled by means of google forms. The results indicate that the members of emerging, innovative CoPs and learning such the ones that were selected for this investigation lack cohesion, inspiration, networking, opportunities for creation of social capital, opportunities for collaboration beyond their existing and close network. The opportunity that arises for the academia from proactively helping articulate CoP (and Communities of learning) are related to key elements of any CoP/ CoL: community construction approaches, technological infrastructure, benefits, participation issues and urgent challenges, trust, networking, technical ability/training/development and collaboration. Beyond training, other three areas (networking, collaboration and urgent challenges) were the ones in which the contribution of universities to the communities were considered more interesting and workable to practitioners. The analysis of the responses for the open questions related to perception of the universities offer options for terra incognita to be explored for universities (signalling new areas, establishing broader collaborations with research, government, media and corporations, attracting investment). Based on the findings from this research, there is some evidence that CoPs can offer a formal and informal method of professional and interprofessional development for member of any emerging and innovative community and can decrease social and professional isolation. The opportunity that it offers to academia can increase the entrepreneurial and engaged university identity. It also moves to academia into a realm of civic confrontation of present and future challenges in a more proactive way.

Keywords: social innovation, new roles of academia, community of learning, community of practice

Procedia PDF Downloads 83
505 Food Sovereignty as Local Resistance to Unequal Access to Food and Natural Resources in Latin America: A Gender Perspective

Authors: Ana Alvarenga De Castro

Abstract:

Food sovereignty has been brought by the international peasants’ movement, La Via Campesina, as a precondition to food security, speaking about the right of each nation to keep its own supply of foods respecting cultural, sustainable practices and productive diversity. The political conceptualization nowadays goes beyond saying that this term is about achieving the rights of farmers to control the food systems according to local specificities, and about equality in the access to natural resources and quality food. The current feminization of agroecosystems and of food insecurity identified by researchers and recognized by international agencies like the UN and FAO has enhanced the feminist discourse into the food sovereignty movement, considering the historical inequalities that place women farmers in subaltern positions inside the families and rural communities. The current tendency in many rural areas of more women taking responsibility for food production and still facing the lack of access to natural resources meets particular aspects in Latin America due to the global economic logic which places the Global South in the position of raw material supplier for the industrialized North, combined with regional characteristics. In this context, Latin American countries play the role of commodities exporters in the international labor division, including among exported items grains, soybean paste, and ores, to the expense of local food chains which provide domestic quality food supply under more sustainable practices. The connections between gender inequalities and global territorial inequalities related to the access and control of food and natural resources are pointed out by feminist political ecology - FPE - authors, and are linked in this article to the potentialities and limitations of women farmers to reproduce diversified agroecosystems in the tropical environments. The work brings the importance of local practices held by women farmers which are crucial to maintaining sustainable agricultural systems and their results on seeds, soil, biodiversity and water conservation. This work presents an analysis of documents, releases, videos and other publicized experiences launched by some peasants’ organizations in Latin America which evidence the different technical and political answers that meet food sovereignty from peasants’ groups that are attributed to women farmers. They are associated with articles presenting the empirical analysis of women farmers' practices in Latin America. The combination drove to discuss the benefits of peasants' conceptions about food systems and their connections with local realities and the gender issues linked to the food sovereignty conceptualization. Conclusion meets that reality on the field cannot reach food sovereignty's ideal homogeneously and that agricultural sustainable practices are dependent on rights' achievement and social inequalities' eradication.

Keywords: food sovereignty, gender, diversified agricultural systems, access to natural resources

Procedia PDF Downloads 248
504 Identification of Clinical Characteristics from Persistent Homology Applied to Tumor Imaging

Authors: Eashwar V. Somasundaram, Raoul R. Wadhwa, Jacob G. Scott

Abstract:

The use of radiomics in measuring geometric properties of tumor images such as size, surface area, and volume has been invaluable in assessing cancer diagnosis, treatment, and prognosis. In addition to analyzing geometric properties, radiomics would benefit from measuring topological properties using persistent homology. Intuitively, features uncovered by persistent homology may correlate to tumor structural features. One example is necrotic cavities (corresponding to 2D topological features), which are markers of very aggressive tumors. We develop a data pipeline in R that clusters tumors images based on persistent homology is used to identify meaningful clinical distinctions between tumors and possibly new relationships not captured by established clinical categorizations. A preliminary analysis was performed on 16 Magnetic Resonance Imaging (MRI) breast tissue segments downloaded from the 'Investigation of Serial Studies to Predict Your Therapeutic Response with Imaging and Molecular Analysis' (I-SPY TRIAL or ISPY1) collection in The Cancer Imaging Archive. Each segment represents a patient’s breast tumor prior to treatment. The ISPY1 dataset also provided the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) status data. A persistent homology matrix up to 2-dimensional features was calculated for each of the MRI segmentation. Wasserstein distances were then calculated between all pairwise tumor image persistent homology matrices to create a distance matrix for each feature dimension. Since Wasserstein distances were calculated for 0, 1, and 2-dimensional features, three hierarchal clusters were constructed. The adjusted Rand Index was used to see how well the clusters corresponded to the ER/PR/HER2 status of the tumors. Triple-negative cancers (negative status for all three receptors) significantly clustered together in the 2-dimensional features dendrogram (Adjusted Rand Index of .35, p = .031). It is known that having a triple-negative breast tumor is associated with aggressive tumor growth and poor prognosis when compared to non-triple negative breast tumors. The aggressive tumor growth associated with triple-negative tumors may have a unique structure in an MRI segmentation, which persistent homology is able to identify. This preliminary analysis shows promising results in the use of persistent homology on tumor imaging to assess the severity of breast tumors. The next step is to apply this pipeline to other tumor segment images from The Cancer Imaging Archive at different sites such as the lung, kidney, and brain. In addition, whether other clinical parameters, such as overall survival, tumor stage, and tumor genotype data are captured well in persistent homology clusters will be assessed. If analyzing tumor MRI segments using persistent homology consistently identifies clinical relationships, this could enable clinicians to use persistent homology data as a noninvasive way to inform clinical decision making in oncology.

Keywords: cancer biology, oncology, persistent homology, radiomics, topological data analysis, tumor imaging

Procedia PDF Downloads 135
503 Generic Early Warning Signals for Program Student Withdrawals: A Complexity Perspective Based on Critical Transitions and Fractals

Authors: Sami Houry

Abstract:

Complex systems exhibit universal characteristics as they near a tipping point. Among them are common generic early warning signals which precede critical transitions. These signals include: critical slowing down in which the rate of recovery from perturbations decreases over time; an increase in the variance of the state variable; an increase in the skewness of the state variable; an increase in the autocorrelations of the state variable; flickering between different states; and an increase in spatial correlations over time. The presence of the signals has management implications, as the identification of the signals near the tipping point could allow management to identify intervention points. Despite the applications of the generic early warning signals in various scientific fields, such as fisheries, ecology and finance, a review of literature did not identify any applications that address the program student withdrawal problem at the undergraduate distance universities. This area could benefit from the application of generic early warning signals as the program withdrawal rate amongst distance students is higher than the program withdrawal rate at face-to-face conventional universities. This research specifically assessed the generic early warning signals through an intensive case study of undergraduate program student withdrawal at a Canadian distance university. The university is non-cohort based due to its system of continuous course enrollment where students can enroll in a course at the beginning of every month. The assessment of the signals was achieved through the comparison of the incidences of generic early warning signals among students who withdrew or simply became inactive in their undergraduate program of study, the true positives, to the incidences of the generic early warning signals among graduates, the false positives. This was achieved through significance testing. Research findings showed support for the signal pertaining to the rise in flickering which is represented in the increase in the student’s non-pass rates prior to withdrawing from a program; moderate support for the signals of critical slowing down as reflected in the increase in the time a student spends in a course; and moderate support for the signals on increase in autocorrelation and increase in variance in the grade variable. The findings did not support the signal on the increase in skewness of the grade variable. The research also proposes a new signal based on the fractal-like characteristic of student behavior. The research also sought to extend knowledge by investigating whether the emergence of a program withdrawal status is self-similar or fractal-like at multiple levels of observation, specifically the program level and the course level. In other words, whether the act of withdrawal at the program level is also present at the course level. The findings moderately supported self-similarity as a potential signal. Overall, the assessment of the signals suggests that the signals, with the exception with the increase of skewness, could be utilized as a predictive management tool and potentially add one more tool, the fractal-like characteristic of withdrawal, as an additional signal in addressing the student program withdrawal problem.

Keywords: critical transitions, fractals, generic early warning signals, program student withdrawal

Procedia PDF Downloads 185
502 Psychological Distress during the COVID-19 Pandemic in Nursing Students: A Mixed-Methods Study

Authors: Mayantoinette F. Watson

Abstract:

During such an unprecedented time of the largest public health crisis, the COVID-19 pandemic, nursing students are of the utmost concern regarding their psychological and physical well-being. Questions are emerging and circulating about what will happen to the nursing students and the long-term effects of the pandemic, especially now that hospitals are being overwhelmed with a significant need for nursing staff. Expectations, demands, change, and the fear of the unknown during this unprecedented time can only contribute to the many stressors that accompany nursing students through laborious clinical and didactic courses in nursing programs. The risk of psychological distress is at a maximum, and its effects can negatively impact not only nursing students but also nursing education and academia. The high exposures to interpersonal, economic, and academic demands contribute to the major health concerns, which include a potential risk for psychological distress. Achievement of educational success among nursing students is directly affected by the high exposure to anxiety and depression from experiences within the program. Working relationships and achieving academic success is imperative to positive student outcomes within the nursing program. The purpose of this study is to identify and establish influences and associations within multilevel factors, including the effects of the COVID-19 pandemic on psychological distress in nursing students. Neuman’s Systems Model Theory was used to determine nursing students’ responses to internal and external stressors. The research in this study utilized a mixed-methods, convergent study design. The study population included undergraduate nursing students from Southeastern U.S. The research surveyed a convenience sample of undergraduate nursing students. The quantitative survey was completed by 202 participants, and 11 participants participated in the qualitative follow-up interview surveys. Participants completed the Kessler Psychological Distress Scale (K6), the Perceived Stress Scale (PSS4), and the Dundee Readiness Educational Environment Scale (DREEM12) to measure psychological distress, perceived stress, and perceived educational environment. Participants also answered open-ended questions regarding their experience during the COVID-19 pandemic. Statistical tests, including bivariate analyses, multiple linear regression analyses, and binary logistics regression analyses were performed in effort to identify and highlight the effects of independent variables on the dependent variable, psychological distress. Coding and qualitative content analysis were performed to identify overarching themes within participants’ interviews. Quantitative data were sufficient in identifying correlations between psychological distress and multilevel factors of coping, marital status, COVID-19 stress, perceived stress, educational environment, and social support in nursing students. Qualitative data were sufficient in identifying common themes of students’ perceptions during COVID-19 and included online learning, workload, finances, experience, breaks, time, unknown, support, encouragement, unchanged, communication, and transmission. The findings are significant, specifically regarding contributing factors to nursing students’ psychological distress, which will help to improve learning in the academic environment.

Keywords: nursing education, nursing students, pandemic, psychological distress

Procedia PDF Downloads 86
501 Comparative Investigation of Two Non-Contact Prototype Designs Based on a Squeeze-Film Levitation Approach

Authors: A. Almurshedi, M. Atherton, C. Mares, T. Stolarski, M. Miyatake

Abstract:

Transportation and handling of delicate and lightweight objects is currently a significant issue in some industries. Two common contactless movement prototype designs, ultrasonic transducer design and vibrating plate design, are compared. Both designs are based on the method of squeeze-film levitation, and this study aims to identify the limitations, and challenges of each. The designs are evaluated in terms of levitation capabilities, and characteristics. To this end, theoretical and experimental explorations are made. It is demonstrated that the ultrasonic transducer prototype design is better suited to the terms of levitation capabilities. However, the design has some operating and mechanical designing difficulties. For making accurate industrial products in micro-fabrication and nanotechnology contexts, such as semiconductor silicon wafers, micro-components and integrated circuits, non-contact oil-free, ultra-precision and low wear transport along the production line is crucial for enabling. One of the designs (design A) is called the ultrasonic chuck, for which an ultrasonic transducer (Langevin, FBI 28452 HS) comprises the main part. Whereas the other (design B), is a vibrating plate design, which consists of a plain rectangular plate made of Aluminium firmly fastened at both ends. The size of the rectangular plate is 200x100x2 mm. In addition, four rounded piezoelectric actuators of size 28 mm diameter with 0.5 mm thickness are glued to the underside of the plate. The vibrating plate is clamped at both ends in the horizontal plane through a steel supporting structure. In addition, the dynamic of levitation using the designs (A and B) has been investigated based on the squeeze film levitation (SFL). The input apparatus that is used with designs consist of a sine wave signal generator connected to an amplifier type ENP-1-1U (Echo Electronics). The latter has to be utilised to magnify the sine wave voltage that is produced by the signal generator. The measurements of the maximum levitation for three different semiconductor wafers of weights 52, 70 and 88 [g] for design A are 240, 205 and 187 [um], respectively. Whereas the physical results show that the average separation distance for a disk of 5 [g] weight for design B reaches 70 [um]. By using the methodology of squeeze film levitation, it is possible to hold an object in a non-contact manner. The analyses of the investigation outcomes signify that the non-contact levitation of design A provides more improvement than design B. However, design A is more complicated than design B in terms of its manufacturing. In order to identify an adequate non-contact SFL design, a comparison between two common such designs has been adopted for the current investigation. Specifically, the study will involve making comparisons in terms of the following issues: floating component geometries and material type constraints; final created pressure distributions; dangerous interactions with the surrounding space; working environment constraints; and complication and compactness of the mechanical design. Considering all these matters is essential for proficiently distinguish the better SFL design.

Keywords: ANSYS, floating, piezoelectric, squeeze-film

Procedia PDF Downloads 149
500 The Effect of Teachers' Personal Values on the Perceptions of the Effective Principal and Student in School

Authors: Alexander Zibenberg, Rima’a Da’As

Abstract:

According to the author’s knowledge, individuals are naturally inclined to classify people as leaders and followers. Individuals utilize cognitive structures or prototypes specifying the traits and abilities that characterize the effective leader (implicit leadership theories) and effective follower in an organization (implicit followership theories). Thus, the present study offers insights into understanding how teachers' personal values (self-enhancement and self-transcendence) explain the preference for styles of effective leader (i.e., principal) and assumptions about the traits and behaviors that characterize effective followers (i.e., student). Beyond the direct effect on perceptions of effective types of leader and follower, the present study argues that values may also interact with organizational and personal contexts in influencing perceptions. Thus authors suggest that teachers' managerial position may moderate the relationships between personal values and perception of the effective leader and follower. Specifically, two key questions are addressed in the present research: (1) Is there a relationship between personal values and perceptions of the effective leader and effective follower? and (2) Are these relationships stable or could they change across different contexts? Two hundred fifty-five Israeli teachers participated in this study, completing questionnaires – about the effective student and effective principal. Results of structural equations modeling (SEM) with maximum likelihood estimation showed: first: the model fit the data well. Second: researchers found a positive relationship between self-enhancement and anti-prototype of the effective principal and anti-prototype of the effective student. The relationship between self-transcendence value and both perceptions were found significant as well. Self-transcendence positively related to the way the teacher perceives the prototype of the effective principal and effective student. Besides, authors found that teachers' managerial position moderates these relationships. The article contributes to the literature both on perceptions and on personal values. Although several earlier studies explored issues of implicit leadership theories and implicit followership theories, personality characteristics (values) have garnered less attention in this matter. This study shows that personal values which are deeply rooted, abstract motivations that guide justify or explain attitudes, norms, opinions and actions explain differences in perception of the effective leader and follower. The results advance the theoretical understanding of the relationship between personal values and individuals’ perceptions in organizations. An additional contribution of this study is the application of the teacher's managerial position to explain a potential boundary condition of the translation of personal values into outcomes. The findings suggest that through the management process in the organization, teachers acquire knowledge and skills which augment their ability (beyond their personal values) to predict perceptions of ideal types of principal and student. The study elucidates the unique role of personal values in understanding an organizational thinking in organization. It seems that personal values might explain the differences in individual preferences of the organizational paradigm (mechanistic vs organic).

Keywords: implicit leadership theories, implicit followership theories, organizational paradigms, personal values

Procedia PDF Downloads 157
499 3D CFD Model of Hydrodynamics in Lowland Dam Reservoir in Poland

Authors: Aleksandra Zieminska-Stolarska, Ireneusz Zbicinski

Abstract:

Introduction: The objective of the present work was to develop and validate a 3D CFD numerical model for simulating flow through 17 kilometers long dam reservoir of a complex bathymetry. In contrast to flowing waters, dam reservoirs were not emphasized in the early years of water quality modeling, as this issue has never been the major focus of urban development. Starting in the 1970s, however, it was recognized that natural and man-made lakes are equal, if not more important than estuaries and rivers from a recreational standpoint. The Sulejow Reservoir (Central Poland) was selected as the study area as representative of many lowland dam reservoirs and due availability of a large database of the ecological, hydrological and morphological parameters of the lake. Method: 3D, 2-phase and 1-phase CFD models were analysed to determine hydrodynamics in the Sulejow Reservoir. Development of 3D, 2-phase CFD model of flow requires a construction of mesh with millions of elements and overcome serious convergence problems. As 1-phase CFD model of flow in relation to 2-phase CFD model excludes from the simulations the dynamics of waves only, which should not change significantly water flow pattern for the case of lowland, dam reservoirs. In 1-phase CFD model, the phases (water-air) are separated by a plate which allows calculations of one phase (water) flow only. As the wind affects velocity of flow, to take into account the effect of the wind on hydrodynamics in 1-phase CFD model, the plate must move with speed and direction equal to the speed and direction of the upper water layer. To determine the velocity at which the plate will move on the water surface and interacts with the underlying layers of water and apply this value in 1-phase CFD model, the 2D, 2-phase model was elaborated. Result: Model was verified on the basis of the extensive flow measurements (StreamPro ADCP, USA). Excellent agreement (an average error less than 10%) between computed and measured velocity profiles was found. As a result of work, the following main conclusions can be presented: •The results indicate that the flow field in the Sulejow Reservoir is transient in nature, with swirl flows in the lower part of the lake. Recirculating zones, with the size of even half kilometer, may increase water retention time in this region •The results of simulations confirm the pronounced effect of the wind on the development of the water circulation zones in the reservoir which might affect the accumulation of nutrients in the epilimnion layer and result e.g. in the algae bloom. Conclusion: The resulting model is accurate and the methodology develop in the frame of this work can be applied to all types of storage reservoir configurations, characteristics, and hydrodynamics conditions. Large recirculating zones in the lake which increase water retention time and might affect the accumulation of nutrients were detected. Accurate CFD model of hydrodynamics in large water body could help in the development of forecast of water quality, especially in terms of eutrophication and water management of the big water bodies.

Keywords: CFD, mathematical modelling, dam reservoirs, hydrodynamics

Procedia PDF Downloads 401
498 Developing Computational Thinking in Early Childhood Education

Authors: Kalliopi Kanaki, Michael Kalogiannakis

Abstract:

Nowadays, in the digital era, the early acquisition of basic programming skills and knowledge is encouraged, as it facilitates students’ exposure to computational thinking and empowers their creativity, problem-solving skills, and cognitive development. More and more researchers and educators investigate the introduction of computational thinking in K-12 since it is expected to be a fundamental skill for everyone by the middle of the 21st century, just like reading, writing and arithmetic are at the moment. In this paper, a doctoral research in the process is presented, which investigates the infusion of computational thinking into science curriculum in early childhood education. The whole attempt aims to develop young children’s computational thinking by introducing them to the fundamental concepts of object-oriented programming in an enjoyable, yet educational framework. The backbone of the research is the digital environment PhysGramming (an abbreviation of Physical Science Programming), which provides children the opportunity to create their own digital games, turning them from passive consumers to active creators of technology. PhysGramming deploys an innovative hybrid schema of visual and text-based programming techniques, with emphasis on object-orientation. Through PhysGramming, young students are familiarized with basic object-oriented programming concepts, such as classes, objects, and attributes, while, at the same time, get a view of object-oriented programming syntax. Nevertheless, the most noteworthy feature of PhysGramming is that children create their own digital games within the context of physical science courses, in a way that provides familiarization with the basic principles of object-oriented programming and computational thinking, even though no specific reference is made to these principles. Attuned to the ethical guidelines of educational research, interventions were conducted in two classes of second grade. The interventions were designed with respect to the thematic units of the curriculum of physical science courses, as a part of the learning activities of the class. PhysGramming was integrated into the classroom, after short introductory sessions. During the interventions, 6-7 years old children worked in pairs on computers and created their own digital games (group games, matching games, and puzzles). The authors participated in these interventions as observers in order to achieve a realistic evaluation of the proposed educational framework concerning its applicability in the classroom and its educational and pedagogical perspectives. To better examine if the objectives of the research are met, the investigation was focused on six criteria; the educational value of PhysGramming, its engaging and enjoyable characteristics, its child-friendliness, its appropriateness for the purpose that is proposed, its ability to monitor the user’s progress and its individualizing features. In this paper, the functionality of PhysGramming and the philosophy of its integration in the classroom are both described in detail. Information about the implemented interventions and the results obtained is also provided. Finally, several limitations of the research conducted that deserve attention are denoted.

Keywords: computational thinking, early childhood education, object-oriented programming, physical science courses

Procedia PDF Downloads 120
497 Electrophoretic Light Scattering Based on Total Internal Reflection as a Promising Diagnostic Method

Authors: Ekaterina A. Savchenko, Elena N. Velichko, Evgenii T. Aksenov

Abstract:

The development of pathological processes, such as cardiovascular and oncological diseases, are accompanied by changes in molecular parameters in cells, tissues, and serum. The study of the behavior of protein molecules in solutions is of primarily importance for diagnosis of such diseases. Various physical and chemical methods are used to study molecular systems. With the advent of the laser and advances in electronics, optical methods, such as scanning electron microscopy, sedimentation analysis, nephelometry, static and dynamic light scattering, have become the most universal, informative and accurate tools for estimating the parameters of nanoscale objects. The electrophoretic light scattering is the most effective technique. It has a high potential in the study of biological solutions and their properties. This technique allows one to investigate the processes of aggregation and dissociation of different macromolecules and obtain information on their shapes, sizes and molecular weights. Electrophoretic light scattering is an analytical method for registration of the motion of microscopic particles under the influence of an electric field by means of quasi-elastic light scattering in a homogeneous solution with a subsequent registration of the spectral or correlation characteristics of the light scattered from a moving object. We modified the technique by using the regime of total internal reflection with the aim of increasing its sensitivity and reducing the volume of the sample to be investigated, which opens the prospects of automating simultaneous multiparameter measurements. In addition, the method of total internal reflection allows one to study biological fluids on the level of single molecules, which also makes it possible to increase the sensitivity and the informativeness of the results because the data obtained from an individual molecule is not averaged over an ensemble, which is important in the study of bimolecular fluids. To our best knowledge the study of electrophoretic light scattering in the regime of total internal reflection is proposed for the first time, latex microspheres 1 μm in size were used as test objects. In this study, the total internal reflection regime was realized on a quartz prism where the free electrophoresis regime was set. A semiconductor laser with a wavelength of 655 nm was used as a radiation source, and the light scattering signal was registered by a pin-diode. Then the signal from a photodetector was transmitted to a digital oscilloscope and to a computer. The autocorrelation functions and the fast Fourier transform in the regime of Brownian motion and under the action of the field were calculated to obtain the parameters of the object investigated. The main result of the study was the dependence of the autocorrelation function on the concentration of microspheres and the applied field magnitude. The effect of heating became more pronounced with increasing sample concentrations and electric field. The results obtained in our study demonstrated the applicability of the method for the examination of liquid solutions, including biological fluids.

Keywords: light scattering, electrophoretic light scattering, electrophoresis, total internal reflection

Procedia PDF Downloads 214
496 Kansei Engineering Applied to the Design of Rural Primary Education Classrooms: Design-Based Learning Case

Authors: Jimena Alarcon, Andrea Llorens, Gabriel Hernandez, Maritza Palma, Lucia Navarrete

Abstract:

The research has funding from the Government of Chile and is focused on defining the design of rural primary classroom that stimulates creativity. The relevance of the study consists of its capacity to define adequate educational spaces for the implementation of the design-based learning (DBL) methodology. This methodology promotes creativity and teamwork, generating a meaningful learning experience for students, based on the appreciation of their environment and the generation of projects that contribute positively to their communities; also, is an inquiry-based form of learning that is based on the integration of design thinking and the design process into the classroom. The main goal of the study is to define the design characteristics of rural primary school classrooms, associated with the implementation of the DBL methodology. Along with the change in learning strategies, it is necessary to change the educational spaces in which they develop. The hypothesis indicates that a change in the space and equipment of the classrooms based on the emotions of the students will motivate better learning results based on the implementation of a new methodology. In this case, the pedagogical dynamics require an important interaction between the participants, as well as an environment favorable to creativity. Methodologies from Kansei engineering are used to know the emotional variables associated with their definition. The study is done to 50 students between 6 and 10 years old (average age of seven years), 48% of men and 52% women. Virtual three-dimensional scale models and semantic differential tables are used. To define the semantic differential, self-applied surveys were carried out. Each survey consists of eight separate questions in two groups: question A to find desirable emotions; question B related to emotions. Both questions have a maximum of three alternatives to answer. Data were tabulated with IBM SPSS Statistics version 19. Terms referred to emotions are grouped into twenty concepts with a higher presence in surveys. To select the values obtained as part of the implementation of Semantic Differential, a number expected of 'chi-square test (x2)' frequency calculated for classroom space is considered lower limit. All terms over the N expected a cut point, are included to prepare tables for surveys to find a relation between emotion and space. Statistic contrast (Chi-Square) represents significance level ≥ 0, indicator that frequencies appeared are not random. Then, the most representative terms depend on the variable under study: a) definition of textures and color of vertical surfaces is associated with emotions such as tranquility, attention, concentration, creativity; and, b) distribution of the equipment of the rooms, with emotions associated with happiness, distraction, creativity, freedom. The main findings are linked to the generation of classrooms according to diverse DBL team dynamics. Kansei engineering is the appropriate methodology to know the emotions that students want to feel in the classroom space.

Keywords: creativity, design-based learning, education spaces, emotions

Procedia PDF Downloads 142
495 Microplastics in Urban Environment – Coimbra City Case Study

Authors: Inês Amorim Leitão, Loes van Shaick, António Dinis Ferreira, Violette Geissen

Abstract:

Plastic pollution is a growing concern worldwide: plastics are commercialized in large quantities and it takes a long time for them to degrade. When in the environment, plastic is fragmented into microplastics (<5mm), which have been found in all environmental compartments at different locations. Microplastics contribute to the environmental pollution in water, air and soil and are linked to human health problems. The progressive increase of population living in cities led to the aggravation of the pollution problem worldwide, especially in urban environments. Urban areas represent a strong source of pollution, through the roads, industrial production, wastewater, landfills, etc. It is expected that pollutants such as microplastics are transported diffusely from the sources through different pathways such as wind and rain. Therefore, it is very complex to quantify, control and treat these pollutants, designated current problematic issues by the European Commission. Green areas are pointed out by experts as natural filters for contaminants in cities, through their capacity of retention by vegetation. These spaces have thus the capacity to control the load of pollutants transported. This study investigates the spatial distribution of microplastics in urban soils of different land uses, their transport through atmospheric deposition, wind erosion, runoff and streams, as well as their deposition in vegetation like grass and tree leaves in urban environment. Coimbra, a medium large city located in the central Portugal, is the case-study. All the soil, sediments, water and vegetation samples were collected in Coimbra and were later analyzed in the Wageningen University & Research laboratory. Microplastics were extracted through the density separation using Sodium Phosphate as solution (~1.4 g cm−3) and filtration methods, visualized under a stereo microscope and identified using the u-FTIR method. Microplastic particles were found in all the different samples. In terms of soils, higher concentrations of microplastics were found in green parks, followed by landfills and industrial places, and the lowest concentrations in forests and pasture land-uses. Atmospheric deposition and streams after rainfall events seems to represent the strongest pathways of microplastics. Tree leaves can retain microplastics on their surfaces. Small leaves such as needle leaves seem to present higher amounts of microplastics per leaf area than bigger leaves. Rainfall episodes seem to reduce the concentration of microplastics on leaves surface, which suggests the wash of microplastics down to lower levels of the tree or to the soil. When in soil, different types of microplastics could be transported to the atmosphere through wind erosion. Grass seems to present high concentrations of microplastics, and the enlargement of the grass cover leads to a reduction of the amount of microplastics in soil, but also of the microplastics moved from the ground to the atmosphere by wind erosion. This study proof that vegetation can help to control the transport and dispersion of microplastics. In order to control the entry and the concentration of microplastics in the environment, especially in cities, it is essential to defining and evaluating nature-based land-use scenarios, considering the role of green urban areas in filtering small particles.

Keywords: microplastics, cities, sources, pathways, vegetation

Procedia PDF Downloads 59
494 Solar Photovoltaic Driven Air-Conditioning for Commercial Buildings: A Case of Botswana

Authors: Taboka Motlhabane, Pradeep Sahoo

Abstract:

The global demand for cooling has grown exponentially over the past century to meet economic development and social needs, accounting for approximately 10% of the global electricity consumption. As global temperatures continue to rise, the demand for cooling and heating, ventilation and air-conditioning (HVAC) equipment is set to rise with it. The increased use of HVAC equipment has significantly contributed to the growth of greenhouse gas (GHG) emissions which aid the climate crisis- one of the biggest challenges faced by the current generation. The need to address emissions caused directly by HVAC equipment and electricity generated to meet the cooling or heating demand is ever more pressing. Currently, developed countries account for the largest cooling and heating demand, however developing countries are anticipated to experience a huge increase in population growth in 10 years, resulting in a shift in energy demand. Developing countries, which are projected to account for nearly 60% of the world's GDP by 2030, are rapidly building infrastructure and economies to meet their growing needs and meet these projections. Cooling, a very energy-intensive process that can account for 20 % to 75% of a building's energy, depending on the building's use. Solar photovoltaic (PV) driven air-conditioning offers a great cost-effective alternative for adoption in both residential and non-residential buildings to offset grid electricity, particularly in countries with high irradiation, such as Botswana. This research paper explores the potential of a grid-connected solar photovoltaic vapor-compression air-conditioning system for the Peter-Smith herbarium at the Okavango Research Institute (ORI) University of Botswana campus in Maun, Botswana. The herbarium plays a critical role in the collection and preservation of botanical data, dating back over 100 years, with pristine collection from the Okavango Delta, a UNESCO world heritage site and serves as a reference and research site. Due to the herbarium’s specific needs, it operates throughout the day and year in an attempt to maintain a constant herbarium temperature of 16°?. The herbarium model studied simulates a variable-air-volume HVAC system with a system rating of 30 kW. Simulation results show that the HVAC system accounts for 68.9% of the building's total electricity at 296 509.60 kWh annually. To offset the grid electricity, a 175.1 kWp nominal power rated PV system requiring 416 modules to match the required power, covering an area of 928 m2 is used to meet the HVAC system annual needs. An economic assessment using PVsyst found that for an installation priced with average solar PV prices in Botswana totalled to be 787 090.00 BWP, with annual operating costs of 30 500 BWP/year. With self-project financing, the project is estimated to have recouped its initial investment within 6.7 years. At an estimated project lifetime of 20 years, the Net Present Value is projected at 1 565 687.00 BWP with a ROI of 198.9%, with 74 070.67 tons of CO2 saved at the end of the project lifetime. This study investigates the performance of the HVAC system to meet the indoor air comfort requirements, the annual PV system performance, and the building model has been simulated using DesignBuilder Software.

Keywords: vapor compression refrigeration, solar cooling, renewable energy, herbarium

Procedia PDF Downloads 126
493 Agro-Forestry Expansion in Middle Gangetic Basin: Adopters' Motivations and Experiences in Bihar, India

Authors: Rakesh Tiwary, D. M. Diwakar, Sandhya Mahapatro

Abstract:

Agro-forestry offers huge opportunities for diversification of agriculture in middle Gangetic Basin of India, particularly in the state of Bihar as the region is identified with traditional & stagnant agriculture, low productivity, high population pressure, rural poverty and lack of agro- industrial development. The region is endowed with favourable agro-climatic, soil & drainage conditions; interestingly, there has been an age old tradition of agro-forestry in the state. However, due to demographic pressures, declining land holdings and other socio- economic factors, agro forestry practices have declined in recent decades. The government of Bihar has initiated a special program for expansion of agro-forestry based on modern practices with an aim to raise income level of farmers, make available raw material for wood based industries and increase green cover in the state. The Agro-forestry Schemes – Poplar & Other Species are the key components of the program being implemented by Department of Environment & Forest, Govt. of Bihar. The paper is based on fieldwork based evaluation study on experiences of implementation of the agro-forestry schemes. Understanding adoption patterns, identification of key motives for practising agro-forestry, experiences of farmers well analysing the barriers in expansion constituted the major themes of the research study. This paper is based on primary as well as secondary data. The primary data consists of beneficiary household survey, Focus Group Discussions among beneficiary communities, dialogue and multi stakeholder meetings and field visit to the sites. The secondary data information was collected and analysed from official records, policy documents and reports. Primary data was collected from about 500 beneficiary households of Muzaffarpur & Saharsa- two populous, large and agriculture dominated districts of middle Gangetic basin of North Bihar. Survey also covers 100 households of non-beneficiaries. Probability Proportionate to Size method was used to determine the number of samples to be covered in different blocks of two districts. Qualitative tools were also implemented to have better insights about key research questions. Present paper discusses socio-economic background of farmers practising agro-forestry; the adoption patterns of agro- forestry (choice of plants, methods of plantation and others); and motivation behind adoption of agro-forestry and the comparative benefits of agro-forestry (vis-a-vis traditional agriculture). Experience of beneficiary farmers with agro-forestry based on government programs & promotional campaigns (in terms of awareness, ease of access, knowhow and others) have been covered in the paper. Different aspects of survival of plants have been closely examined. Non beneficiaries but potential adopters were also interviewed to understand barriers of adoption of agro- forestry. Paper provides policy recommendations and interventions required for effective expansion of the agro- forestry and realisation of its future prospects for agricultural diversification in the region.

Keywords: agro-forestry adoption patterns, farmers’ motivations & experiences, Indian middle Gangetic plains, strategies for expansion

Procedia PDF Downloads 204
492 Impact of Pharmacist-Led Care on Glycaemic Control in Patients with Type 2 Diabetes: A Randomised-Controlled Trial

Authors: Emmanuel A. David, Rebecca O. Soremekun, Roseline I. Aderemi-Williams

Abstract:

Background: The complexities involved in the management of diabetes mellitus require a multi-dimensional, multi-professional collaborative and continuous care by health care providers and a substantial self-care by the patients in order to achieve desired treatment outcomes. The effect of pharmacists’ care in the management of diabetes in resource-endowed nations is well documented in literature, but randomised-controlled assessment of the impact of pharmacist-led care among patients with diabetes in resource-limited settings like Nigeria and sub-Saharan Africa countries is scarce. Objective: To evaluate the impact of Pharmacist-led care on glycaemic control in patients with uncontrolled type 2 diabetes, using a randomised-controlled study design Methods: This study employed a prospective randomised controlled design, to assess the impact of pharmacist-led care on glycaemic control of 108 poorly controlled type 2 diabetic patients. A total of 200 clinically diagnosed type 2 diabetes patients were purposively selected using fasting blood glucose ≥ 7mmol/L and tested for long term glucose control using Glycated haemoglobin measure. One hundred and eight (108) patients with ≥ 7% Glycated haemoglobin were recruited for the study and assigned unique identification numbers. They were further randomly allocated to intervention and usual care groups using computer generated random numbers, with each group containing 54 subjects. Patients in the intervention group received pharmacist-structured intervention, including education, periodic phone calls, adherence counselling, referral and 6 months follow-up, while patients in usual care group only kept clinic appointments with their physicians. Data collected at baseline and six months included socio-demographic characteristics, fasting blood glucose, Glycated haemoglobin, blood pressure, lipid profile. With an intention to treat analysis, Mann-Whitney U test was used to compared median change from baseline in the primary outcome (Glycated haemoglobin) and secondary outcomes measure, effect size was computed and proportion of patients that reached target laboratory parameter were compared in both arms. Results: All enrolled participants (108) completed the study, 54 in each study. Mean age was 51±11.75 and majority were female (68.5%). Intervention patients had significant reduction in Glycated haemoglobin (-0.75%; P<0.001; η2 = 0.144), with greater proportion attaining target laboratory parameter after 6 months of care compared to usual care group (Glycated haemoglobin: 42.6% vs 20.8%; P=0.02). Furthermore, patients who received pharmacist-led care were about 3 times more likely to have better glucose control (AOR 2.718, 95%CI: 1.143-6.461) compared to usual care group. Conclusion: Pharmacist-led care significantly improved glucose control in patients with uncontrolled type 2 diabetes mellitus and should be integrated in the routine management of diabetes patients, especially in resource-limited settings.

Keywords: glycaemic control , pharmacist-led care, randomised-controlled trial , type 2 diabetes mellitus

Procedia PDF Downloads 121
491 Optimal Control of Generators and Series Compensators within Multi-Space-Time Frame

Authors: Qian Chen, Lin Xu, Ping Ju, Zhuoran Li, Yiping Yu, Yuqing Jin

Abstract:

The operation of power grid is becoming more and more complex and difficult due to its rapid development towards high voltage, long distance, and large capacity. For instance, many large-scale wind farms have connected to power grid, where their fluctuation and randomness is very likely to affect the stability and safety of the grid. Fortunately, many new-type equipments based on power electronics have been applied to power grid, such as UPFC (Unified Power Flow Controller), TCSC (Thyristor Controlled Series Compensation), STATCOM (Static Synchronous Compensator) and so on, which can help to deal with the problem above. Compared with traditional equipment such as generator, new-type controllable devices, represented by the FACTS (Flexible AC Transmission System), have more accurate control ability and respond faster. But they are too expensive to use widely. Therefore, on the basis of the comparison and analysis of the controlling characteristics between traditional control equipment and new-type controllable equipment in both time and space scale, a coordinated optimizing control method within mutil-time-space frame is proposed in this paper to bring both kinds of advantages into play, which can better both control ability and economical efficiency. Firstly, the coordination of different space sizes of grid is studied focused on the fluctuation caused by large-scale wind farms connected to power grid. With generator, FSC (Fixed Series Compensation) and TCSC, the coordination method on two-layer regional power grid vs. its sub grid is studied in detail. The coordination control model is built, the corresponding scheme is promoted, and the conclusion is verified by simulation. By analysis, interface power flow can be controlled by generator and the specific line power flow between two-layer regions can be adjusted by FSC and TCSC. The smaller the interface power flow adjusted by generator, the bigger the control margin of TCSC, instead, the total consumption of generator is much higher. Secondly, the coordination of different time sizes is studied to further the amount of the total consumption of generator and the control margin of TCSC, where the minimum control cost can be acquired. The coordination method on two-layer ultra short-term correction vs. AGC (Automatic Generation Control) is studied with generator, FSC and TCSC. The optimal control model is founded, genetic algorithm is selected to solve the problem, and the conclusion is verified by simulation. Finally, the aforementioned method within multi-time-space scale is analyzed with practical cases, and simulated on PSASP (Power System Analysis Software Package) platform. The correctness and effectiveness are verified by the simulation result. Moreover, this coordinated optimizing control method can contribute to the decrease of control cost and will provide reference to the following studies in this field.

Keywords: FACTS, multi-space-time frame, optimal control, TCSC

Procedia PDF Downloads 267
490 Aspects Concerning the Use of Recycled Concrete Aggregates

Authors: Ion Robu, Claudiu Mazilu, Radu Deju

Abstract:

Natural aggregates (gravel and crushed) are essential non-renewable resources which are used for infrastructure works and civil engineering. In European Union member states from Southeast Europe, it is estimated that the construction industry will grow by 4.2% thereafter complicating aggregate supply management. In addition, a significant additional problem that can be associated to the aggregates industry is wasting potential resources through waste dumping of inert waste, especially waste from construction and demolition activities. In 2012, in Romania, less than 10% of construction and demolition waste (including concrete) are valorized, while the European Union requires that by 2020 this proportion should be at least 70% (Directive 2008/98/EC on waste, transposed into Romanian legislation by Law 211/2011). Depending on the efficiency of waste processing and the quality of recycled aggregate concrete (RCA) obtained, poor quality aggregate can be used as foundation material for roads and at the high quality for new concrete on construction. To obtain good quality concrete using recycled aggregate is necessary to meet the minimum requirements defined by the rules for the manufacture of concrete with natural aggregate. Properties of recycled aggregate (density, granulosity, granule shape, water absorption, weight loss to Los Angeles test, attached mortar content etc.) are the basis for concrete quality; also establishing appropriate proportions between components and the concrete production methods are extremely important for its quality. This paper presents a study on the use of recycled aggregates, from a concrete of specified class, to acquire new cement concrete with different percentages of recycled aggregates. To achieve recycled aggregates several batches of concrete class C16/20, C25/30 and C35/45 were made, the compositions calculation being made according NE012/2007 CP012/2007. Tests for producing recycled aggregate was carried out using concrete samples of the established three classes after 28 days of storage under the above conditions. Cubes with 150mm side were crushed in a first stage with a jaw crusher Liebherr type set at 50 mm nominally. The resulting material was separated by sieving on granulometric sorts and 10-50 sort was used for preliminary tests of crushing in the second stage with a jaw crusher BB 200 Retsch model, respectively a hammer crusher Buffalo Shuttle WA-12-H model. It was highlighted the influence of the type of crusher used to obtain recycled aggregates on granulometry and granule shape and the influence of the attached mortar on the density, water absorption, behavior to the Los Angeles test etc. The proportion of attached mortar was determined and correlated with provenance concrete class of the recycled aggregates and their granulometric sort. The aim to characterize the recycled aggregates is their valorification in new concrete used in construction. In this regard have been made a series of concrete in which the recycled aggregate content was varied from 0 to 100%. The new concrete were characterized by point of view of the change in the density and compressive strength with the proportion of recycled aggregates. It has been shown that an increase in recycled aggregate content not necessarily mean a reduction in compressive strength, quality of the aggregate having a decisive role.

Keywords: recycled concrete aggregate, characteristics, recycled aggregate concrete, properties

Procedia PDF Downloads 216
489 Choosing Mountains Over the Beach: Evaluating the Effect of Altitude on Covid Brain Severity and Treatment

Authors: Kennedy Zinn, Chris Anderson

Abstract:

Chronic Covid syndrome (CCS) is a condition in which individuals who test positive for Covid-19 experience persistent symptoms after recovering from the virus. CCS affects every organ system, including the central nervous system. Neurological “long-haul” symptoms last from a few weeks to several months and include brain fog, chronic fatigue, dyspnea, mood dysregulation, and headaches. Data suggest that 10-30% of individuals testing positive for Covid-19 develop CCS. Current literature indicates a decreased quality of life in persistent symptoms. CCS is a pervasive and pernicious COVID-19 sequelae. More research is needed to understand risk factors, impact, and possible interventions. Research frequently cites cytokine storming as noteworthy etiology in CCS. Cytokine storming is a malfunctional immune response and facilitates multidimensional interconnected physiological responses. The most prominent responses include abnormal blood flow, hypoxia/hypoxemia, inflammation, and endothelial damage. Neurological impairments and pathogenesis in CCS parallel that of traumatic brain injury (TBI). Both exhibit impairments in memory, cognition, mood, sustained attention, and chronic fatigue. Evidence suggests abnormal blood flow, inflammation, and hypoxemia as shared causal factors. Cytokine storming is also typical in mTBI. The shared characteristics in symptoms and etiology suggest potential parallel routes of investigation that allow for better understanding of CCS. Research on the effect of altitude in mTBI varies. Literature finds decreased rates of concussions at higher altitudes. Other studies suggest that at a higher altitude, pre-existing mTBI symptoms are exacerbated. This may mean that in CCS, the geographical location where individuals live and the location where individuals experienced acute Covid-19 symptoms may influence the severity and risk of developing CCS. It also suggests that clinics which treat mTBI patients could also provide benefits for those with CCS. This study aims to examine the relationships between altitude and CCS as a risk factor and investigate the longevity and severity of symptoms in different altitudes. Existing patient data from a concussion clinic using fMRI scans and self-reported symptoms will be used for approximately 30 individuals with CCS symptoms. The association between acclimated altitude and CCS severity will be analyzed. Patients will be classified into low, medium, and high altitude groups and compared for differences on fMRI severity scores and self-reported measures. It is anticipated that individuals living in lower altitudes are at higher risk of developing more severe neuropsychological symptoms in CCS. It is also anticipated that a treatment approach for mTBI will also be beneficial to those with CCS.

Keywords: altitude, chronic covid syndrome, concussion, covid brain, EPIC treatment, fMRI, traumatic brain injury

Procedia PDF Downloads 132
488 Machine Learning Approaches Based on Recency, Frequency, Monetary (RFM) and K-Means for Predicting Electrical Failures and Voltage Reliability in Smart Cities

Authors: Panaya Sudta, Wanchalerm Patanacharoenwong, Prachya Bumrungkun

Abstract:

As With the evolution of smart grids, ensuring the reliability and efficiency of electrical systems in smart cities has become crucial. This paper proposes a distinct approach that combines advanced machine learning techniques to accurately predict electrical failures and address voltage reliability issues. This approach aims to improve the accuracy and efficiency of reliability evaluations in smart cities. The aim of this research is to develop a comprehensive predictive model that accurately predicts electrical failures and voltage reliability in smart cities. This model integrates RFM analysis, K-means clustering, and LSTM networks to achieve this objective. The research utilizes RFM analysis, traditionally used in customer value assessment, to categorize and analyze electrical components based on their failure recency, frequency, and monetary impact. K-means clustering is employed to segment electrical components into distinct groups with similar characteristics and failure patterns. LSTM networks are used to capture the temporal dependencies and patterns in customer data. This integration of RFM, K-means, and LSTM results in a robust predictive tool for electrical failures and voltage reliability. The proposed model has been tested and validated on diverse electrical utility datasets. The results show a significant improvement in prediction accuracy and reliability compared to traditional methods, achieving an accuracy of 92.78% and an F1-score of 0.83. This research contributes to the proactive maintenance and optimization of electrical infrastructures in smart cities. It also enhances overall energy management and sustainability. The integration of advanced machine learning techniques in the predictive model demonstrates the potential for transforming the landscape of electrical system management within smart cities. The research utilizes diverse electrical utility datasets to develop and validate the predictive model. RFM analysis, K-means clustering, and LSTM networks are applied to these datasets to analyze and predict electrical failures and voltage reliability. The research addresses the question of how accurately electrical failures and voltage reliability can be predicted in smart cities. It also investigates the effectiveness of integrating RFM analysis, K-means clustering, and LSTM networks in achieving this goal. The proposed approach presents a distinct, efficient, and effective solution for predicting and mitigating electrical failures and voltage issues in smart cities. It significantly improves prediction accuracy and reliability compared to traditional methods. This advancement contributes to the proactive maintenance and optimization of electrical infrastructures, overall energy management, and sustainability in smart cities.

Keywords: electrical state prediction, smart grids, data-driven method, long short-term memory, RFM, k-means, machine learning

Procedia PDF Downloads 56
487 Promoting Physical Activity through Urban Active Environments: Learning from Practice and Policy Implementation in the EU Space Project

Authors: Rosina U. Ndukwe, Diane Crone, Nick Cavill

Abstract:

Active transport (i.e. walking to school, cycle to work schemes etc.) is an effective approach with multiple social and environmental benefits for transforming urban environments into active urban environments. Although walking and cycling often remain on the margins of urban planning and infrastructure, there are new approaches emerging, along with policy intervention relevant for the creation of sustainable urban active environments conductive to active travel, increasing physical activity levels of involved communities and supporting social inclusion through more active participation. SPAcE - Supporting Policy and Action for Active Environments is a 3 year Erasmus+ project that aims to integrate active transport programmes into public policy across the EU. SPAcE focuses on cities/towns with recorded low physical activity levels to support the development of active environments in 5 sites: Latvia [Tukums], Italy [Palermo], Romania [Brasov], Spain [Castilla-La Mancha] and Greece [Trikala]. The first part of the project involved a review of good practice including case studies from across the EU and project partner countries. This has resulted in the first output from the project, an evidence of good practice summary with case study examples. In the second part of the project, working groups across the 5 sites have carried out co-production to develop Urban Active Environments (UActivE) Action Plans aimed at influencing policy and practice for increasing physical activity primarily through the use of cycling and walking. Action plans are based on international evidence and guidance for healthy urban planning. Remaining project partners include Universities (Gloucestershire, Oxford, Zurich, Thessaly) and Fit for Life programme (National physical activity promotion program, Finland) who provide support and advice incorporating current evidence, healthy urban planning and mentoring. Cooperation and co-production with public health professionals, local government officers, education authorities and transport agencies has been a key approach of the project. The third stage of the project has involved training partners in the WHO HEAT tool to support the implementation of the Action Plans. Project results show how multi-agency, transnational collaboration can produce real-life Action Plans in five EU countries, based on published evidence, real-life experience, consultation and collaborative working with other organisations across the EU. Learning from the processes adopted within this project will demonstrate how public health, local government and transport agencies across the EU, can work together to create healthy environments that have the aim of facilitating active behaviour, even in times of constrained public budgets. The SPAcE project has captured both the challenges and solutions for increasing population physical activity levels, health and wellness in urban spaces and translating evidence into policy and practice ensuring innovation at policy level. Funding acknowledgment: SPAcE (www.activeenvironments.eu) is co-funded by the Sport action of the ERASMUS+ programme.

Keywords: action plans, active transport, SPAcE, UActivE urban active environments, walking and cycling

Procedia PDF Downloads 264
486 Artificial Intelligence Models for Detecting Spatiotemporal Crop Water Stress in Automating Irrigation Scheduling: A Review

Authors: Elham Koohi, Silvio Jose Gumiere, Hossein Bonakdari, Saeid Homayouni

Abstract:

Water used in agricultural crops can be managed by irrigation scheduling based on soil moisture levels and plant water stress thresholds. Automated irrigation scheduling limits crop physiological damage and yield reduction. Knowledge of crop water stress monitoring approaches can be effective in optimizing the use of agricultural water. Understanding the physiological mechanisms of crop responding and adapting to water deficit ensures sustainable agricultural management and food supply. This aim could be achieved by analyzing and diagnosing crop characteristics and their interlinkage with the surrounding environment. Assessments of plant functional types (e.g., leaf area and structure, tree height, rate of evapotranspiration, rate of photosynthesis), controlling changes, and irrigated areas mapping. Calculating thresholds of soil water content parameters, crop water use efficiency, and Nitrogen status make irrigation scheduling decisions more accurate by preventing water limitations between irrigations. Combining Remote Sensing (RS), the Internet of Things (IoT), Artificial Intelligence (AI), and Machine Learning Algorithms (MLAs) can improve measurement accuracies and automate irrigation scheduling. This paper is a review structured by surveying about 100 recent research studies to analyze varied approaches in terms of providing high spatial and temporal resolution mapping, sensor-based Variable Rate Application (VRA) mapping, the relation between spectral and thermal reflectance and different features of crop and soil. The other objective is to assess RS indices formed by choosing specific reflectance bands and identifying the correct spectral band to optimize classification techniques and analyze Proximal Optical Sensors (POSs) to control changes. The innovation of this paper can be defined as categorizing evaluation methodologies of precision irrigation (applying the right practice, at the right place, at the right time, with the right quantity) controlled by soil moisture levels and sensitiveness of crops to water stress, into pre-processing, processing (retrieval algorithms), and post-processing parts. Then, the main idea of this research is to analyze the error reasons and/or values in employing different approaches in three proposed parts reported by recent studies. Additionally, as an overview conclusion tried to decompose different approaches to optimizing indices, calibration methods for the sensors, thresholding and prediction models prone to errors, and improvements in classification accuracy for mapping changes.

Keywords: agricultural crops, crop water stress detection, irrigation scheduling, precision agriculture, remote sensing

Procedia PDF Downloads 71
485 Designing a Thermal Management System for Lithium Ion Battery Packs in Electric Vehicles

Authors: Ekin Esen, Mohammad Alipour, Riza Kizilel

Abstract:

Rechargeable lithium-ion batteries have been replacing lead-acid batteries for the last decade due to their outstanding properties such as high energy density, long shelf life, and almost no memory effect. Besides these, being very light compared to lead acid batteries has gained them their dominant place in the portable electronics market, and they are now the leading candidate for electric vehicles (EVs) and hybrid electric vehicles (HEVs). However, their performance strongly depends on temperature, and this causes some inconveniences for their utilization in extreme temperatures. Since weather conditions vary across the globe, this situation limits their utilization for EVs and HEVs and makes a thermal management system obligatory for the battery units. The objective of this study is to understand thermal characteristics of Li-ion battery modules for various operation conditions and design a thermal management system to enhance battery performance in EVs and HEVs. In the first part of our study, we investigated thermal behavior of commercially available pouch type 20Ah LiFePO₄ (LFP) cells under various conditions. Main parameters were chosen as ambient temperature and discharge current rate. Each cell was charged and discharged at temperatures of 0°C, 10°C, 20°C, 30°C, 40°C, and 50°C. The current rate of charging process was 1C while it was 1C, 2C, 3C, 4C, and 5C for discharge process. Temperatures of 7 different points on the cells were measured throughout charging and discharging with N-type thermocouples, and a detailed temperature profile was obtained. In the second part of our study, we connected 4 cells in series by clinching and prepared 4S1P battery modules similar to ones in EVs and HEVs. Three reference points were determined according to the findings of the first part of the study, and a thermocouple is placed on each reference point on the cells composing the 4S1P battery modules. In the end, temperatures of 6 points in the module and 3 points on the top surface were measured and changes in the surface temperatures were recorded for different discharge rates (0.2C, 0.5C, 0.7C, and 1C) at various ambient temperatures (0°C – 50°C). Afterwards, aluminum plates with channels were placed between the cells in the 4S1P battery modules, and temperatures were controlled with airflow. Airflow was provided with a regular compressor, and the effect of flow rate on cell temperature was analyzed. Diameters of the channels were in mm range, and shapes of the channels were determined in order to make the cell temperatures uniform. Results showed that the designed thermal management system could help keeping the cell temperatures in the modules uniform throughout charge and discharge processes. Other than temperature uniformity, the system was also beneficial to keep cell temperature close to the optimum working temperature of Li-ion batteries. It is known that keeping the temperature at an optimum degree and maintaining uniform temperature throughout utilization can help obtaining maximum power from the cells in battery modules for a longer time. Furthermore, it will increase safety by decreasing the risk of thermal runaways. Therefore, the current study is believed to be beneficial for wider use of Li batteries for battery modules of EVs and HEVs globally.

Keywords: lithium ion batteries, thermal management system, electric vehicles, hybrid electric vehicles

Procedia PDF Downloads 163
484 Sugar-Induced Stabilization Effect of Protein Structure

Authors: Mitsuhiro Hirai, Satoshi Ajito, Nobutaka Shimizu, Noriyuki Igarashi, Hiroki Iwase, Shinichi Takata

Abstract:

Sugars and polyols are known to be bioprotectants preventing such as protein denaturation and enzyme deactivation and widely used as a nontoxic additive in various industrial and medical products. The mechanism of their protective actions has been explained by specific bindings between biological components and additives, changes in solvent viscosities, and surface tension and free energy changes upon transfer of those components into additive solutions. On the other hand, some organisms having tolerances against extreme environment produce stress proteins and/or accumulate sugars in cells, which is called cryptobiosis. In particular, trehalose has been drawing attention relevant to cryptobiosis under external stress such as high or low temperature, drying, osmotic pressure, and so on. The function of cryptobiosis by trehalose has been explained relevant to the restriction of the intra-and/or-inter-molecular movement by vitrification or from the replacement of water molecule by trehalose. Previous results suggest that the structure and interaction between sugar and water are a key determinant for understanding cryptobiosis. Recently, we have shown direct evidence that the protein hydration (solvation) and structural stability against chemical and thermal denaturation significantly depend on sugar species and glycerol. Sugar and glycerol molecules tend to be preferentially or weakly excluded from the protein surface and preserved the native protein hydration shell. Due to the protective action of the protein hydration shell by those molecules, the protein structure is stabilized against chemical (guanidinium chloride) and thermal denaturation. The protective action depends on sugar species. To understand the above trend and difference in detail, it is essentially important to clarify the characteristics of solutions containing those additives. In this study, by using wide-angle X-ray scattering technique covering a wide spatial region (~3-120 Å), we have clarified structures of sugar solutions with the concentration from 5% w/w to 65% w/w. The sugars measured in the present study were monosaccharides (glucose, fructose, mannose) and disaccharides (sucrose, trehalose, maltose). Due to observed scattering data with a wide spatial resolution, we have succeeded in obtaining information on the internal structure of individual sugar molecules and on the correlation between them. Every sugar gradually shortened the average inter-molecular distance as the concentration increased. The inter-molecular interaction between sugar molecules was essentially showed an exclusive tendency for every sugar, which appeared as the presence of a repulsive correlation hole. This trend was more weakly seen for trehalose compared to other sugars. The intermolecular distance and spread of individual molecule clearly showed the dependence of sugar species. We will discuss the relation between the characteristic of sugar solution and its protective action of biological materials.

Keywords: hydration, protein, sugar, X-ray scattering

Procedia PDF Downloads 156
483 Highly Automated Trucks In Intermodal Logistics: Findings From a Field Test in Railport and Container Depot Operations in Germany

Authors: Dustin Schöder

Abstract:

The potential benefits of the utilization of highly automated and autonomous trucks in logistics operations are the subject of interest to the entire logistics industry. The benefits of the use of these new technologies were scientifically investigated and implemented in roadmaps. So far, reliable data and experiences from real life use cases are still limited. A German research consortium of both academics and industry developed a highly automated (SAE level 4) vehicle for yard operations at railports and container depots. After development and testing, a several month field test at the DUSS Terminal in Ulm-Dornstadt (Germany) and the nearby DB Intermodal Services Container Depot in Ulm-Dornstadt was conducted. The truck was piloted in a shuttle service between both sites. In a holistic automation approach, the vehicle was integrated into a digital communication platform so that the truck could move autonomously without a driver and his manual interactions with a wide variety of stakeholders. The main goal is to investigate the effects of highly automated trucks in the key processes of container loading, unloading and container relocation on holistic railport yard operation. The field test data were used to investigate changes in process efficiency of key processes of railport and container yard operations. Moreover, effects on the capacity utilization and potentials for smothering peak workloads were analyzed. The results state that process efficiency in the piloted use case was significantly higher. The reason for that could be found in the digitalized data exchange and automated dispatch. However, the field test has shown that the effect is greatly varying depending on the ratio of highly automated and manual trucks in the yard as well as on the congestion level in the loading area. Furthermore, the data confirmed that under the right conditions, the capacity utilization of highly automated trucks could be increased. In regard to the potential for smothering peak workloads, no significant findings could be made based on the limited requirements and regulations of railway operation in Germany. In addition, an empirical survey among railport managers, operational supervisors, innovation managers and strategists (n=15) within the logistics industry in Germany was conducted. The goal was to identify key characteristics of future railports and terminals as well as requirements that railports will have to meet in the future. Furthermore, the railport processes where automation and autonomization make the greatest impact, as well as hurdles and challenges in the introduction of new technologies, have been surveyed. Hence, further potential use cases of highly automated and autonomous applications could be identified, and expectations have been mapped. As a result, a highly detailed and practice-based roadmap towards a ‘terminal 4.0’ was developed.

Keywords: highly automated driving, autonomous driving, SAE level 4, railport operations, container depot, intermodal logistics, potentials of autonomization

Procedia PDF Downloads 79
482 Current Applications of Artificial Intelligence (AI) in Chest Radiology

Authors: Angelis P. Barlampas

Abstract:

Learning Objectives: The purpose of this study is to inform briefly the reader about the applications of AI in chest radiology. Background: Currently, there are 190 FDA-approved radiology AI applications, with 42 (22%) pertaining specifically to thoracic radiology. Imaging findings OR Procedure details Aids of AI in chest radiology1: Detects and segments pulmonary nodules. Subtracts bone to provide an unobstructed view of the underlying lung parenchyma and provides further information on nodule characteristics, such as nodule location, nodule two-dimensional size or three dimensional (3D) volume, change in nodule size over time, attenuation data (i.e., mean, minimum, and/or maximum Hounsfield units [HU]), morphological assessments, or combinations of the above. Reclassifies indeterminate pulmonary nodules into low or high risk with higher accuracy than conventional risk models. Detects pleural effusion . Differentiates tension pneumothorax from nontension pneumothorax. Detects cardiomegaly, calcification, consolidation, mediastinal widening, atelectasis, fibrosis and pneumoperitoneum. Localises automatically vertebrae segments, labels ribs and detects rib fractures. Measures the distance from the tube tip to the carina and localizes both endotracheal tubes and central vascular lines. Detects consolidation and progression of parenchymal diseases such as pulmonary fibrosis or chronic obstructive pulmonary disease (COPD).Can evaluate lobar volumes. Identifies and labels pulmonary bronchi and vasculature and quantifies air-trapping. Offers emphysema evaluation. Provides functional respiratory imaging, whereby high-resolution CT images are post-processed to quantify airflow by lung region and may be used to quantify key biomarkers such as airway resistance, air-trapping, ventilation mapping, lung and lobar volume, and blood vessel and airway volume. Assesses the lung parenchyma by way of density evaluation. Provides percentages of tissues within defined attenuation (HU) ranges besides furnishing automated lung segmentation and lung volume information. Improves image quality for noisy images with built-in denoising function. Detects emphysema, a common condition seen in patients with history of smoking and hyperdense or opacified regions, thereby aiding in the diagnosis of certain pathologies, such as COVID-19 pneumonia. It aids in cardiac segmentation and calcium detection, aorta segmentation and diameter measurements, and vertebral body segmentation and density measurements. Conclusion: The future is yet to come, but AI already is a helpful tool for the daily practice in radiology. It is assumed, that the continuing progression of the computerized systems and the improvements in software algorithms , will redder AI into the second hand of the radiologist.

Keywords: artificial intelligence, chest imaging, nodule detection, automated diagnoses

Procedia PDF Downloads 72
481 Methodology for the Determination of Triterpenic Compounds in Apple Extracts

Authors: Mindaugas Liaudanskas, Darius Kviklys, Kristina Zymonė, Raimondas Raudonis, Jonas Viškelis, Norbertas Uselis, Pranas Viškelis, Valdimaras Janulis

Abstract:

Apples are among the most commonly consumed fruits in the world. Based on data from the year 2014, approximately 84.63 million tons of apples are grown per annum. Apples are widely used in food industry to produce various products and drinks (juice, wine, and cider); they are also used unprocessed. Apples in human diet are an important source of different groups of biological active compounds that can positively contribute to the prevention of various diseases. They are a source of various biologically active substances – especially vitamins, organic acids, micro- and macro-elements, pectins, and phenolic, triterpenic, and other compounds. Triterpenic compounds, which are characterized by versatile biological activity, are the biologically active compounds found in apples that are among the most promising and most significant for human health. A specific analytical procedure including sample preparation and High Performance Liquid Chromatography (HPLC) analysis was developed, optimized, and validated for the detection of triterpenic compounds in the samples of different apples, their peels, and flesh from widespread apple cultivars 'Aldas', 'Auksis', 'Connel Red', 'Ligol', 'Lodel', and 'Rajka' grown in Lithuanian climatic conditions. The conditions for triterpenic compound extraction were optimized: the solvent of the extraction was 100% (v/v) acetone, and the extraction was performed in an ultrasound bath for 10 min. Isocratic elution (the eluents ratio being 88% (solvent A) and 12% (solvent B)) for a rapid separation of triterpenic compounds was performed. The validation of the methodology was performed on the basis of the ICH recommendations. The following characteristics of validation were evaluated: the selectivity of the method (specificity), precision, the detection and quantitation limits of the analytes, and linearity. The obtained parameters values confirm suitability of methodology to perform analysis of triterpenic compounds. Using the optimised and validated HPLC technique, four triterpenic compounds were separated and identified, and their specificity was confirmed. These compounds were corosolic acid, betulinic acid, oleanolic acid, and ursolic acid. Ursolic acid was the dominant compound in all the tested apple samples. The detected amount of betulinic acid was the lowest of all the identified triterpenic compounds. The greatest amounts of triterpenic compounds were detected in whole apple and apple peel samples of the 'Lodel' cultivar, and thus apples and apple extracts of this cultivar are potentially valuable for use in medical practice, for the prevention of various diseases, for adjunct therapy, for the isolation of individual compounds with a specific biological effect, and for the development and production of dietary supplements and functional food enriched in biologically active compounds. Acknowledgements. This work was supported by a grant from the Research Council of Lithuania, project No. MIP-17-8.

Keywords: apples, HPLC, triterpenic compounds, validation

Procedia PDF Downloads 173
480 Modeling Visual Memorability Assessment with Autoencoders Reveals Characteristics of Memorable Images

Authors: Elham Bagheri, Yalda Mohsenzadeh

Abstract:

Image memorability refers to the phenomenon where certain images are more likely to be remembered by humans than others. It is a quantifiable and intrinsic attribute of an image. Understanding how visual perception and memory interact is important in both cognitive science and artificial intelligence. It reveals the complex processes that support human cognition and helps to improve machine learning algorithms by mimicking the brain's efficient data processing and storage mechanisms. To explore the computational underpinnings of image memorability, this study examines the relationship between an image's reconstruction error, distinctiveness in latent space, and its memorability score. A trained autoencoder is used to replicate human-like memorability assessment inspired by the visual memory game employed in memorability estimations. This study leverages a VGG-based autoencoder that is pre-trained on the vast ImageNet dataset, enabling it to recognize patterns and features that are common to a wide and diverse range of images. An empirical analysis is conducted using the MemCat dataset, which includes 10,000 images from five broad categories: animals, sports, food, landscapes, and vehicles, along with their corresponding memorability scores. The memorability score assigned to each image represents the probability of that image being remembered by participants after a single exposure. The autoencoder is finetuned for one epoch with a batch size of one, attempting to create a scenario similar to human memorability experiments where memorability is quantified by the likelihood of an image being remembered after being seen only once. The reconstruction error, which is quantified as the difference between the original and reconstructed images, serves as a measure of how well the autoencoder has learned to represent the data. The reconstruction error of each image, the error reduction, and its distinctiveness in latent space are calculated and correlated with the memorability score. Distinctiveness is measured as the Euclidean distance between each image's latent representation and its nearest neighbor within the autoencoder's latent space. Different structural and perceptual loss functions are considered to quantify the reconstruction error. The results indicate that there is a strong correlation between the reconstruction error and the distinctiveness of images and their memorability scores. This suggests that images with more unique distinct features that challenge the autoencoder's compressive capacities are inherently more memorable. There is also a negative correlation between the reduction in reconstruction error compared to the autoencoder pre-trained on ImageNet, which suggests that highly memorable images are harder to reconstruct, probably due to having features that are more difficult to learn by the autoencoder. These insights suggest a new pathway for evaluating image memorability, which could potentially impact industries reliant on visual content and mark a step forward in merging the fields of artificial intelligence and cognitive science. The current research opens avenues for utilizing neural representations as instruments for understanding and predicting visual memory.

Keywords: autoencoder, computational vision, image memorability, image reconstruction, memory retention, reconstruction error, visual perception

Procedia PDF Downloads 91
479 An Evolutionary Approach for Automated Optimization and Design of Vivaldi Antennas

Authors: Sahithi Yarlagadda

Abstract:

The design of antenna is constrained by mathematical and geometrical parameters. Though there are diverse antenna structures with wide range of feeds yet, there are many geometries to be tried, which cannot be customized into predefined computational methods. The antenna design and optimization qualify to apply evolutionary algorithmic approach since the antenna parameters weights dependent on geometric characteristics directly. The evolutionary algorithm can be explained simply for a given quality function to be maximized. We can randomly create a set of candidate solutions, elements of the function's domain, and apply the quality function as an abstract fitness measure. Based on this fitness, some of the better candidates are chosen to seed the next generation by applying recombination and permutation to them. In conventional approach, the quality function is unaltered for any iteration. But the antenna parameters and geometries are wide to fit into single function. So, the weight coefficients are obtained for all possible antenna electrical parameters and geometries; the variation is learnt by mining the data obtained for an optimized algorithm. The weight and covariant coefficients of corresponding parameters are logged for learning and future use as datasets. This paper drafts an approach to obtain the requirements to study and methodize the evolutionary approach to automated antenna design for our past work on Vivaldi antenna as test candidate. The antenna parameters like gain, directivity, etc. are directly caged by geometries, materials, and dimensions. The design equations are to be noted here and valuated for all possible conditions to get maxima and minima for given frequency band. The boundary conditions are thus obtained prior to implementation, easing the optimization. The implementation mainly aimed to study the practical computational, processing, and design complexities that incur while simulations. HFSS is chosen for simulations and results. MATLAB is used to generate the computations, combinations, and data logging. MATLAB is also used to apply machine learning algorithms and plotting the data to design the algorithm. The number of combinations is to be tested manually, so HFSS API is used to call HFSS functions from MATLAB itself. MATLAB parallel processing tool box is used to run multiple simulations in parallel. The aim is to develop an add-in to antenna design software like HFSS, CSTor, a standalone application to optimize pre-identified common parameters of wide range of antennas available. In this paper, we have used MATLAB to calculate Vivaldi antenna parameters like slot line characteristic impedance, impedance of stripline, slot line width, flare aperture size, dielectric and K means, and Hamming window are applied to obtain the best test parameters. HFSS API is used to calculate the radiation, bandwidth, directivity, and efficiency, and data is logged for applying the Evolutionary genetic algorithm in MATLAB. The paper demonstrates the computational weights and Machine Learning approach for automated antenna optimizing for Vivaldi antenna.

Keywords: machine learning, Vivaldi, evolutionary algorithm, genetic algorithm

Procedia PDF Downloads 110