Search results for: panel data regression
25708 Exploring the Influence of Wind on Wildfire Behavior in China: A Data-Driven Study Using Machine Learning and Remote Sensing
Authors: Rida Kanwal, Wang Yuhui, Song Weiguo
Abstract:
Wildfires are one of the most prominent threats to ecosystems, human health, and economic activities, with wind acting as a critical driving factor. This study combines machine learning (ML) and remote sensing (RS) to assess the effects of wind on wildfires in Chongqing Province from August 16-23, 2022. Landsat 8 satellite images were used to estimate the difference normalized burn ratio (dNBR), representing prefire and postfire vegetation conditions. Wind data was analyzed through geographic information system (GIS) mapping. Correlation analysis between wind speed and fire radiative power (FRP) revealed a significant relationship. An autoregressive integrated moving average (ARIMA) model was developed for wind forecasting, and linear regression was applied to determine the effect of wind speed on FRP. The results identified high wind speed as a key factor contributing to the surge in FRP. Wind-rose plots showed winds blowing to the northwest (NW), aligning with the wildfire spread. This model was further validated with data from other provinces across China. This study integrated ML, RS, and GIS to analyze wildfire behavior, providing effective strategies for prediction and management.Keywords: wildfires, machine learning, remote sensing, wind speed, GIS, wildfire behavior
Procedia PDF Downloads 2025707 Beyond Adoption: Econometric Analysis of Impacts of Farmer Innovation Systems and Improved Agricultural Technologies on Rice Yield in Ghana
Authors: Franklin N. Mabe, Samuel A. Donkoh, Seidu Al-Hassan
Abstract:
In order to increase and bridge the differences in rice yield, many farmers have resorted to adopting Farmer Innovation Systems (FISs) and Improved Agricultural Technologies (IATs). This study econometrically analysed the impacts of adoption of FISs and IATs on rice yield using multinomial endogenous switching regression (MESR). Nine-hundred and seven (907) rice farmers from Guinea Savannah Zone (GSZ), Forest Savannah Transition Zone (FSTZ) and Coastal Savannah Zone (CSZ) were used for the study. The study used both primary and secondary data. FBO advice, rice farming experience and distance from farming communities to input markets increase farmers’ adoption of only FISs. Factors that increase farmers’ probability of adopting only IATs are access to extension advice, credit, improved seeds and contract farming. Farmers located in CSZ have higher probability of adopting only IATs than their counterparts living in other agro-ecological zones. Age and access to input subsidy increase the probability of jointly adopting FISs and IATs. FISs and IATs have heterogeneous impact on rice yield with adoption of only IATs having the highest impact followed by joint adoption of FISs and IATs. It is important for stakeholders in rice subsector to champion the provision of improved rice seeds, the intensification of agricultural extension services and contract farming concept. Researchers should endeavour to researched into FISs.Keywords: farmer innovation systems, improved agricultural technologies, multinomial endogenous switching regression, treatment effect
Procedia PDF Downloads 42625706 Influence of Atmospheric Pollutants on Child Respiratory Disease in Cartagena De Indias, Colombia
Authors: Jose A. Alvarez Aldegunde, Adrian Fernandez Sanchez, Matthew D. Menden, Bernardo Vila Rodriguez
Abstract:
Up to five statistical pre-processings have been carried out considering the pollutant records of the stations present in Cartagena de Indias, Colombia, also taking into account the childhood asthma incidence surveys conducted in hospitals in the city by the Health Ministry of Colombia for this study. These pre-processings have consisted of different techniques such as the determination of the quality of data collection, determination of the quality of the registration network, identification and debugging of errors in data collection, completion of missing data and purified data, as well as the improvement of the time scale of records. The characterization of the quality of the data has been conducted by means of density analysis of the pollutant registration stations using ArcGis Software and through mass balance techniques, making it possible to determine inconsistencies in the records relating the registration data between stations following the linear regression. The results obtained in this process have highlighted the positive quality in the pollutant registration process. Consequently, debugging of errors has allowed us to identify certain data as statistically non-significant in the incidence and series of contamination. This data, together with certain missing records in the series recorded by the measuring stations, have been completed by statistical imputation equations. Following the application of these prior processes, the basic series of incidence data for respiratory disease and pollutant records have allowed the characterization of the influence of pollutants on respiratory diseases such as, for example, childhood asthma. This characterization has been carried out using statistical correlation methods, including visual correlation, simple linear regression correlation and spectral analysis with PAST Software which identifies maximum periodicity cycles and minimums under the formula of the Lomb periodgram. In relation to part of the results obtained, up to eleven maximums and minimums considered contemporary between the incidence records and the particles have been identified taking into account the visual comparison. The spectral analyses that have been performed on the incidence and the PM2.5 have returned a series of similar maximum periods in both registers, which are at a maximum during a period of one year and another every 25 days (0.9 and 0.07 years). The bivariate analysis has managed to characterize the variable "Daily Vehicular Flow" in the ninth position of importance of a total of 55 variables. However, the statistical correlation has not obtained a favorable result, having obtained a low value of the R2 coefficient. The series of analyses conducted has demonstrated the importance of the influence of pollutants such as PM2.5 in the development of childhood asthma in Cartagena. The quantification of the influence of the variables has been able to determine that there is a 56% probability of dependence between PM2.5 and childhood respiratory asthma in Cartagena. Considering this justification, the study could be completed through the application of the BenMap Software, throwing a series of spatial results of interpolated values of the pollutant contamination records that exceeded the established legal limits (represented by homogeneous units up to the neighborhood level) and results of the impact on the exacerbation of pediatric asthma. As a final result, an economic estimate (in Colombian Pesos) of the monthly and individual savings derived from the percentage reduction of the influence of pollutants in relation to visits to the Hospital Emergency Room due to asthma exacerbation in pediatric patients has been granted.Keywords: Asthma Incidence, BenMap, PM2.5, Statistical Analysis
Procedia PDF Downloads 11625705 Deep Learning for Qualitative and Quantitative Grain Quality Analysis Using Hyperspectral Imaging
Authors: Ole-Christian Galbo Engstrøm, Erik Schou Dreier, Birthe Møller Jespersen, Kim Steenstrup Pedersen
Abstract:
Grain quality analysis is a multi-parameterized problem that includes a variety of qualitative and quantitative parameters such as grain type classification, damage type classification, and nutrient regression. Currently, these parameters require human inspection, a multitude of instruments employing a variety of sensor technologies, and predictive model types or destructive and slow chemical analysis. This paper investigates the feasibility of applying near-infrared hyperspectral imaging (NIR-HSI) to grain quality analysis. For this study two datasets of NIR hyperspectral images in the wavelength range of 900 nm - 1700 nm have been used. Both datasets contain images of sparsely and densely packed grain kernels. The first dataset contains ~87,000 image crops of bulk wheat samples from 63 harvests where protein value has been determined by the FOSS Infratec NOVA which is the golden industry standard for protein content estimation in bulk samples of cereal grain. The second dataset consists of ~28,000 image crops of bulk grain kernels from seven different wheat varieties and a single rye variety. In the first dataset, protein regression analysis is the problem to solve while variety classification analysis is the problem to solve in the second dataset. Deep convolutional neural networks (CNNs) have the potential to utilize spatio-spectral correlations within a hyperspectral image to simultaneously estimate the qualitative and quantitative parameters. CNNs can autonomously derive meaningful representations of the input data reducing the need for advanced preprocessing techniques required for classical chemometric model types such as artificial neural networks (ANNs) and partial least-squares regression (PLS-R). A comparison between different CNN architectures utilizing 2D and 3D convolution is conducted. These results are compared to the performance of ANNs and PLS-R. Additionally, a variety of preprocessing techniques from image analysis and chemometrics are tested. These include centering, scaling, standard normal variate (SNV), Savitzky-Golay (SG) filtering, and detrending. The results indicate that the combination of NIR-HSI and CNNs has the potential to be the foundation for an automatic system unifying qualitative and quantitative grain quality analysis within a single sensor technology and predictive model type.Keywords: deep learning, grain analysis, hyperspectral imaging, preprocessing techniques
Procedia PDF Downloads 9925704 Impact of Trade Cooperation of BRICS Countries on Economic Growth
Authors: Svetlana Gusarova
Abstract:
The essential role in the recent development of world economy has led to the developing countries, notably to BRICS countries (Brazil, Russia, India, China, South Africa). Over the next 50 years the BRICS countries are expected to be the engines of global trade and economic growth. Trade cooperation of BRICS countries can enhance their economic development. BRICS countries were among Top 10 world exporters of office and telecom equipment, of textiles, of clothing, of iron and steel, of chemicals, of agricultural products, of automotive products, of fuel and mining products. China was one of the main trading partners of all BRICS countries, maintaining close relationship with all BRICS countries in the development of trade. Author analyzed trade complementarity of BRICS countries and revealed the high level of complementarity of their trade flows in connection with availability of specialization in different types of goods. The correlation and regression analysis of communication of Intra-BRICS merchandise turnover and their GDP (PPP) revealed very strong impact on the development of their economies.Keywords: BRICS countries, trade cooperation, complementarity, regression analysis
Procedia PDF Downloads 28125703 The Effect of Transformational Leadership and Change Self-Efficacy on Employees' Commitment to Change
Authors: Denvi Giovanita, Wustari L. H. Mangundjaya
Abstract:
The pace of globalization and technological development make changes inevitable to organizations. However, organizational change is not easy to implement and is prone to failure. One of the reasons of change failure is due to lack of employees’ commitment to change. There are many variables that can influence employees’ commitment to change. The influencing factors can be sourced from the organization or individuals themselves. This study focuses on the affective form of commitment to change. The objective of this study is to identify the effect of transformational leadership (organizational factor) and employees’ change self-efficacy (individual factor) on affective commitment to change. The respondents of this study were employees who work in organizations that are or have faced organizational change. The data were collected using Affective Commitment to Change, Change Self-Efficacy, and Transformational Leadership Inventory. The data were analyzed using regression. The result showed that both transformational leadership and change self-efficacy have a positive and significant impact on affective commitment to change. The implication of the study can be used for practitioners to enhance the success of organizational change, by developing transformational leadership on the leaders and change self-efficacy on the employees in order to create a high affective commitment to change.Keywords: affective commitment to change, change self-efficacy, organizational change, transformational leadership
Procedia PDF Downloads 38425702 Testing a Dose-Response Model of Intergenerational Transmission of Family Violence
Authors: Katherine Maurer
Abstract:
Background and purpose: Violence that occurs within families is a global social problem. Children who are victims or witness to family violence are at risk for many negative effects both proximally and distally. One of the most disconcerting long-term effects occurs when child victims become adult perpetrators: the intergenerational transmission of family violence (ITFV). Early identification of those children most at risk for ITFV is needed to inform interventions to prevent future family violence perpetration and victimization. Only about 25-30% of child family violence victims become perpetrators of adult family violence (either child abuse, partner abuse, or both). Prior research has primarily been conducted using dichotomous measures of exposure (yes; no) to predict ITFV, given the low incidence rate in community samples. It is often assumed that exposure to greater amounts of violence predicts greater risk of ITFV. However, no previous longitudinal study with a community sample has tested a dose-response model of exposure to physical child abuse and parental physical intimate partner violence (IPV) using count data of frequency and severity of violence to predict adult ITFV. The current study used advanced statistical methods to test if increased childhood exposure would predict greater risk of ITFV. Methods: The study utilized 3 panels of prospective data from a cohort of 15 year olds (N=338) from the Project on Human Development in Chicago Neighborhoods longitudinal study. The data were comprised of a stratified probability sample of seven ethnic/racial categories and three socio-economic status levels. Structural equation modeling was employed to test a hurdle regression model of dose-response to predict ITFV. A version of the Conflict Tactics Scale was used to measure physical violence victimization, witnessing parental IPV and young adult IPV perpetration and victimization. Results: Consistent with previous findings, past 12 months incidence rates severity and frequency of interpersonal violence were highly skewed. While rates of parental and young adult IPV were about 40%, an unusually high rate of physical child abuse (57%) was reported. The vast majority of a number of acts of violence, whether minor or severe, were in the 1-3 range in the past 12 months. Reported frequencies of more than 5 times in the past year were rare, with less than 10% of those reporting more than six acts of minor or severe physical violence. As expected, minor acts of violence were much more common than acts of severe violence. Overall, regression analyses were not significant for the dose-response model of ITFV. Conclusions and implications: The results of the dose-response model were not significant due to a lack of power in the final sample (N=338). Nonetheless, the value of the approach was confirmed for the future research given the bi-modal nature of the distributions which suggest that in the context of both child physical abuse and physical IPV, there are at least two classes when frequency of acts is considered. Taking frequency into account in predictive models may help to better understand the relationship of exposure to ITFV outcomes. Further testing using hurdle regression models is suggested.Keywords: intergenerational transmission of family violence, physical child abuse, intimate partner violence, structural equation modeling
Procedia PDF Downloads 24325701 Digitalization, Supply Chain Integration and Financial Performance: Case of Tunisian Agro-industrial Sector
Authors: Rym Ghariani, Younes Boujelbene
Abstract:
In contemporary times, global technological advancements, particularly those in the realm of digital technology, have emerged as pivotal instruments for enterprises in fostering viable partnerships and forging meaningful alliances with other firms. The advent of these digital innovations is poised to revolutionize nearly every facet and operation within corporate entities. The primary objective of this study is to explore the correlation between digitization, integration of supply chains, and the financial efficacy of the agro-industrial sector in Tunisia. To accomplish this, data collection employed a questionnaire as the primary research instrument. Subsequently, the research queries were addressed, and hypotheses were examined by subjecting the gathered data to principal component analysis and linear regression modeling, facilitated by the utilization of SPSS26 software. The findings revealed that digitalization within the supply chain, along with external supply chain integration, exerted discernible impacts on the financial performance of the organization.Keywords: digitalization, supply chain integration, financial performance, Tunisian agro-industrial sector
Procedia PDF Downloads 4825700 Assessing Spatial Associations of Mortality Patterns in Municipalities of the Czech Republic
Authors: Jitka Rychtarikova
Abstract:
Regional differences in mortality in the Czech Republic (CR) may be moderate from a broader European perspective, but important discrepancies in life expectancy can be found between smaller territorial units. In this study territorial units are based on Administrative Districts of Municipalities with Extended Powers (MEP). This definition came into force January 1, 2003. There are 205 units and the city of Prague. MEP represents the smallest unit for which mortality patterns based on life tables can be investigated and the Czech Statistical Office has been calculating such life tables (every five-years) since 2004. MEP life tables from 2009-2013 for males and females allowed the investigation of three main life cycles with the use of temporary life expectancies between the exact ages of 0 and 35; 35 and 65; and the life expectancy at exact age 65. The results showed regional survival inequalities primarily in adult and older ages. Consequently, only mortality indicators for adult and elderly population were related to census 2011 unlinked data for the same age groups. The most relevant socio-economic factors taken from the census are: having a partner, educational level and unemployment rate. The unemployment rate was measured for adults aged 35-64 completed years. Exploratory spatial data analysis methods were used to detect regional patterns in spatially contiguous units of MEP. The presence of spatial non-stationarity (spatial autocorrelation) of mortality levels for male and female adults (35-64), and elderly males and females (65+) was tested using global Moran’s I. Spatial autocorrelation of mortality patterns was mapped using local Moran’s I with the intention to depict clusters of low or high mortality and spatial outliers for two age groups (35-64 and 65+). The highest Moran’s I was observed for male temporary life expectancy between exact ages 35 and 65 (0.52) and the lowest was among women with life expectancy of 65 (0.26). Generally, men showed stronger spatial autocorrelation compared to women. The relationship between mortality indicators such as life expectancies and socio-economic factors like the percentage of males/females having a partner; percentage of males/females with at least higher secondary education; and percentage of unemployed males/females from economically active population aged 35-64 years, was evaluated using multiple regression (OLS). The results were then compared to outputs from geographically weighted regression (GWR). In the Czech Republic, there are two broader territories North-West Bohemia (NWB) and North Moravia (NM), in which excess mortality is well established. Results of the t-test of spatial regression showed that for males aged 30-64 the association between mortality and unemployment (when adjusted for education and partnership) was stronger in NM compared to NWB, while educational level impacted the length of survival more in NWB. Geographic variation and relationships in mortality of the CR MEP will also be tested using the spatial Durbin approach. The calculations were conducted by means of ArcGIS 10.6 and SAS 9.4.Keywords: Czech Republic, mortality, municipality, socio-economic factors, spatial analysis
Procedia PDF Downloads 11825699 Prospective Teachers’ Metacognitive Awareness and Goal Orientation as Predictors of Academic Success
Authors: Gidado Lawal Likko
Abstract:
The study examined the relationship of achievement goals, metacognitive awareness and academic success among students of colleges of education in North Western Nigeria. The study was guided by three objectives. The first two were to find out whether students’ achievement goals and metacognitive awareness correlate with their academic success. 358 students comprising 242 males (67.6%) and 116 females (32.4%) were studied. Correlation survey was employed in the conduct of the study. The instruments used to collect data were students’ bio data form, achievement goals inventory (Roedel, Schraw and Plake, 1994), metacognitive awareness inventory (Schraw & Dennison, 1994) and students’ CGPA (NCCE minimum standard, 2013) was used as the index of academic success. Pearson Product Moment and regression analysis were the statistical techniques used to analyze the data. Results of the analysis indicated that students’ achievement goals (r=0.554, p=0.004) and metacognitive awareness (r= 0.67, p=0.001) positively correlated with their academic success. Similarly, significant relationship exists between achievement goals and metacognitive awareness (r=0.77, p=0.000). Part of the recommendations is the need for the management of all colleges of education to have educational interventions aimed at developing students’ metacognitive awareness which will foster purposeful self-regulation of their learning. This could be achieved by periodic assessment of students’ metacognitive awareness which will serve as feedback as they move from one educational level to another.Keywords: academic success, goal orientation, metacognitive awareness, prospective teachers
Procedia PDF Downloads 23025698 Investigating the Interaction of Individuals' Knowledge Sharing Constructs
Authors: Eugene Okyere-Kwakye
Abstract:
Knowledge sharing is a practice where individuals commonly exchange both tacit and explicit knowledge to jointly create a new knowledge. Knowledge management literature vividly express that knowledge sharing is the keystone and perhaps it is the most important aspect of knowledge management. To enhance the understanding of knowledge sharing domain, this study is aimed to investigate some factors that could influence employee’s attitude and behaviour to share their knowledge. The researchers employed the social exchange theory as a theoretical foundation for this study. Three essential factors namely: Trust, mutual reciprocity and perceived enjoyment that could influence knowledge sharing behaviour has been incorporated into a research model. To empirically validate this model, data was collected from one hundred and twenty respondents. The multiple regression analysis was employed to analyse the data. The results indicate that perceived enjoyment and trust have a significant influence on knowledge sharing. Surprisingly, mutual reciprocity did not influence knowledge sharing. The paper concludes by highlight the practical implications of the findings and areas for future research to consider.Keywords: perceived enjoyment, trust, knowledge sharing, knowledge management
Procedia PDF Downloads 44725697 Social Media Marketing Efforts and Hospital Brand Equity: An Empirical Investigation
Authors: Abrar R. Al-Hasan
Abstract:
Despite the widespread use of social media by consumers and marketers, empirical research investigating their economic value in the healthcare industry still lags. This study explores the impact of the use of social media marketing efforts on a hospital's brand equity and, ultimately, consumer response. Using social media data from Twitter and Facebook, along with an online and offline survey methodology, data is analyzed using logistic regression models. A random sample of (728) residents of the Kuwaiti population is used. The results of this study found that social media marketing efforts (SMME) in terms of use and validation lead to higher hospital brand equity and in turn, patient loyalty and patient visit. The study highlights the impact of SMME on hospital brand equity and patient response. Healthcare organizations should guide their marketing efforts to better manage this new way of marketing and communicating with patients to enhance their consumer loyalty and financial performance.Keywords: brand equity, healthcare marketing, patient visit, social media, SMME
Procedia PDF Downloads 17325696 Elevated Celiac Antibodies and Abnormal Duodenal Biopsies Associated with IBD Markers: Possible Role of Altered Gut Permeability and Inflammation in Gluten Related Disorders
Authors: Manav Sabharwal, Ruda Rai Md, Candace Parker, James Ridley
Abstract:
Wheat is one of the most commonly consumed grains worldwide, which contains gluten. Nowadays, gluten intake is considered to be a trigger for GRDs, including Celiac disease (CD), a common genetic disease affecting 1% of the US population, non-celiac gluten sensitivity (NCGS) and wheat allergy. NCGS is being recognized as an acquired gluten-sensitive enteropathy that is prevalent across age, ethnic and geographic groups. The cause of this entity is not fully understood, and recent studies suggest that it is more common in participants with irritable bowel syndrome (IBS), with iron deficiency anemia, symptoms of fatigue, and has considerable overlap in symptoms with IBS and Crohn’s disease. However, these studies were lacking in availability of complete serologies, imaging tests and/or pan-endoscopy. We performed a prospective study of 745 adult patients who presented to an outpatient clinic for evaluation of chronic upper gastro-intestinal symptoms and subsequently underwent an upper endoscopic (EGD) examination as standard of care. Evaluation comprised of comprehensive celiac antibody panel, inflammatory bowel disease (IBD) serologic markers, duodenal biopsies and Small Bowel Video Capsule Endoscopy (VCE), when available. At least 6 biopsy specimens were obtained from the duodenum and proximal jejunum during EGD, and CD3+ Intraepithelial lymphocytes (IELs) and villous architecture were evaluated by a single experienced pathologist, and VCE was performed by a single experienced gastroenterologist. Of the 745 patients undergoing EGD, 12% (93/745) patients showed elevated CD3+ IELs in the duodenal biopsies. 52% (387/745) completed a comprehensive CD panel and 7.2% (28/387) were positive for at least 1 CD antibody (Tissue transglutaminase (tTG), being the most common antibody in 65% (18/28)). Of these patients, 18% (5/28) showed increased duodenal CD3+ IELs, but 0% showed villous blunting or distortion to meet criteria for CD. Surprisingly, 43% (12/28) were positive for at 1 IBD serology (ASCA, ANCA or expanded IBD panel (LabCorp)). Of these 28 patients, 29% (8/28) underwent a SB VCE, of which 100 % (8/8) showed significant jejuno-ileal mucosal lesions diagnostic for IBD. Findings of abnormal CD antibodies (7.2%, 28/387) and increased CD3+ IELs on duodenal biopsy (12%, 93/745) were observed frequently in patients with UGI symptoms undergoing EGD in an outpatient clinic. None met criteria for CD, and a high proportion (43%, 12/28) showed evidence of overlap with IBD. This suggests a potential causal link of acquired GRDs to underlying inflammation and gut mucosal barrier disruption. Further studies to investigate a role for abnormal antigen presentation of dietary gluten to gut associated lymphoid tissue as a cause are justified. This may explain a high prevalence of GRDs in the population and correlation with IBS, IBD and other gut inflammatory disorders.Keywords: celiac, gluten sensitive enteropathy, lymphocitic enteritis, IBS, IBD
Procedia PDF Downloads 16925695 The Acceptance of Online Social Network Technology for Tourism Destination
Authors: Wanida Suwunniponth
Abstract:
The purpose of this research was to investigate the relationship between the factors of using online social network for tourism destination in case of Bangkok area in Thailand, by extending the use of technology acceptance model (TAM). This study employed by quantitative research and the target population were entrepreneurs and local people in Bangkok who use social network-Facebook concerning tourist destinations in Bangkok. Questionnaire was used to collect data from 300 purposive samples. The multiple regression analysis and path analysis were used to analyze data. The results revealed that most people who used Facebook for promoting tourism destinations in Bangkok perceived ease of use, perceived usefulness, perceived trust in using Facebook and influenced by social normative as well as having positive attitude towards using this application. Addition, the hypothesis results indicate that acceptance of online social network-Facebook was related to the positive attitude towards using of Facebook and related to their intention to use this application for tourism.Keywords: Facebook, online social network, technology acceptance model, tourism destination
Procedia PDF Downloads 34325694 The Extent of Land Use Externalities in the Fringe of Jakarta Metropolitan: An Application of Spatial Panel Dynamic Land Value Model
Authors: Rahma Fitriani, Eni Sumarminingsih, Suci Astutik
Abstract:
In a fast growing region, conversion of agricultural lands which are surrounded by some new development sites will occur sooner than expected. This phenomenon has been experienced by many regions in Indonesia, especially the fringe of Jakarta (BoDeTaBek). Being Indonesia’s capital city, rapid conversion of land in this area is an unavoidable process. The land conversion expands spatially into the fringe regions, which were initially dominated by agricultural land or conservation sites. Without proper control or growth management, this activity will invite greater costs than benefits. The current land use is the use which maximizes its value. In order to maintain land for agricultural activity or conservation, some efforts are needed to keep the land value of this activity as high as possible. In this case, the knowledge regarding the functional relationship between land value and its driving forces is necessary. In a fast growing region, development externalities are the assumed dominant driving force. Land value is the product of the past decision of its use leading to its value. It is also affected by the local characteristics and the observed surrounded land use (externalities) from the previous period. The effect of each factor on land value has dynamic and spatial virtues; an empirical spatial dynamic land value model will be more useful to capture them. The model will be useful to test and to estimate the extent of land use externalities on land value in the short run as well as in the long run. It serves as a basis to formulate an effective urban growth management’s policy. This study will apply the model to the case of land value in the fringe of Jakarta Metropolitan. The model will be used further to predict the effect of externalities on land value, in the form of prediction map. For the case of Jakarta’s fringe, there is some evidence about the significance of neighborhood urban activity – negative externalities, the previous land value and local accessibility on land value. The effects are accumulated dynamically over years, but they will fully affect the land value after six years.Keywords: growth management, land use externalities, land value, spatial panel dynamic
Procedia PDF Downloads 25625693 Parental Bonding and Cognitive Emotion Regulation
Authors: Fariea Bakul, Chhanda Karmaker
Abstract:
The present study was designed to investigate the effects of parental bonding on adult’s cognitive emotion regulation and also to investigate gender differences in parental bonding and cognitive emotion regulation. Data were collected by using convenience sampling technique from 100 adult students (50 males and 50 females) of different universities of Dhaka city, ages between 20 to 25 years, using Bengali version of Parental Bonding Inventory and Bengali version of Cognitive Emotion Regulation Questionnaire. The obtained data were analyzed by using multiple regression analysis and independent samples t-test. The results revealed that fathers care (β =0.317, p < 0.05) was only significantly positively associated with adult’s cognitive emotion regulation. Adjusted R² indicated that the model explained 30% of the variance in adult’s adaptive cognitive emotion regulation. No significant association was found between parental bonding and less adaptive cognitive emotion regulations. Results from independent samples t-test also revealed that there was no significant gender difference in both parental bonding and cognitive emotion regulations.Keywords: cognitive emotion regulation, parental bonding, parental care, parental over-protection
Procedia PDF Downloads 37125692 Frailty and Quality of Life among Older Adults: A Study of Six LMICs Using SAGE Data
Authors: Mamta Jat
Abstract:
Background: The increased longevity has resulted in the increase in the percentage of the global population aged 60 years or over. With this “demographic transition” towards ageing, “epidemiologic transition” is also taking place characterised by growing share of non-communicable diseases in the overall disease burden. So, many of the older adults are ageing with chronic disease and high levels of frailty which often results in lower levels of quality of life. Although frailty may be increasingly common in older adults, prevention or, at least, delay the onset of late-life adverse health outcomes and disability is necessary to maintain the health and functional status of the ageing population. This is an effort using SAGE data to assess levels of frailty and its socio-demographic correlates and its relation with quality of life in LMICs of India, China, Ghana, Mexico, Russia and South Africa in a comparative perspective. Methods: The data comes from multi-country Study on Global AGEing and Adult Health (SAGE), consists of nationally representative samples of older adults in six low and middle-income countries (LMICs): China, Ghana, India, Mexico, the Russian Federation and South Africa. For our study purpose, we will consider only 50+ year’s respondents. The logistic regression model has been used to assess the correlates of frailty. Multinomial logistic regression has been used to study the effect of frailty on QOL (quality of life), controlling for the effect of socio-economic and demographic correlates. Results: Among all the countries India is having highest mean frailty in males (0.22) and females (0.26) and China with the lowest mean frailty in males (0.12) and females (0.14). The odds of being frail are more likely with the increase in age across all the countries. In India, China and Russia the chances of frailty are more among rural older adults; whereas, in Ghana, South Africa and Mexico rural residence is protecting against frailty. Among all countries china has high percentage (71.46) of frail people in low QOL; whereas Mexico has lowest percentage (36.13) of frail people in low QOL.s The risk of having low and middle QOL is significantly (p<0.001) higher among frail elderly as compared to non–frail elderly across all countries with controlling socio-demographic correlates. Conclusion: Women and older age groups are having higher frailty levels than men and younger aged adults in LMICs. The mean frailty scores demonstrated a strong inverse relationship with education and income gradients, while lower levels of education and wealth are showing higher levels of frailty. These patterns are consistent across all LMICs. These data support a significant role of frailty with all other influences controlled, in having low QOL as measured by WHOQOL index. Future research needs to be built on this evolving concept of frailty in an effort to improve quality of life for frail elderly population, in LMICs setting.Keywords: Keywords: Ageing, elderly, frailty, quality of life
Procedia PDF Downloads 28825691 Automated Prediction of HIV-associated Cervical Cancer Patients Using Data Mining Techniques for Survival Analysis
Authors: O. J. Akinsola, Yinan Zheng, Rose Anorlu, F. T. Ogunsola, Lifang Hou, Robert Leo-Murphy
Abstract:
Cervical Cancer (CC) is the 2nd most common cancer among women living in low and middle-income countries, with no associated symptoms during formative periods. With the advancement and innovative medical research, there are numerous preventive measures being utilized, but the incidence of cervical cancer cannot be truncated with the application of only screening tests. The mortality associated with this invasive cervical cancer can be nipped in the bud through the important role of early-stage detection. This study research selected an array of different top features selection techniques which was aimed at developing a model that could validly diagnose the risk factors of cervical cancer. A retrospective clinic-based cohort study was conducted on 178 HIV-associated cervical cancer patients in Lagos University teaching Hospital, Nigeria (U54 data repository) in April 2022. The outcome measure was the automated prediction of the HIV-associated cervical cancer cases, while the predictor variables include: demographic information, reproductive history, birth control, sexual history, cervical cancer screening history for invasive cervical cancer. The proposed technique was assessed with R and Python programming software to produce the model by utilizing the classification algorithms for the detection and diagnosis of cervical cancer disease. Four machine learning classification algorithms used are: the machine learning model was split into training and testing dataset into ratio 80:20. The numerical features were also standardized while hyperparameter tuning was carried out on the machine learning to train and test the data. Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbor (KNN). Some fitting features were selected for the detection and diagnosis of cervical cancer diseases from selected characteristics in the dataset using the contribution of various selection methods for the classification cervical cancer into healthy or diseased status. The mean age of patients was 49.7±12.1 years, mean age at pregnancy was 23.3±5.5 years, mean age at first sexual experience was 19.4±3.2 years, while the mean BMI was 27.1±5.6 kg/m2. A larger percentage of the patients are Married (62.9%), while most of them have at least two sexual partners (72.5%). Age of patients (OR=1.065, p<0.001**), marital status (OR=0.375, p=0.011**), number of pregnancy live-births (OR=1.317, p=0.007**), and use of birth control pills (OR=0.291, p=0.015**) were found to be significantly associated with HIV-associated cervical cancer. On top ten 10 features (variables) considered in the analysis, RF claims the overall model performance, which include: accuracy of (72.0%), the precision of (84.6%), a recall of (84.6%) and F1-score of (74.0%) while LR has: an accuracy of (74.0%), precision of (70.0%), recall of (70.0%) and F1-score of (70.0%). The RF model identified 10 features predictive of developing cervical cancer. The age of patients was considered as the most important risk factor, followed by the number of pregnancy livebirths, marital status, and use of birth control pills, The study shows that data mining techniques could be used to identify women living with HIV at high risk of developing cervical cancer in Nigeria and other sub-Saharan African countries.Keywords: associated cervical cancer, data mining, random forest, logistic regression
Procedia PDF Downloads 8325690 Factors Contributing to Work Stress Among Nurses in Hadiya Zone’s Public Hospitals, Central Ethiopia, in 2023
Authors: Asnakech Zekiwos
Abstract:
Background: Stress in nursing refers to the reactions nurses experience when faced with work demands that exceed their knowledge, skills, or ability to cope. Nursing, as a profession, is particularly susceptible to work-related stress. Methods: A cross-sectional study was conducted among 405 randomly selected nurses working in Hadiya Zone Public Hospitals from March 1 to 30, 2023. Data were collected using a pre-tested self-administered questionnaire. The data were entered using Epi-data version 3.1 and analyzed using SPSS version 20.0. Multivariable logistic regression analysis was performed to identify factors associated with the level of work stress. Variables with a p-value <0.05 were considered statistically significant. Results: In this study, 56% (95% CI 50.9-61.2) of the participants reported being stressed in their work. Several factors were found to be associated with work stress, including being female (AOR=1.94, 95% CI 1.19-3.16), rotating shifts (AOR=2.06, 95% CI 1.31-3.25), working in the intensive care unit (AOR=3.42, 95% CI 1.20-9.73), and having post-basic training (AOR=0.55, 95% CI 0.34-0.92). Conclusion: The study revealed a high level of work stress among nurses in the study area. The zonal health unit takes measures to address work stress by providing job orientation during the hiring process, rotation, and on-the-job training to help nurses cope with and manage stressful events. Stress in public hospitals and among nurses is an important issue that needs attention.Keywords: stress, nurses, public hospitals, expanded stress scale
Procedia PDF Downloads 9525689 A Cheap Mesoporous Silica from Fly Ash as an Adsorbent for Sulfate in Water
Authors: Ximena Castillo, Jaime Pizarro
Abstract:
This research describes the development of a very cheap mesoporous silica material similar to hexagonal mesoporous silica (HMS) and using a silicate extract as precursor. This precursor is obtained from cheap fly ash by an easy calcination process at 850 °C and a green extraction with water. The obtained mesoporous fly ash material had a surface area of 282 m2 g-1 and a pore size of 5.7 nm. It was functionalized with ethylene diamino moieties via the well-known SAMMS method, followed by a DRIFT analysis that clearly showed the successful functionalization. An excellent adsorbent was obtained for the adsorption of sulfate anions by the solid’s modification with copper forming a copper-ethylenediamine complex. The adsorption of sulfates was studied in a batch system ( experimental conditions: pH=8.0; 5 min). The kinetics data were adjusted according to a pseudo-second order model with a high coefficient of linear regression at different initial concentrations. The adsorption isotherm that best fitted the experimental data was the Freundlich model. The maximum sulfate adsorption capacity of this very cheap fly ash based adsorbent was 146.1 mg g-1, 3 times greater than the values reported in literature and commercial adsorbent materials.Keywords: fly ash, mesoporous materials, SAMMS, sulfate
Procedia PDF Downloads 17725688 The Effect of Artificial Intelligence on the Production of Agricultural Lands and Labor
Authors: Ibrahim Makram Ibrahim Salib
Abstract:
Agriculture plays an essential role in providing food for the world's population. It also offers numerous benefits to countries, including non-food products, transportation, and environmental balance. Precision agriculture, which employs advanced tools to monitor variability and manage inputs, can help achieve these benefits. The increasing demand for food security puts pressure on decision-makers to ensure sufficient food production worldwide. To support sustainable agriculture, unmanned aerial vehicles (UAVs) can be utilized to manage farms and increase yields. This paper aims to provide an understanding of UAV usage and its applications in agriculture. The objective is to review the various applications of UAVs in agriculture. Based on a comprehensive review of existing research, it was found that different sensors provide varying analyses for agriculture applications. Therefore, the purpose of the project must be determined before using UAV technology for better data quality and analysis. In conclusion, identifying a suitable sensor and UAV is crucial to gather accurate data and precise analysis when using UAVs in agriculture.Keywords: agriculture land, agriculture land loss, Kabul city, urban land expansion, urbanization agriculture yield growth, agriculture yield prediction, explorative data analysis, predictive models, regression models drone, precision agriculture, farmer income
Procedia PDF Downloads 7425687 Examining the Cognitive Abilities and Financial Literacy Among Street Entrepreneurs: Evidence From North-East, India
Authors: Aayushi Lyngwa, Bimal Kishore Sahoo
Abstract:
The study discusses the relationship between cognitive ability and the level of education attained by the tribal street entrepreneurs on their financial literacy. It is driven by the objective of examining the effect of cognitive ability on financial ability on the one hand and determining the effect of the same on financial literacy on the other. A field experiment was conducted on 203 tribal street vendors in the north-eastern Indian state of Mizoram. This experiment's calculations are conditioned by providing each question scores like math score (cognitive ability), financial score and debt score (financial ability). After that, categories for each of the variables, like math category (math score), financial category (financial score) and debt category (debt score), are generated to run the regression model. Since the dependent variable is ordinal, an ordered logit regression model was applied. The study shows that street vendors' cognitive and financial abilities are highly correlated. It, therefore, confirms that cognitive ability positively affects the financial literacy of street vendors through the increase in attainment of educational levels. It is also found that concerning the type of street vendors, regular street vendors are more likely to have better cognitive abilities than temporary street vendors. Additionally, street vendors with more cognitive and financial abilities gained better monthly profits and performed habits of bookkeeping. The study attempts to draw a particular focus on a set-up which is economically and socially marginalized in the Indian economy. Its finding contributes to understanding financial literacy in an understudied area and provides policy implications through inclusive financial systems solutions in an economy limited to tribal street vendors.Keywords: financial literacy, education, street entrepreneurs, tribals, cognitive ability, financial ability, ordered logit regression.
Procedia PDF Downloads 11025686 Water Demand Modelling Using Artificial Neural Network in Ramallah
Authors: F. Massri, M. Shkarneh, B. Almassri
Abstract:
Water scarcity and increasing water demand especially for residential use are major challenges facing Palestine. The need to accurately forecast water consumption is useful for the planning and management of this natural resource. The main objective of this paper is to (i) study the major factors influencing the water consumption in Palestine, (ii) understand the general pattern of Household water consumption, (iii) assess the possible changes in household water consumption and suggest appropriate remedies and (iv) develop prediction model based on the Artificial Neural Network to the water consumption in Palestinian cities. The paper is organized in four parts. The first part includes literature review of household water consumption studies. The second part concerns data collection methodology, conceptual frame work for the household water consumption surveys, survey descriptions and data processing methods. The third part presents descriptive statistics, multiple regression and analysis of the water consumption in the two Palestinian cities. The final part develops the use of Artificial Neural Network for modeling the water consumption in Palestinian cities.Keywords: water management, demand forecasting, consumption, ANN, Ramallah
Procedia PDF Downloads 21925685 Experimental Design and Optimization of Diesel Oil Desulfurization Process by Adsorption Processes
Authors: M. Firoz Kalam, Wilfried Schuetz, Jan Hendrik Bredehoeft
Abstract:
Thiophene sulfur compounds' removal from diesel oil by batch adsorption process using commercial powdered activated carbon was designed and optimized in two-level factorial design method. This design analysis was used to find out the effects of operating parameters directing the adsorption process, such as amount of adsorbent, temperature and stirring time. The desulfurization efficiency was considered the response or output variable. Results showed that the stirring time had the largest effects on sulfur removal efficiency as compared with other operating parameters and their interactions under the experimental ranges studied. A regression model was generated to observe the closeness between predicted and experimental values. The three-dimensional plots and contour plots of main factors were generated according to the regression results to observe the optimal points.Keywords: activated carbon, adsorptive desulfurization, factorial design, process optimization
Procedia PDF Downloads 16225684 The Mass Attenuation Coefficients, Effective Atomic Cross Sections, Effective Atomic Numbers and Electron Densities of Some Halides
Authors: Shivalinge Gowda
Abstract:
The total mass attenuation coefficients m/r, of some halides such as, NaCl, KCl, CuCl, NaBr, KBr, RbCl, AgCl, NaI, KI, AgBr, CsI, HgCl2, CdI2 and HgI2 were determined at photon energies 279.2, 320.07, 514.0, 661.6, 1115.5, 1173.2 and 1332.5 keV in a well-collimated narrow beam good geometry set-up using a high resolution, hyper pure germanium detector. The mass attenuation coefficients and the effective atomic cross sections are found to be in good agreement with the XCOM values. From these mass attenuation coefficients, the effective atomic cross sections sa, of the compounds were determined. These effective atomic cross section sa data so obtained are then used to compute the effective atomic numbers Zeff. For this, the interpolation of total attenuation cross-sections of photons of energy E in elements of atomic number Z was performed by using the logarithmic regression analysis of the data measured by the authors and reported earlier for the above said energies along with XCOM data for standard energies. The best-fit coefficients in the photon energy range of 250 to 350 keV, 350 to 500 keV, 500 to 700 keV, 700 to 1000 keV and 1000 to 1500 keV by a piecewise interpolation method were then used to find the Zeff of the compounds with respect to the effective atomic cross section sa from the relation obtained by piece wise interpolation method. Using these Zeff values, the electron densities Nel of halides were also determined. The present Zeff and Nel values of halides are found to be in good agreement with the values calculated from XCOM data and other available published values.Keywords: mass attenuation coefficient, atomic cross-section, effective atomic number, electron density
Procedia PDF Downloads 37725683 The Impact of Resource-oriented Music Listening on Oversea Dispatch Employees Work Stress Relief
Authors: Wei Yaming
Abstract:
Objective: In order to compare the stress of employees sent overseas with (GRAS) before and after, we used the resource-oriented music listening intervention in this study. We also collected pertinent experimental data. Methods: The experiment involved 47 employees who were sent abroad by the Chinese side. They completed the stress scale test and documented it before the intervention. They tested for stress after five interventions and performed one-on-one interviews. Quantitative data and SPSS software were used to analyze relationships between stress reduction and resource-oriented music listening, as well as Pearson's correlation, multiple regression levels, and ANOVA. For the qualitative analysis, content analysis of one-on-one interviews was performed. Results: A comparison of data from before and after demonstrates how resource-focused music listening activities can lessen and relieve stress in remote workers. In the qualitative study, stress is broken down into six categories: relationship stress, health stress, emotional stress, and frustration stress. External pressures include work pressure and cultural stress. And it has been determined that listening to music that is resource-oriented can better ease internal stress (health, emotion, and dissatisfaction). Conclusion: The Guide Resource-oriented Music Listening (GROML) Program appears to have had some effect on the participants' stress levels. The resources that the participants encountered while listening to music are bravery, calm, letting go, and relaxing.Keywords: resource-oriented, music listening, oversea dispatch employees, work stress
Procedia PDF Downloads 9925682 Integrated Marketing Communication to Influencing International Standard Energy Economy Car Buying Decision of Consumers in Bangkok
Authors: Pisit Potjanajaruwit
Abstract:
The objective of this research was to study the influence of Integrated Marketing Communication on Buying Decision of Consumers in Bangkok. A total of 397 respondents were collected from customers who drive in Bangkok. A questionnaire was utilized as a tool to collect data. Statistics utilized in this research included frequency, percentage, mean, standard deviation, and multiple regression analysis. Data were analyzed by using Statistical Package for the Social Sciences. The findings revealed that the majority of respondents were male with the age between 25-34 years old, hold undergraduate degree, married and stay together. The average income of respondents was between 10,001-20,000 baht. In terms of occupation, the majority worked for private companies. The effect to the Buying Decision of Consumers in Bangkok to including sale promotion with the low interest and discount for an installment, selling by introducing and gave product information through sales persons, public relation by website, direct marketing by annual motor show and advertisement by television media.Keywords: Bangkok metropolis, ECO car, integrated marketing communication, international standard
Procedia PDF Downloads 31625681 Association of Maternal Age, Ethnicity and BMI with Gestational Diabetes Prevalence in Multi-Racial Singapore
Authors: Nur Atiqah Adam, Mor Jack Ng, Bernard Chern, Kok Hian Tan
Abstract:
Introduction: Gestational diabetes (GDM) is a common pregnancy complication with short and long-term health consequences for both mother and fetus. Factors such as family history of diabetes mellitus, maternal obesity, maternal age, ethnicity and parity have been reported to influence the risk of GDM. In a multi-racial country like Singapore, it is worthwhile to study the GDM prevalences of different ethnicities. We aim to investigate the influence of ethnicity on the racial prevalences of GDM in Singapore. This is important as it may help us to improve guidelines on GDM healthcare services according to significant risk factors unique to Singapore. Materials and Methods: Obstetric cohort data of 926 singleton deliveries in KK Women’s and Children’s Hospital (KKH) from 2011 to 2013 was obtained. Only patients aged 18 and above and without complicated pregnancies or chronic illnesses were targeted. Factors such as ethnicity, maternal age, parity and maternal body mass index (BMI) at booking visit were studied. A multivariable logistic regression model, adjusted for confounders, was used to determine which of these factors are significantly associated with an increased risk of GDM. Results: The overall GDM prevalence rate based on WHO 1999 criteria & at risk screening (race alone not a risk factor) was 8.86%. GDM rates were higher among women above 35 years old (15.96%), obese (15.15%) and multiparous women (10.12%). Indians had a higher GDM rate (13.0 %) compared to the Chinese (9.57%) and Malays (5.20%). However, using multiple logistic regression model, variables that are significantly related to GDM rates were maternal age (p < 0.001) and maternal BMI at booking visit (p = 0.006). Conclusion: Maternal age (p < 0.001) and maternal booking BMI (p = 0.006) are the strongest risk factors for GDM. Ethnicity per se does not seem to have a significant influence on the prevalence of GDM in Singapore (p = 0.064). Hence we should tailor guidelines on GDM healthcare services according to maternal age and booking BMI rather than ethnicity.Keywords: ethnicity, gestational diabetes, healthcare, pregnancy
Procedia PDF Downloads 22625680 Towards an Effective Approach for Modelling near Surface Air Temperature Combining Weather and Satellite Data
Authors: Nicola Colaninno, Eugenio Morello
Abstract:
The urban environment affects local-to-global climate and, in turn, suffers global warming phenomena, with worrying impacts on human well-being, health, social and economic activities. Physic-morphological features of the built-up space affect urban air temperature, locally, causing the urban environment to be warmer compared to surrounding rural. This occurrence, typically known as the Urban Heat Island (UHI), is normally assessed by means of air temperature from fixed weather stations and/or traverse observations or based on remotely sensed Land Surface Temperatures (LST). The information provided by ground weather stations is key for assessing local air temperature. However, the spatial coverage is normally limited due to low density and uneven distribution of the stations. Although different interpolation techniques such as Inverse Distance Weighting (IDW), Ordinary Kriging (OK), or Multiple Linear Regression (MLR) are used to estimate air temperature from observed points, such an approach may not effectively reflect the real climatic conditions of an interpolated point. Quantifying local UHI for extensive areas based on weather stations’ observations only is not practicable. Alternatively, the use of thermal remote sensing has been widely investigated based on LST. Data from Landsat, ASTER, or MODIS have been extensively used. Indeed, LST has an indirect but significant influence on air temperatures. However, high-resolution near-surface air temperature (NSAT) is currently difficult to retrieve. Here we have experimented Geographically Weighted Regression (GWR) as an effective approach to enable NSAT estimation by accounting for spatial non-stationarity of the phenomenon. The model combines on-site measurements of air temperature, from fixed weather stations and satellite-derived LST. The approach is structured upon two main steps. First, a GWR model has been set to estimate NSAT at low resolution, by combining air temperature from discrete observations retrieved by weather stations (dependent variable) and the LST from satellite observations (predictor). At this step, MODIS data, from Terra satellite, at 1 kilometer of spatial resolution have been employed. Two time periods are considered according to satellite revisit period, i.e. 10:30 am and 9:30 pm. Afterward, the results have been downscaled at 30 meters of spatial resolution by setting a GWR model between the previously retrieved near-surface air temperature (dependent variable), the multispectral information as provided by the Landsat mission, in particular the albedo, and Digital Elevation Model (DEM) from the Shuttle Radar Topography Mission (SRTM), both at 30 meters. Albedo and DEM are now the predictors. The area under investigation is the Metropolitan City of Milan, which covers an area of approximately 1,575 km2 and encompasses a population of over 3 million inhabitants. Both models, low- (1 km) and high-resolution (30 meters), have been validated according to a cross-validation that relies on indicators such as R2, Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). All the employed indicators give evidence of highly efficient models. In addition, an alternative network of weather stations, available for the City of Milano only, has been employed for testing the accuracy of the predicted temperatures, giving and RMSE of 0.6 and 0.7 for daytime and night-time, respectively.Keywords: urban climate, urban heat island, geographically weighted regression, remote sensing
Procedia PDF Downloads 19525679 Global Positioning System Match Characteristics as a Predictor of Badminton Players’ Group Classification
Authors: Yahaya Abdullahi, Ben Coetzee, Linda Van Den Berg
Abstract:
The study aimed at establishing the global positioning system (GPS) determined singles match characteristics that act as predictors of successful and less-successful male singles badminton players’ group classification. Twenty-two (22) male single players (aged: 23.39 ± 3.92 years; body stature: 177.11 ± 3.06cm; body mass: 83.46 ± 14.59kg) who represented 10 African countries participated in the study. Players were categorised as successful and less-successful players according to the results of five championships’ of the 2014/2015 season. GPS units (MinimaxX V4.0), Polar Heart Rate Transmitter Belts and digital video cameras were used to collect match data. GPS-related variables were corrected for match duration and independent t-tests, a cluster analysis and a binary forward stepwise logistic regression were calculated. A Receiver Operating Characteristic Curve (ROC) was used to determine the validity of the group classification model. High-intensity accelerations per second were identified as the only GPS-determined variable that showed a significant difference between groups. Furthermore, only high-intensity accelerations per second (p=0.03) and low-intensity efforts per second (p=0.04) were identified as significant predictors of group classification with 76.88% of players that could be classified back into their original groups by making use of the GPS-based logistic regression formula. The ROC showed a value of 0.87. The identification of the last-mentioned GPS-related variables for the attainment of badminton performances, emphasizes the importance of using badminton drills and conditioning techniques to not only improve players’ physical fitness levels but also their abilities to accelerate at high intensities.Keywords: badminton, global positioning system, match analysis, inertial movement analysis, intensity, effort
Procedia PDF Downloads 191