Search results for: traffic assignment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1384

Search results for: traffic assignment

214 Restoration of a Forest Catchment in Himachal Pradesh, India: An Institutional Analysis

Authors: Sakshi Gupta, Kavita Sardana

Abstract:

Management of a forest catchment involves diverse dimensions, multiple stakeholders, and conflicting interests, primarily due to the wide variety of valuable ecosystem services offered by it. Often, the coordination among different levels of formal institutions governing the catchment, local communities, as well as societal norms, taboos, customs and practices, happens to be amiss, leading to conflicting policy interventions which prove detrimental for such resources. In the case of Ala Catchment, which is a protected forest located at a distance of 9 km North-East of the town of Dalhousie, within district Chamba of Himachal Pradesh, India, and serves as one of the primary sources of public water supply for the downstream town of Dalhousie and nearby areas, several policy measures have been adopted for the restoration of the forest catchment, as well as for the improvement of public water supply. These catchment forest restoration measures include; the installation of a fence along the perimeter of the catchment, plantation of trees in the empty patches of the forest, construction of check dams, contour trenches, contour bunds, issuance of grazing permits, and installation of check posts to keep track of trespassers. While the measures adopted to address the acute shortage of public water supply in the Dalhousie region include; building and maintenance of large capacity water storage tanks, laying of pipelines, expanding public water distribution infrastructure to include water sources other than Ala Catchment Forest and introducing of five new water supply schemes for drinking water as well as irrigation. However, despite these policy measures, the degradation of the Ala catchment and acute shortage of water supply continue to distress the region. This study attempts to conduct an institutional analysis to assess the impact of policy measures for the restoration of the Ala Catchment in the Chamba district of Himachal Pradesh in India. For this purpose, the theoretical framework of Ostrom’s Institutional Assessment and Development (IAD) Framework was used. Snowball sampling was used to conduct private interviews and focused group discussions. A semi-structured questionnaire was administered to interview a total of 184 respondents across stakeholders from both formal and informal institutions. The central hypothesis of the study is that the interplay of formal and informal institutions facilitates the implementation of policy measures for ameliorating Ala Catchment, in turn improving the livelihood of people depending on this forest catchment for direct and indirect benefits. The findings of the study suggest that leakages in the successful implementation of policy measures occur at several nodes of decision-making, which adversely impact the catchment and the ecosystem services provided by it. Some of the key reasons diagnosed by the immediate analysis include; ad-hoc assignment of property rights, rise in tourist inflow increasing the pressures on water demand, illegal trespassing by local and nomadic pastoral communities for grazing and unlawful extraction of forest products, and rent-seeking by a few influential formal institutions. Consequently, it is indicated that the interplay of formal and informal institutions may be obscuring the consequentiality of the policy measures on the restoration of the catchment.

Keywords: catchment forest restoration, institutional analysis and development framework, institutional interplay, protected forest, water supply management

Procedia PDF Downloads 98
213 Diffusion MRI: Clinical Application in Radiotherapy Planning of Intracranial Pathology

Authors: Pomozova Kseniia, Gorlachev Gennadiy, Chernyaev Aleksandr, Golanov Andrey

Abstract:

In clinical practice, and especially in stereotactic radiosurgery planning, the significance of diffusion-weighted imaging (DWI) is growing. This makes the existence of software capable of quickly processing and reliably visualizing diffusion data, as well as equipped with tools for their analysis in terms of different tasks. We are developing the «MRDiffusionImaging» software on the standard C++ language. The subject part has been moved to separate class libraries and can be used on various platforms. The user interface is Windows WPF (Windows Presentation Foundation), which is a technology for managing Windows applications with access to all components of the .NET 5 or .NET Framework platform ecosystem. One of the important features is the use of a declarative markup language, XAML (eXtensible Application Markup Language), with which you can conveniently create, initialize and set properties of objects with hierarchical relationships. Graphics are generated using the DirectX environment. The MRDiffusionImaging software package has been implemented for processing diffusion magnetic resonance imaging (dMRI), which allows loading and viewing images sorted by series. An algorithm for "masking" dMRI series based on T2-weighted images was developed using a deformable surface model to exclude tissues that are not related to the area of interest from the analysis. An algorithm of distortion correction using deformable image registration based on autocorrelation of local structure has been developed. Maximum voxel dimension was 1,03 ± 0,12 mm. In an elementary brain's volume, the diffusion tensor is geometrically interpreted using an ellipsoid, which is an isosurface of the probability density of a molecule's diffusion. For the first time, non-parametric intensity distributions, neighborhood correlations, and inhomogeneities are combined in one segmentation of white matter (WM), grey matter (GM), and cerebrospinal fluid (CSF) algorithm. A tool for calculating the coefficient of average diffusion and fractional anisotropy has been created, on the basis of which it is possible to build quantitative maps for solving various clinical problems. Functionality has been created that allows clustering and segmenting images to individualize the clinical volume of radiation treatment and further assess the response (Median Dice Score = 0.963 ± 0,137). White matter tracts of the brain were visualized using two algorithms: deterministic (fiber assignment by continuous tracking) and probabilistic using the Hough transform. The proposed algorithms test candidate curves in the voxel, assigning to each one a score computed from the diffusion data, and then selects the curves with the highest scores as the potential anatomical connections. White matter fibers were visualized using a Hough transform tractography algorithm. In the context of functional radiosurgery, it is possible to reduce the irradiation volume of the internal capsule receiving 12 Gy from 0,402 cc to 0,254 cc. The «MRDiffusionImaging» will improve the efficiency and accuracy of diagnostics and stereotactic radiotherapy of intracranial pathology. We develop software with integrated, intuitive support for processing, analysis, and inclusion in the process of radiotherapy planning and evaluating its results.

Keywords: diffusion-weighted imaging, medical imaging, stereotactic radiosurgery, tractography

Procedia PDF Downloads 85
212 Injury Patterns and Outcomes in Alcohol Intoxicated Trauma Patients Admitted at Level I Apex Trauma Centre of a Developing Nation

Authors: G. Kaushik, A. Gupta, S. Lalwani, K. D. Soni, S. Kumar, S. Sagar

Abstract:

Objective: Alcohol is a leading risk factor associated with the disability and death due to RTI. Present study aims to demonstrate the demographic profile, injury pattern, physiological parameters of victims of trauma following alcohol consumption arriving in the emergency department (ED) and mortality in alcohol intoxicated trauma patients admitted to Apex Trauma Center in Delhi. Design and Methods: Present study was performed in randomly selected 182 alcohol breath analyzer tested RTI patients from the emergency department of Jai Prakash Narayan Apex Trauma Center (JPNATC), All India Institute of Medical Sciences, New Delhi for over a period of 3 months started from September 2013 to November 2013. Results: A total 182 RTI patients with blunt injury were selected between 30-40 years of age and equally distributed to male and female group. Of these, 93 (51%) were alcohol negative and 89 (49%) were alcohol positive. In 89 alcohol positive patients, 47 (53%) had Artificial Airway as compared to 17 (18%), (p < 0.001) in the other group. The Glasgow Coma Scale (GCS) score was lower (p < 0.001) and higher Injury Severity Score (ISS) was observed in alcohol positive group as compared to other group (p < 0.03). Increased number of patients (58%) were admitted to Intensive Care Unit (ICU), in alcohol positive group (p < 0.001) and they were in ICU for longer time compare to other group (p < 0.001). The alcohol positive patients were on ventilator support for longer duration as compared to non-alcoholic group (p < 0.001). Mortality rate was higher in alcohol intoxicated patients as compared to non-alcoholic RTI patients, however, the difference was not statistically significant. Conclusion: This study revealed that GCS, mean ISS, ICU stay, ventilation time etc. might have considerable impact on mortality in alcohol intoxicated patients as compared to non-alcoholic group.

Keywords: road traffic injuries, alcohol, trauma, emergency department

Procedia PDF Downloads 317
211 Software Development for AASHTO and Ethiopian Roads Authority Flexible Pavement Design Methods

Authors: Amare Setegn Enyew, Bikila Teklu Wodajo

Abstract:

The primary aim of flexible pavement design is to ensure the development of economical and safe road infrastructure. However, failures can still occur due to improper or erroneous structural design. In Ethiopia, the design of flexible pavements relies on doing calculations manually and selecting pavement structure from catalogue. The catalogue offers, in eight different charts, alternative structures for combinations of traffic and subgrade classes, as outlined in the Ethiopian Roads Authority (ERA) Pavement Design Manual 2001. Furthermore, design modification is allowed in accordance with the structural number principles outlined in the AASHTO 1993 Guide for Design of Pavement Structures. Nevertheless, the manual calculation and design process involves the use of nomographs, charts, tables, and formulas, which increases the likelihood of human errors and inaccuracies, and this may lead to unsafe or uneconomical road construction. To address the challenge, a software called AASHERA has been developed for AASHTO 1993 and ERA design methods, using MATLAB language. The software accurately determines the required thicknesses of flexible pavement surface, base, and subbase layers for the two methods. It also digitizes design inputs and references like nomographs, charts, default values, and tables. Moreover, the software allows easier comparison of the two design methods in terms of results and cost of construction. AASHERA's accuracy has been confirmed through comparisons with designs from handbooks and manuals. The software can aid in reducing human errors, inaccuracies, and time consumption as compared to the conventional manual design methods employed in Ethiopia. AASHERA, with its validated accuracy, proves to be an indispensable tool for flexible pavement structure designers.

Keywords: flexible pavement design, AASHTO 1993, ERA, MATLAB, AASHERA

Procedia PDF Downloads 63
210 Applying Resilience Engineering to improve Safety Management in a Construction Site: Design and Validation of a Questionnaire

Authors: M. C. Pardo-Ferreira, J. C. Rubio-Romero, M. Martínez-Rojas

Abstract:

Resilience Engineering is a new paradigm of safety management that proposes to change the way of managing the safety to focus on the things that go well instead of the things that go wrong. Many complex and high-risk sectors such as air traffic control, health care, nuclear power plants, railways or emergencies, have applied this new vision of safety and have obtained very positive results. In the construction sector, safety management continues to be a problem as indicated by the statistics of occupational injuries worldwide. Therefore, it is important to improve safety management in this sector. For this reason, it is proposed to apply Resilience Engineering to the construction sector. The Construction Phase Health and Safety Plan emerges as a key element for the planning of safety management. One of the key tools of Resilience Engineering is the Resilience Assessment Grid that allows measuring the four essential abilities (respond, monitor, learn and anticipate) for resilient performance. The purpose of this paper is to develop a questionnaire based on the Resilience Assessment Grid, specifically on the ability to learn, to assess whether a Construction Phase Health and Safety Plans helps companies in a construction site to implement this ability. The research process was divided into four stages: (i) initial design of a questionnaire, (ii) validation of the content of the questionnaire, (iii) redesign of the questionnaire and (iii) application of the Delphi method. The questionnaire obtained could be used as a tool to help construction companies to evolve from Safety-I to Safety-II. In this way, companies could begin to develop the ability to learn, which will serve as a basis for the development of the other abilities necessary for resilient performance. The following steps in this research are intended to develop other questions that allow evaluating the rest of abilities for resilient performance such as monitoring, learning and anticipating.

Keywords: resilience engineering, construction sector, resilience assessment grid, construction phase health and safety plan

Procedia PDF Downloads 139
209 Economic Impacts of Sanctuary and Immigration and Customs Enforcement Policies Inclusive and Exclusive Institutions

Authors: Alexander David Natanson

Abstract:

This paper focuses on the effect of Sanctuary and Immigration and Customs Enforcement (ICE) policies on local economies. "Sanctuary cities" refers to municipal jurisdictions that limit their cooperation with the federal government's efforts to enforce immigration. Using county-level data from the American Community Survey and ICE data on economic indicators from 2006 to 2018, this study isolates the effects of local immigration policies on U.S. counties. The investigation is accomplished by simultaneously studying the policies' effects in counties where immigrants' families are persecuted via collaboration with Immigration and Customs Enforcement (ICE), in contrast to counties that provide protections. The analysis includes a difference-in-difference & two-way fixed effect model. Results are robust to nearest-neighbor matching, after the random assignment of treatment, after running estimations using different cutoffs for immigration policies, and with a regression discontinuity model comparing bordering counties with opposite policies. Results are also robust after restricting the data to a single-year policy adoption, using the Sun and Abraham estimator, and with event-study estimation to deal with the staggered treatment issue. In addition, the study reverses the estimation to understand what drives the decision to choose policies to detect the presence of reverse causality biases in the estimated policy impact on economic factors. The evidence demonstrates that providing protections to undocumented immigrants increases economic activity. The estimates show gains in per capita income ranging from 3.1 to 7.2, median wages between 1.7 to 2.6, and GDP between 2.4 to 4.1 percent. Regarding labor, sanctuary counties saw increases in total employment between 2.3 to 4 percent, and the unemployment rate declined from 12 to 17 percent. The data further shows that ICE policies have no statistically significant effects on income, median wages, or GDP but adverse effects on total employment, with declines from 1 to 2 percent, mostly in rural counties, and an increase in unemployment of around 7 percent in urban counties. In addition, results show a decline in the foreign-born population in ICE counties but no changes in sanctuary counties. The study also finds similar results for sanctuary counties when separating the data between urban, rural, educational attainment, gender, ethnic groups, economic quintiles, and the number of business establishments. The takeaway from this study is that institutional inclusion creates the dynamic nature of an economy, as inclusion allows for economic expansion due to the extension of fundamental freedoms to newcomers. Inclusive policies show positive effects on economic outcomes with no evident increase in population. To make sense of these results, the hypothesis and theoretical model propose that inclusive immigration policies play an essential role in conditioning the effect of immigration by decreasing uncertainties and constraints for immigrants' interaction in their communities, decreasing the cost from fear of deportation or the constant fear of criminalization and optimize their human capital.

Keywords: inclusive and exclusive institutions, post matching, fixed effect, time trend, regression discontinuity, difference-in-difference, randomization inference and sun, Abraham estimator

Procedia PDF Downloads 88
208 Introduction of Mass Rapid Transit System and Its Impact on Para-Transit

Authors: Khalil Ahmad Kakar

Abstract:

In developing countries increasing the automobile and low capacity public transport (para-transit) which are creating congestion, pollution, noise, and traffic accident are the most critical quandary. These issues are under the analysis of assessors to break down the puzzle and propose sustainable urban public transport system. Kabul city is one of those urban areas that the inhabitants are suffering from lack of tolerable and friendly public transport system. The city is the most-populous and overcrowded with around 4.5 million population. The para-transit is the only dominant public transit system with a very poor level of services and low capacity vehicles (6-20 passengers). Therefore, this study after detailed investigations suggests bus rapid transit (BRT) system in Kabul City. It is aimed to mitigate the role of informal transport and decreases congestion. The research covers three parts. In the first part, aggregated travel demand modelling (four-step) is applied to determine the number of users for para-transit and assesses BRT network based on higher passenger demand for public transport mode. In the second part, state preference (SP) survey and binary logit model are exerted to figure out the utility of existing para-transit mode and planned BRT system. Finally, the impact of predicted BRT system on para-transit is evaluated. The extracted outcome based on high travel demand suggests 10 km network for the proposed BRT system, which is originated from the district tenth and it is ended at Kabul International Airport. As well as, the result from the disaggregate travel mode-choice model, based on SP and logit model indicates that the predicted mass rapid transit system has higher utility with the significant impact regarding the reduction of para-transit.

Keywords: BRT, para-transit, travel demand modelling, Kabul City, logit model

Procedia PDF Downloads 184
207 Investigating a Deterrence Function for Work Trips for Perth Metropolitan Area

Authors: Ali Raouli, Amin Chegenizadeh, Hamid Nikraz

Abstract:

The Perth metropolitan area and its surrounding regions have been expanding rapidly in recent decades and it is expected that this growth will continue in the years to come. With this rapid growth and the resulting increase in population, consideration should be given to strategic planning and modelling for the future expansion of Perth. The accurate estimation of projected traffic volumes has always been a major concern for the transport modelers and planners. Development of a reliable strategic transport model depends significantly on the inputs data into the model and the calibrated parameters of the model to reflect the existing situation. Trip distribution is the second step in four-step modelling (FSM) which is complex due to its behavioral nature. Gravity model is the most common method for trip distribution. The spatial separation between the Origin and Destination (OD) zones will be reflected in gravity model by applying deterrence functions which provide an opportunity to include people’s behavior in choosing their destinations based on distance, time and cost of their journeys. Deterrence functions play an important role for distribution of the trips within a study area and would simulate the trip distances and therefore should be calibrated for any particular strategic transport model to correctly reflect the trip behavior within the modelling area. This paper aims to review the most common deterrence functions and propose a calibrated deterrence function for work trips within the Perth Metropolitan Area based on the information obtained from the latest available Household data and Perth and Region Travel Survey (PARTS) data. As part of this study, a four-step transport model using EMME software has been developed for Perth Metropolitan Area to assist with the analysis and findings.

Keywords: deterrence function, four-step modelling, origin destination, transport model

Procedia PDF Downloads 168
206 The Impact of Dust Storm Events on the Chemical and Toxicological Characteristics of Ambient Particulate Matter in Riyadh, Saudi Arabia

Authors: Abdulmalik Altuwayjiri, Milad Pirhadi, Mohammed Kalafy, Badr Alharbi, Constantinos Sioutas

Abstract:

In this study, we investigated the chemical and toxicological characteristics of PM10 in the metropolitan area of Riyadh, Saudi Arabia. PM10 samples were collected on quartz and teflon filters during cold (December 2019–April 2020) and warm (May 2020–August 2020) seasons, including dust and non-dust events. The PM10 constituents were chemically analyzed for their metal, inorganic ions, and elemental and organic carbon (EC/OC) contents. Additionally, the PM10 oxidative potential was measured by means of the dithiothreitol (DTT) assay. Our findings revealed that the oxidative potential of the collected ambient PM10 samples was significantly higher than those measured in many urban areas worldwide. The oxidative potential of the collected ambient PM¹⁰⁻ samples was also higher during dust episodes compared to non-dust events, mainly due to higher concentrations of metals during these events. We performed Pearson correlation analysis, principal component analysis (PCA), and multi-linear regression (MLR) to identify the most significant sources contributing to the toxicity of PM¹⁰⁻ The results of the MLR analyses indicated that the major pollution sources contributing to the oxidative potential of ambient PM10 were soil and resuspended dust emissions (identified by Al, K, Fe, and Li) (31%), followed by secondary organic aerosol (SOA) formation (traced by SO₄-² and NH+₄) (20%), and industrial activities (identified by Se and La) (19%), and traffic emissions (characterized by EC, Zn, and Cu) (17%). Results from this study underscore the impact of transported dust emissions on the oxidative potential of ambient PM10 in Riyadh and can be helpful in adopting appropriate public health policies regarding detrimental outcomes of exposure to PM₁₀-

Keywords: ambient PM10, oxidative potential, source apportionment, Riyadh, dust episodes

Procedia PDF Downloads 174
205 Effects of Food Habits on Road Accidents Due to Micro-Sleepiness and Analysis of Attitudes to Develop a Food Product as a Preventive Measure

Authors: Rumesh Liyanage, S. B. Nawaratne, K. K. D. S. Ranaweera, Indira Wickramasinghe, K. G. S. C. Katukurunda

Abstract:

Study it was attempted to identify an effect of food habits and publics’ attitudes on micro-sleepiness and preventive measures to develop a food product to combat. Statistical data pertaining to road accidents were collected from, Sri Lanka Police Traffic Division and a pre-tested questionnaire was used to collect data from 250 respondents. They were selected representing drivers (especially highway drivers), private and public sector workers (shift based) and cramming students (university and school). Questionnaires were directed to fill independently and personally and collected data were analyzed statistically. Results revealed that 76.84, 96.39 and 80.93% out of total respondents consumed rice for all three meals which lead to ingesting higher glycemic meals. Taking two hyper glycemic meals before 14.00h was identified as a cause of micro-sleepiness within these respondents. Peak level of road accidents were observed at 14.00 - 20.00h (38.2%)and intensity of micro-sleepiness falls at the same time period (37.36%) while 14.00 to 16.00h was the peak time, 16.00 to 18.00h was the least; again 18.00 to 20.00h it reappears slightly. Even though respondents of the survey expressed that peak hours of micro- sleepiness is 14.00-16.00h, according to police reports, peak hours fall in between 18.00-20.00h. Out of the interviewees, 69.27% strongly wanted to avoid micro-sleepiness and intend to spend LKR 10-20 on a commercial product to combat micro sleepiness. As age-old practices to suppress micro-sleepiness are time taken, modern day respondents (51.64%) like to have a quick solution through a drink. Therefore, food habits of morning and noon may cause for micro- sleepiness while dinner may cause for both, natural and micro-sleepiness due to the heavy glycemic load of food. According to the study micro-sleepiness, can be categorized into three zones such as low-risk zone (08.00-10.00h and 18.00-20.00h), manageable zone (10.00-12.00h), and high- risk zone (14.00-16.00h).

Keywords: food habits, glycemic load, micro-sleepiness, road accidents

Procedia PDF Downloads 545
204 The Carbon Footprint Model as a Plea for Cities towards Energy Transition: The Case of Algiers Algeria

Authors: Hachaichi Mohamed Nour El-Islem, Baouni Tahar

Abstract:

Environmental sustainability rather than a trans-disciplinary and a scientific issue, is the main problem that characterizes all modern cities nowadays. In developing countries, this concern is expressed in a plethora of critical urban ills: traffic congestion, air pollution, noise, urban decay, increase in energy consumption and CO2 emissions which blemish cities’ landscape and might threaten citizens’ health and welfare. As in the same manner as developing world cities, the rapid growth of Algiers’ human population and increasing in city scale phenomena lead eventually to increase in daily trips, energy consumption and CO2 emissions. In addition, the lack of proper and sustainable planning of the city’s infrastructure is one of the most relevant issues from which Algiers suffers. The aim of this contribution is to estimate the carbon deficit of the City of Algiers, Algeria, using the Ecological Footprint Model (carbon footprint). In order to achieve this goal, the amount of CO2 from fuel combustion has been calculated and aggregated into five sectors (agriculture, industry, residential, tertiary and transportation); as well, Algiers’ biocapacity (CO2 uptake land) has been calculated to determine the ecological overshoot. This study shows that Algiers’ transport system is not sustainable and is generating more than 50% of Algiers total carbon footprint which cannot be sequestered by the local forest land. The aim of this research is to show that the Carbon Footprint Assessment might be a relevant indicator to design sustainable strategies/policies striving to reduce CO2 by setting in motion the energy consumption in the transportation sector and reducing the use of fossil fuels as the main energy input.

Keywords: biocapacity, carbon footprint, ecological footprint assessment, energy consumption

Procedia PDF Downloads 147
203 Green Transport Solutions for Developing Cities: A Case Study of Nairobi, Kenya

Authors: Benedict O. Muyale, Emmanuel S. Murunga

Abstract:

Cities have always been the loci for nationals as well as growth of cultural fusion and innovation. Over 50%of global population dwells in cities and urban centers. This means that cities are prolific users of natural resources and generators of waste; hence they produce most of the greenhouse gases which are causing global climate change. The root cause of increase in the transport sector carbon curve is mainly the greater numbers of individually owned cars. Development in these cities is geared towards economic progress while environmental sustainability is ignored. Infrastructure projects focus on road expansion, electrification, and more parking spaces. These lead to more carbon emissions, traffic congestion, and air pollution. Recent development plans for Nairobi city are now on road expansion with little priority for electric train solutions. The Vision 2030, Kenya’s development guide, has shed some light on the city with numerous road expansion projects. This chapter seeks to realize the following objectives; (1) to assess the current transport situation of Nairobi; (2) to review green transport solutions being undertaken in the city; (3) to give an overview of alternative green transportation solutions, and (4) to provide a green transportation framework matrix. This preliminary study will utilize primary and secondary data through mainly desktop research and analysis, literature, books, magazines and on-line information. This forms the basis for formulation of approaches for incorporation into the green transportation framework matrix of the main study report.The main goal is the achievement of a practical green transportation system for implementation by the City County of Nairobi to reduce carbon emissions and congestion and promote environmental sustainability.

Keywords: cities, transport, Nairobi, green technologies

Procedia PDF Downloads 322
202 A Study on the Correlation Analysis between the Pre-Sale Competition Rate and the Apartment Unit Plan Factor through Machine Learning

Authors: Seongjun Kim, Jinwooung Kim, Sung-Ah Kim

Abstract:

The development of information and communication technology also affects human cognition and thinking, especially in the field of design, new techniques are being tried. In architecture, new design methodologies such as machine learning or data-driven design are being applied. In particular, these methodologies are used in analyzing the factors related to the value of real estate or analyzing the feasibility in the early planning stage of the apartment housing. However, since the value of apartment buildings is often determined by external factors such as location and traffic conditions, rather than the interior elements of buildings, data is rarely used in the design process. Therefore, although the technical conditions are provided, the internal elements of the apartment are difficult to apply the data-driven design in the design process of the apartment. As a result, the designers of apartment housing were forced to rely on designer experience or modular design alternatives rather than data-driven design at the design stage, resulting in a uniform arrangement of space in the apartment house. The purpose of this study is to propose a methodology to support the designers to design the apartment unit plan with high consumer preference by deriving the correlation and importance of the floor plan elements of the apartment preferred by the consumers through the machine learning and reflecting this information from the early design process. The data on the pre-sale competition rate and the elements of the floor plan are collected as data, and the correlation between pre-sale competition rate and independent variables is analyzed through machine learning. This analytical model can be used to review the apartment unit plan produced by the designer and to assist the designer. Therefore, it is possible to make a floor plan of apartment housing with high preference because it is possible to feedback apartment unit plan by using trained model when it is used in floor plan design of apartment housing.

Keywords: apartment unit plan, data-driven design, design methodology, machine learning

Procedia PDF Downloads 269
201 Multi-scale Spatial and Unified Temporal Feature-fusion Network for Multivariate Time Series Anomaly Detection

Authors: Hang Yang, Jichao Li, Kewei Yang, Tianyang Lei

Abstract:

Multivariate time series anomaly detection is a significant research topic in the field of data mining, encompassing a wide range of applications across various industrial sectors such as traffic roads, financial logistics, and corporate production. The inherent spatial dependencies and temporal characteristics present in multivariate time series introduce challenges to the anomaly detection task. Previous studies have typically been based on the assumption that all variables belong to the same spatial hierarchy, neglecting the multi-level spatial relationships. To address this challenge, this paper proposes a multi-scale spatial and unified temporal feature fusion network, denoted as MSUT-Net, for multivariate time series anomaly detection. The proposed model employs a multi-level modeling approach, incorporating both temporal and spatial modules. The spatial module is designed to capture the spatial characteristics of multivariate time series data, utilizing an adaptive graph structure learning model to identify the multi-level spatial relationships between data variables and their attributes. The temporal module consists of a unified temporal processing module, which is tasked with capturing the temporal features of multivariate time series. This module is capable of simultaneously identifying temporal dependencies among different variables. Extensive testing on multiple publicly available datasets confirms that MSUT-Net achieves superior performance on the majority of datasets. Our method is able to model and accurately detect systems data with multi-level spatial relationships from a spatial-temporal perspective, providing a novel perspective for anomaly detection analysis.

Keywords: data mining, industrial system, multivariate time series, anomaly detection

Procedia PDF Downloads 17
200 A Discrete Event Simulation Model For Airport Runway Operations Optimization (Case Study)

Authors: Awad Khireldin, Colin Law

Abstract:

Runways are the major infrastructure of airports around the world. Efficient operations of runways are key to ensure that airports are running smoothly with minimal delays. There are many factors that affect the efficiency of runway operations, such as the aircraft wake separation, runways system configuration, the fleet mix, and the runways separation distance. This paper aims to address how to maximize runway operations using a Discrete Event Simulation model. A case study of Cairo International Airport (CIA) is developed to maximize the utilizing of three parallel runways using a simulation model. Different scenarios have been designed where every runway could be assigned for arrival, departure, or mixed operations. A benchmarking study was also included to compare the actual to the proposed results to spot the potential improvements. The simulation model shows that there is a significant difference in utilization and delays between the actual and the proposed ones, there are several recommendations that can be provided to airport management, in the short and long term, to increase the efficiency and to reduce the delays. By including the recommendation with different operations scenarios, such as upgrading the airport slot Coordination from Level 1 to Level 2 in the short term. In the long run, discuss the possibilities to increase the International Air Transport association (IATA) slot coordination to Level 3 as more flights are expected to be handled by the airport. Technological advancements such as radar in the approach full airside simulation model could improve the airport performance where the airport is recommended to review the standard operations procedures with the appropriate authorities. Also, the airport can adopt a future operational plan to accommodate the forecasted additional traffic density in case of adding a fourth terminal building to increase the airport capacity.

Keywords: airport performance, runway, discrete event simulation, capacity, airside

Procedia PDF Downloads 136
199 Qualitative and Quantitative Methods in Multidisciplinary Fields Collection Development

Authors: Hui Wang

Abstract:

Traditional collection building approaches are limited in breadth and scope and are not necessarily suitable for multidisciplinary fields development in the institutes of the Chinese Academy of Sciences. The increasing of multidisciplinary fields researches require a viable approach to collection development in these libraries. This study uses qualitative and quantitative analysis to assess collection. The quantitative analysis consists of three levels of evaluation, which including realistic demand, potential demand and trend demand analysis. For one institute, three samples were separately selected from the object institute, more than one international top institutes in highly relative research fields and future research hotspots. Each sample contains an appropriate number of papers published in recent five years. Several keywords and the organization names were reasonably combined to search in commercial databases and the institutional repositories. The publishing information and citations in the bibliographies of these papers were selected to build the dataset. One weighted evaluation model and citation analysis were used to calculate the demand intensity index of every journal and book. Principal Investigator selector and database traffic provide a qualitative evidence to describe the demand frequency. The demand intensity, demand frequency and academic committee recommendations were comprehensively considered to recommend collection development. The collection gaps or weaknesses were ascertained by comparing the current collection and the recommend collection. This approach was applied in more than 80 institutes’ libraries in Chinese Academy of Sciences in the past three years. The evaluation results provided an important evidence for collections building in the second year. The latest user survey results showed that the updated collection’s capacity to support research in a multidisciplinary subject area have increased significantly.

Keywords: citation analysis, collection assessment, collection development, quantitative analysis

Procedia PDF Downloads 219
198 Integration of Big Data to Predict Transportation for Smart Cities

Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin

Abstract:

The Intelligent transportation system is essential to build smarter cities. Machine learning based transportation prediction could be highly promising approach by delivering invisible aspect visible. In this context, this research aims to make a prototype model that predicts transportation network by using big data and machine learning technology. In detail, among urban transportation systems this research chooses bus system.  The research problem that existing headway model cannot response dynamic transportation conditions. Thus, bus delay problem is often occurred. To overcome this problem, a prediction model is presented to fine patterns of bus delay by using a machine learning implementing the following data sets; traffics, weathers, and bus statues. This research presents a flexible headway model to predict bus delay and analyze the result. The prototyping model is composed by real-time data of buses. The data are gathered through public data portals and real time Application Program Interface (API) by the government. These data are fundamental resources to organize interval pattern models of bus operations as traffic environment factors (road speeds, station conditions, weathers, and bus information of operating in real-time). The prototyping model is designed by the machine learning tool (RapidMiner Studio) and conducted tests for bus delays prediction. This research presents experiments to increase prediction accuracy for bus headway by analyzing the urban big data. The big data analysis is important to predict the future and to find correlations by processing huge amount of data. Therefore, based on the analysis method, this research represents an effective use of the machine learning and urban big data to understand urban dynamics.

Keywords: big data, machine learning, smart city, social cost, transportation network

Procedia PDF Downloads 262
197 Save Lives: The Application of Geolocation-Awareness Service in Iranian Pre-hospital EMS Information Management System

Authors: Somayeh Abedian, Pirhossein Kolivand, Hamid Reza Lornejad, Amin Karampour, Ebrahim Keshavarz Safari

Abstract:

For emergency and relief service providers such as pre-hospital emergencies, quick arrival at the scene of an accident or any EMS mission is one of the most important requirements of effective service delivery. Response time (the interval between the time of the call and the time of arrival on scene) is a critical factor in determining the quality of pre-hospital Emergency Medical Services (EMS). This is especially important for heart attack, stroke, or accident patients. Location-based e-services can be broadly defined as any service that provides information pertinent to the current location of an active mobile handset or precise address of landline phone call at a specific time window, regardless of the underlying delivery technology used to convey the information. According to research, one of the effective methods of meeting this goal is determining the location of the caller via the cooperation of landline and mobile phone operators in the country. The follow-up of the Communications Regulatory Authority (CRA) organization has resulted in the receipt of two separate secured electronic web services. Thus, to ensure human privacy, a secure technical architecture was required for launching the services in the pre-hospital EMS information management system. In addition, to quicken medics’ arrival at the patient's bedside, rescue vehicles should make use of an intelligent transportation system to estimate road traffic using a GPS-based mobile navigation system independent of the Internet. This paper seeks to illustrate the architecture of the practical national model used by the Iranian EMS organization.

Keywords: response time, geographic location inquiry service (GLIS), location-based service (LBS), emergency medical services information system (EMSIS)

Procedia PDF Downloads 171
196 Finite Element Modeling of a Lower Limb Based on the East Asian Body Characteristics for Pedestrian Protection

Authors: Xianping Du, Runlu Miao, Guanjun Zhang, Libo Cao, Feng Zhu

Abstract:

Current vehicle safety standards and human body injury criteria were established based on the biomechanical response of Euro-American human body, without considering the difference in the body anthropometry and injury characteristics among different races, particularly the East Asian people with smaller body size. Absence of such race specific design considerations will negatively influence the protective performance of safety products for these populations, and weaken the accuracy of injury thresholds derived. To resolve these issues, in this study, we aim to develop a race specific finite element model to simulate the impact response of the lower extremity of a 50th percentile East Asian (Chinese) male. The model was built based on medical images for the leg of an average size Chinese male and slightly adjusted based on the statistical data. The model includes detailed anatomic features and is able to simulate the muscle active force. Thirteen biomechanical tests available in the literature were used to validate its biofidelity. Using the validated model, a pedestrian-car impact accident taking place in China was re-constructed computationally. The results show that the newly developed lower leg model has a good performance in predicting dynamic response and tibia fracture pattern. An additional comparison on the fracture tolerance of the East Asian and Euro-American lower limb suggests that the current injury criterion underestimates the degree of injury of East Asian human body.

Keywords: lower limb, East Asian body characteristics, traffic accident reconstruction, finite element analysis, injury tolerance

Procedia PDF Downloads 290
195 Improving Fingerprinting-Based Localization System Using Generative AI

Authors: Getaneh Berie Tarekegn

Abstract:

A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. It also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 60
194 Discussion on the Impact and Improvement Strategy of Bike Sharing on Urban Space

Authors: Bingying Liu, Dandong Ge, Xinlan Zhang, Haoyang Liang

Abstract:

Over the past two years, a new generation of No-Pile Bike sharing, represented by the Ofo, Mobike and HelloBike, has sprung up in various cities in China, and spread rapidly in countries such as Britain, Japan, the United States and Singapore. As a new green public transportation mode, bike sharing can bring a series of benefits to urban space. At first, this paper analyzes the specific impact of bike sharing on urban space in China. Based on the market research and data analyzing, it is found that bike sharing can improve the quality of urban space in three aspects: expanding the radius of public transportation service, filling service blind spots, alleviating urban traffic congestion, and enhancing the vitality of urban space. On the other hand, due to the immature market and the imperfect system, bike sharing has gradually revealed some difficulties, such as parking chaos, malicious damage, safety problems, imbalance between supply and demand, and so on. Then the paper investigates the characteristics of shared bikes, business model, operating mechanism on Chinese market currently. Finally, in order to make bike sharing serve urban construction better, this paper puts forward some specific countermeasures from four aspects. In terms of market operations, it is necessary to establish a public-private partnership model and set up a unified bike-sharing integrated management platform. From technical methods level, the paper proposes to develop an intelligent parking system for regulating parking. From policy formulation level, establishing a bike-sharing assessment mechanism would strengthen supervision. As to urban planning, sharing data and redesigning slow roadway is beneficial for transportation and spatial planning.

Keywords: bike sharing, impact analysis, improvement strategy, urban space

Procedia PDF Downloads 171
193 An Overview of Domain Models of Urban Quantitative Analysis

Authors: Mohan Li

Abstract:

Nowadays, intelligent research technology is more and more important than traditional research methods in urban research work, and this proportion will greatly increase in the next few decades. Frequently such analyzing work cannot be carried without some software engineering knowledge. And here, domain models of urban research will be necessary when applying software engineering knowledge to urban work. In many urban plan practice projects, making rational models, feeding reliable data, and providing enough computation all make indispensable assistance in producing good urban planning. During the whole work process, domain models can optimize workflow design. At present, human beings have entered the era of big data. The amount of digital data generated by cities every day will increase at an exponential rate, and new data forms are constantly emerging. How to select a suitable data set from the massive amount of data, manage and process it has become an ability that more and more planners and urban researchers need to possess. This paper summarizes and makes predictions of the emergence of technologies and technological iterations that may affect urban research in the future, discover urban problems, and implement targeted sustainable urban strategies. They are summarized into seven major domain models. They are urban and rural regional domain model, urban ecological domain model, urban industry domain model, development dynamic domain model, urban social and cultural domain model, urban traffic domain model, and urban space domain model. These seven domain models can be used to guide the construction of systematic urban research topics and help researchers organize a series of intelligent analytical tools, such as Python, R, GIS, etc. These seven models make full use of quantitative spatial analysis, machine learning, and other technologies to achieve higher efficiency and accuracy in urban research, assisting people in making reasonable decisions.

Keywords: big data, domain model, urban planning, urban quantitative analysis, machine learning, workflow design

Procedia PDF Downloads 177
192 Factors That Influence Choice of Walking Mode in Work Trips: Case Study of Rasht, Iran

Authors: Nima Safaei, Arezoo Masoud, Babak Safaei

Abstract:

In recent years, there has been a growing emphasis on the role of urban planning in walking capability and the effects of individual and socioeconomic factors on the physical activity levels of city dwellers. Although considerable number of studies are conducted about walkability and for identifying the effective factors in walking mode choice in developed countries, to our best knowledge, literature lacks in the study of factors affecting choice of walking mode in developing countries. Due to the high importance of health aspects of human societies and in order to make insights and incentives for reducing traffic during rush hours, many researchers and policy makers in the field of transportation planning have devoted much attention to walkability studies; they have tried to improve the effective factors in the choice of walking mode in city neighborhoods. In this study, effective factors in walkability that have proven to have significant impact on the choice of walking mode, are studied at the same time in work trips. The data for the study is collected from the employees in their workplaces by well-instructed people using questionnaires; the statistical population of the study consists of 117 employed people who commute daily from work to home in Rasht city of Iran during the beginning of spring 2015. Results of the study which are found through the linear regression modeling, show that people who do not have freedom of choice for choosing their living locations and need to be present at their workplaces in certain hours have lower levels of walking. Additionally, unlike some of the previous studies which were conducted in developed countries, coincidental effects of Body Mass Index (BMI) and the income level of employees, do not have a significant effect on the walking level in work travels.

Keywords: BMI, linear regression, transportation, walking, work trips

Procedia PDF Downloads 198
191 Chronic Left Sciatic Nerve Injury and Subsequent Complications Following Delayed Hip Dislocation Treatment in a 34-Year Old Male: A Case Report

Authors: Hamida Memon, Muhammad Sanan

Abstract:

A 34-year-old male with no prior health issues presented with a wound in his left leg exhibiting active pus discharge, intense inflammation, pain radiating from the buttocks to the knee, foot drop, and skin darkening. Four years prior, he sustained an untreated dislocation of the hip joint and acetabulum from a road traffic accident. Initial nerve conduction studies (NCS) and electromyography (EMG) revealed severe axonotomesis of the left sciatic nerve and reduced compound muscle action potential in the left common peroneal nerve. Despite normal venous flow, edema and cellulitis were noted. Follow-up NCS/EMG in 2022 showed improvement, but in 2023, the patient experienced recurrent infection and underwent surgical intervention with tissue culture. Postoperative care included antibiotics and pain management. NCS/EMG in 2024 indicated decreased nerve amplitudes and conduction velocities, consistent with moderate axonotmesis and ongoing recovery, alongside incidental right S1 radiculopathy. General lab tests and abdominal imaging were normal. The patient was treated with Pregabalin and Neurobion for neuropathic pain and nerve support and is currently under observation by a tertiary sector hospital for treatment. This case underscores the critical importance of prompt treatment for hip dislocations to prevent long-term complications such as neuropathy and avascular necrosis. Delays in treatment significantly increase the risk of severe outcomes, highlighting the need for timely intervention. Overall, the case illustrates the challenges of managing complex nerve injuries and the importance of comprehensive care for optimal recovery.

Keywords: sciatic nerve neuropathy, hip dislocation, acetabular fracture, radiculopathy

Procedia PDF Downloads 23
190 Comparative Assessment of Geocell and Geogrid Reinforcement for Flexible Pavement: Numerical Parametric Study

Authors: Anjana R. Menon, Anjana Bhasi

Abstract:

Development of highways and railways play crucial role in a nation’s economic growth. While rigid concrete pavements are durable with high load bearing characteristics, growing economies mostly rely on flexible pavements which are easier in construction and more economical. The strength of flexible pavement is based on the strength of subgrade and load distribution characteristics of intermediate granular layers. In this scenario, to simultaneously meet economy and strength criteria, it is imperative to strengthen and stabilize the load transferring layers, namely subbase and base. Geosynthetic reinforcement in planar and cellular forms have been proven effective in improving soil stiffness and providing a stable load transfer platform. Studies have proven the relative superiority of cellular form-geocells over planar geosynthetic forms like geogrid, owing to the additional confinement of infill material and pocket effect arising from vertical deformation. Hence, the present study investigates the efficiency of geocells over single/multiple layer geogrid reinforcements by a series of three-dimensional model analyses of a flexible pavement section under a standard repetitive wheel load. The stress transfer mechanism and deformation profiles under various reinforcement configurations are also studied. Geocell reinforcement is observed to take up a higher proportion of stress caused by the traffic loads compared to single and double-layer geogrid reinforcements. The efficiency of single geogrid reinforcement reduces with an increase in embedment depth. The contribution of lower geogrid is insignificant in the case of the double-geogrid reinforced system.

Keywords: Geocell, Geogrid, Flexible Pavement, Repetitive Wheel Load, Numerical Analysis

Procedia PDF Downloads 75
189 Methodology for Temporary Analysis of Production and Logistic Systems on the Basis of Distance Data

Authors: M. Mueller, M. Kuehn, M. Voelker

Abstract:

In small and medium-sized enterprises (SMEs), the challenge is to create a well-grounded and reliable basis for process analysis, optimization and planning due to a lack of data. SMEs have limited access to methods with which they can effectively and efficiently analyse processes and identify cause-and-effect relationships in order to generate the necessary database and derive optimization potential from it. The implementation of digitalization within the framework of Industry 4.0 thus becomes a particular necessity for SMEs. For these reasons, the abstract presents an analysis methodology that is subject to the objective of developing an SME-appropriate methodology for efficient, temporarily feasible data collection and evaluation in flexible production and logistics systems as a basis for process analysis and optimization. The overall methodology focuses on retrospective, event-based tracing and analysis of material flow objects. The technological basis consists of Bluetooth low energy (BLE)-based transmitters, so-called beacons, and smart mobile devices (SMD), e.g. smartphones as receivers, between which distance data can be measured and derived motion profiles. The distance is determined using the Received Signal Strength Indicator (RSSI), which is a measure of signal field strength between transmitter and receiver. The focus is the development of a software-based methodology for interpretation of relative movements of transmitters and receivers based on distance data. The main research is on selection and implementation of pattern recognition methods for automatic process recognition as well as methods for the visualization of relative distance data. Due to an existing categorization of the database regarding process types, classification methods (e.g. Support Vector Machine) from the field of supervised learning are used. The necessary data quality requires selection of suitable methods as well as filters for smoothing occurring signal variations of the RSSI, the integration of methods for determination of correction factors depending on possible signal interference sources (columns, pallets) as well as the configuration of the used technology. The parameter settings on which respective algorithms are based have a further significant influence on result quality of the classification methods, correction models and methods for visualizing the position profiles used. The accuracy of classification algorithms can be improved up to 30% by selected parameter variation; this has already been proven in studies. Similar potentials can be observed with parameter variation of methods and filters for signal smoothing. Thus, there is increased interest in obtaining detailed results on the influence of parameter and factor combinations on data quality in this area. The overall methodology is realized with a modular software architecture consisting of independently modules for data acquisition, data preparation and data storage. The demonstrator for initialization and data acquisition is available as mobile Java-based application. The data preparation, including methods for signal smoothing, are Python-based with the possibility to vary parameter settings and to store them in the database (SQLite). The evaluation is divided into two separate software modules with database connection: the achievement of an automated assignment of defined process classes to distance data using selected classification algorithms and the visualization as well as reporting in terms of a graphical user interface (GUI).

Keywords: event-based tracing, machine learning, process classification, parameter settings, RSSI, signal smoothing

Procedia PDF Downloads 134
188 Relationship of Indoor and Outdoor Levels of Black Carbon in an Urban Environment

Authors: Daria Pashneva, Julija Pauraite, Agne Minderyte, Vadimas Dudoitis, Lina Davuliene, Kristina Plauskaite, Inga Garbariene, Steigvile Bycenkiene

Abstract:

Black carbon (BC) has received particular attention around the world, not only for its impact on regional and global climate change but also for its impact on air quality and public health. In order to study the relationship between indoor and outdoor BC concentrations, studies were carried out in Vilnius, Lithuania. The studies are aimed at determining the relationship of concentrations, identifying dependencies during the day and week with a further opportunity to analyze the key factors affecting the indoor concentration of BC. In this context, indoor and outdoor continuous real-time measurements of optical BC-related light absorption by aerosol particles were carried out during the cold season (from October to December 2020). The measurement venue was an office located in an urban background environment. Equivalent black carbon (eBC) mass concentration was measured by an Aethalometer (Magee Scientific, model AE-31). The optical transmission of carbonaceous aerosol particles was measured sequentially at seven wavelengths (λ= 370, 470, 520, 590, 660, 880, and 950 nm), where the eBC mass concentration was derived from the light absorption coefficient (σab) at 880 nm wavelength. The diurnal indoor eBC mass concentration was found to vary in the range from 0.02 to 0.08 µgm⁻³, while the outdoor eBC mass concentration - from 0.34 to 0.99 µgm⁻³. Diurnal variations of eBC mass concentration outdoor vs. indoor showed an increased contribution during 10:00 and 12:00 AM (GMT+2), with the highest indoor eBC mass concentration of 0.14µgm⁻³. An indoor/outdoor eBC ratio (I/O) was below one throughout the entire measurement period. The weekend levels of eBC mass concentration were lower than in weekdays for indoor and outdoor for 33% and 28% respectively. Hourly mean mass concentrations of eBC for weekdays and weekends show diurnal cycles, which could be explained by the periodicity of traffic intensity and heating activities. The results show a moderate influence of outdoor eBC emissions on the indoor eBC level.

Keywords: black carbon, climate change, indoor air quality, I/O ratio

Procedia PDF Downloads 202
187 Expression Profiling of Chlorophyll Biosynthesis Pathways in Chlorophyll B-Lacking Mutants of Rice (Oryza sativa L.)

Authors: Khiem M. Nguyen, Ming C. Yang

Abstract:

Chloroplast pigments are extremely important during photosynthesis since they play essential roles in light absorption and energy transfer. Therefore, understanding the efficiency of chlorophyll (Chl) biosynthesis could facilitate enhancement in photo-assimilates accumulation, and ultimately, in crop yield. The Chl-deficient mutants have been used extensively to study the Chl biosynthetic pathways and the biogenesis of the photosynthetic apparatus. Rice (Oryza sativa L.) is one of the most leading food crops, serving as staple food for many parts of the world. To author’s best knowledge, Chl b–lacking rice has been found; however the molecular mechanism of Chl biosynthesis still remains unclear compared to wild-type rice. In this study, the ultrastructure analysis, photosynthetic properties, and transcriptome profile of wild-type rice (Norin No.8, N8) and its Chl b-lacking mutant (Chlorina 1, C1) were examined. The finding concluded that total Chl content and Chl b content in the C1 leaves were strongly reduced compared to N8 leaves, suggesting that reduction in the total Chl content contributes to leaf color variation at the physiological level. Plastid ultrastructure of C1 possessed abnormal thylakoid membranes with loss of starch granule, large number of vesicles, and numerous plastoglobuli. The C1 rice also exhibited thinner stacked grana, which was caused by a reduction in the number of thylakoid membranes per granum. Thus, the different Chl a/b ratio of C1 may reflect the abnormal plastid development and function. Transcriptional analysis identified 23 differentially expressed genes (DEGs) and 671 transcription factors (TFs) that were involved in Chl metabolism, chloroplast development, cell division, and photosynthesis. The transcriptome profile and DEGs revealed that the gene encoding PsbR (PSII core protein) was down-regulated, therefore suggesting that the lower in light-harvesting complex proteins are responsible for the lower photosynthetic capacity in C1. In addition, expression level of cell division protein (FtsZ) genes were significantly reduced in C1, causing chloroplast division defect. A total of 19 DEGs were identified based on KEGG pathway assignment involving Chl biosynthesis pathway. Among these DEGs, the GluTR gene was down-regulated, whereas the UROD, CPOX, and MgCH genes were up-regulated. Observation through qPCR suggested that later stages of Chl biosynthesis were enhanced in C1, whereas the early stages were inhibited. Plastid structure analysis together with transcriptomic analysis suggested that the Chl a/b ratio was amplified both by the reduction in Chl contents accumulation, owning to abnormal chloroplast development, and by the enhanced conversion of Chl b to Chl a. Moreover, the results indicated the same Chl-cycle pattern in the wild-type and C1 rice, indicating another Chl b degradation pathway. Furthermore, the results demonstrated that normal grana stacking, along with the absence of Chl b and greatly reduced levels of Chl a in C1, provide evidence to support the conclusion that other factors along with LHCII proteins are involved in grana stacking. The findings of this study provide insight into the molecular mechanisms that underlie different Chl a/b ratios in rice.

Keywords: Chl-deficient mutant, grana stacked, photosynthesis, RNA-Seq, transcriptomic analysis

Procedia PDF Downloads 125
186 An Analytical Study on the Politics of Defection in India

Authors: Diya Sarkar, Prafulla C. Mishra

Abstract:

In a parliamentary system, party discipline is the impulse; when it falls short, the government usually falls. Conceivably, the platform of Indian politics suffers with innumerous practical disorders. The politics of defection is one such specie entailing gross miscarriage of fair conduct turning politics into a game of thrones (powers). This practice of political nomaditude can trace its seed in the womb of British House of Commons. Therein, if a legislator was found to cross the floor, the party considered him disloyal. In other words, the legislator lost his allegiance to his former party by joining another party. This very phenomenon, in practice has a two way traffic i.e. ruling party to the opposition party or vice versa. The democracies like USA, Australia and Canada were also aware of this fashion of swapping loyalties. There have been several instances of great politicians changing party allegiance, for example Winston Churchill, Ramsay McDonald, William Gladstone etc. Nevertheless, it is interesting to cite that irrespective of such practice of changing party allegiance, none of the democracies in the west ever desired or felt the need to legislatively ban defections. But, exceptionally India can be traced to have passed anti-defection laws. The politics of defection had been a unique popular phenomenon on the floor of Indian Parliamentary system gradually gulping the democratic essence and synchronization of the Federation. This study is both analytical and doctrinal, which tries to examine whether representative democracy has lost its essence due to political nomadism. The present study also analyzes the classical as well as contemporary pulse of floor crossing amidst dynastic politics in a representative democracy. It will briefly discuss the panorama of defections under the Indian federal structure in the light of the anti-defection law and an attempt has been made to add valuable suggestions to streamline remedy for the still prevalent political defections.

Keywords: constitutional law, defection, democracy, polarization, political anti-trust

Procedia PDF Downloads 376
185 Extension of Moral Agency to Artificial Agents

Authors: Sofia Quaglia, Carmine Di Martino, Brendan Tierney

Abstract:

Artificial Intelligence (A.I.) constitutes various aspects of modern life, from the Machine Learning algorithms predicting the stocks on Wall streets to the killing of belligerents and innocents alike on the battlefield. Moreover, the end goal is to create autonomous A.I.; this means that the presence of humans in the decision-making process will be absent. The question comes naturally: when an A.I. does something wrong when its behavior is harmful to the community and its actions go against the law, which is to be held responsible? This research’s subject matter in A.I. and Robot Ethics focuses mainly on Robot Rights and its ultimate objective is to answer the questions: (i) What is the function of rights? (ii) Who is a right holder, what is personhood and the requirements needed to be a moral agent (therefore, accountable for responsibility)? (iii) Can an A.I. be a moral agent? (ontological requirements) and finally (iv) if it ought to be one (ethical implications). With the direction to answer this question, this research project was done via a collaboration between the School of Computer Science in the Technical University of Dublin that oversaw the technical aspects of this work, as well as the Department of Philosophy in the University of Milan, who supervised the philosophical framework and argumentation of the project. Firstly, it was found that all rights are positive and based on consensus; they change with time based on circumstances. Their function is to protect the social fabric and avoid dangerous situations. The same goes for the requirements considered necessary to be a moral agent: those are not absolute; in fact, they are constantly redesigned. Hence, the next logical step was to identify what requirements are regarded as fundamental in real-world judicial systems, comparing them to that of ones used in philosophy. Autonomy, free will, intentionality, consciousness and responsibility were identified as the requirements to be considered a moral agent. The work went on to build a symmetrical system between personhood and A.I. to enable the emergence of the ontological differences between the two. Each requirement is introduced, explained in the most relevant theories of contemporary philosophy, and observed in its manifestation in A.I. Finally, after completing the philosophical and technical analysis, conclusions were drawn. As underlined in the research questions, there are two issues regarding the assignment of moral agency to artificial agent: the first being that all the ontological requirements must be present and secondly being present or not, whether an A.I. ought to be considered as an artificial moral agent. From an ontological point of view, it is very hard to prove that an A.I. could be autonomous, free, intentional, conscious, and responsible. The philosophical accounts are often very theoretical and inconclusive, making it difficult to fully detect these requirements on an experimental level of demonstration. However, from an ethical point of view it makes sense to consider some A.I. as artificial moral agents, hence responsible for their own actions. When considering artificial agents as responsible, there can be applied already existing norms in our judicial system such as removing them from society, and re-educating them, in order to re-introduced them to society. This is in line with how the highest profile correctional facilities ought to work. Noticeably, this is a provisional conclusion and research must continue further. Nevertheless, the strength of the presented argument lies in its immediate applicability to real world scenarios. To refer to the aforementioned incidents, involving the murderer of innocents, when this thesis is applied it is possible to hold an A.I. accountable and responsible for its actions. This infers removing it from society by virtue of its un-usability, re-programming it and, only when properly functioning, re-introducing it successfully

Keywords: artificial agency, correctional system, ethics, natural agency, responsibility

Procedia PDF Downloads 190