Search results for: geographic data streams
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25871

Search results for: geographic data streams

24701 An Efficient Approach for Speed up Non-Negative Matrix Factorization for High Dimensional Data

Authors: Bharat Singh Om Prakash Vyas

Abstract:

Now a day’s applications deal with High Dimensional Data have tremendously used in the popular areas. To tackle with such kind of data various approached has been developed by researchers in the last few decades. To tackle with such kind of data various approached has been developed by researchers in the last few decades. One of the problems with the NMF approaches, its randomized valued could not provide absolute optimization in limited iteration, but having local optimization. Due to this, we have proposed a new approach that considers the initial values of the decomposition to tackle the issues of computationally expensive. We have devised an algorithm for initializing the values of the decomposed matrix based on the PSO (Particle Swarm Optimization). Through the experimental result, we will show the proposed method converse very fast in comparison to other row rank approximation like simple NMF multiplicative, and ACLS techniques.

Keywords: ALS, NMF, high dimensional data, RMSE

Procedia PDF Downloads 346
24700 Integrating Time-Series and High-Spatial Remote Sensing Data Based on Multilevel Decision Fusion

Authors: Xudong Guan, Ainong Li, Gaohuan Liu, Chong Huang, Wei Zhao

Abstract:

Due to the low spatial resolution of MODIS data, the accuracy of small-area plaque extraction with a high degree of landscape fragmentation is greatly limited. To this end, the study combines Landsat data with higher spatial resolution and MODIS data with higher temporal resolution for decision-level fusion. Considering the importance of the land heterogeneity factor in the fusion process, it is superimposed with the weighting factor, which is to linearly weight the Landsat classification result and the MOIDS classification result. Three levels were used to complete the process of data fusion, that is the pixel of MODIS data, the pixel of Landsat data, and objects level that connect between these two levels. The multilevel decision fusion scheme was tested in two sites of the lower Mekong basin. We put forth a comparison test, and it was proved that the classification accuracy was improved compared with the single data source classification results in terms of the overall accuracy. The method was also compared with the two-level combination results and a weighted sum decision rule-based approach. The decision fusion scheme is extensible to other multi-resolution data decision fusion applications.

Keywords: image classification, decision fusion, multi-temporal, remote sensing

Procedia PDF Downloads 127
24699 DFT Insights into CO₂ Capture Mechanisms and Kinetics in Diamine-Appended Grafted Mg₂ (dobpdc) Metal- Organic Frameworks

Authors: Mao-Sheng Su, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang

Abstract:

Climate change is widely recognized as a global crisis, with anthropogenic CO₂ emissions from fossil fuel combustion and industrial processes being major contributors. To address this challenge, carbon capture and sequestration (CCS) technology has emerged as a key strategy for selectively capturing CO₂ from flue gas streams. Among the various solid adsorbents, metal–organic frameworks (MOFs) are notable for their extensive surface area and controllable pore chemistry. The porous MOF structure is comprised of metal ions or clusters coordinated to organic linker compounds. In particular, the pore parameters of MOFs are readily tunable, making them promising materials for CO₂ capture applications. Among these, amine-functionalized MOFs have demonstrated exceptional CO₂ capture abilities because their high uptake capacity and selectivity. In this study, we have investigated the CO₂ capture abilities and adsorption mechanisms of the diamine-appended framework N-Ethylethylenediamine-Mg₂(4,4’-dioxidobiphenyl-3,3’-dicarboxylate) (e-2-Mg₂(dobpdc)) using density functional theory (DFT) calculations. Previous studies have suggested that CO₂ can be captured via both outer- and inner-amine binding sites. Our findings reveal that CO₂ adsorption at the outer amine site is kinetically more favorable compared to the inner amine site, with a lower energy barrier of 1.34 eV for CO₂ physisorption to chemisorption compared to the inner amine, which has an activation barrier of 1.60 eV. Furthermore, we find that CO₂ adsorption is significantly enhanced in an alkaline environment, as deprotonation of the diamine molecule reduces the energy barrier to 0.24 eV. This theoretical study provides detailed insights into CO₂ adsorption in diamine-appended e-2-Mg₂(dobpdc) MOF, offering a deeper understanding of CO₂ capture mechanisms and valuable information for the advancement of effective CO₂ sequestration technologies.

Keywords: DFT, MOFs, CO₂ capture, catalyst

Procedia PDF Downloads 47
24698 Geographic Variation in the Baseline Susceptibility of Helicoverpa armigera (Hubner) (Noctuidae: Lepidoptera) Field Populations to Bacillus thuringiensis Cry Toxins for Resistance Monitoring

Authors: Muhammad Arshad, M. Sufian, Muhammad D. Gogi, A. Aslam

Abstract:

The transgenic cotton expressing Bacillus thuringiensis (Bt) provides an effective control of Helicoverpa armigera, a most damaging pest of the cotton crop. However, Bt cotton may not be the optimal solution owing to the selection pressure of Cry toxins. As Bt cotton express the insecticidal proteins throughout the growing seasons, there are the chances of resistance development in the target pests. A regular monitoring and surveillance of target pest’s baseline susceptibility to Bt Cry toxins is crucial for early detection of any resistance development. The present study was conducted to monitor the changes in the baseline susceptibility of the field population of H. armigera to Bt Cry1Ac toxin. The field-collected larval populations were maintained in the laboratory on artificial diet and F1 generation larvae were used for diet incorporated diagnostic studies. The LC₅₀ and MIC₅₀ were calculated to measure the level of resistance of population as a ratio over susceptible population. The monitoring results indicated a significant difference in the susceptibility (LC₅₀) of H. armigera for first, second, third and fourth instar larval populations sampled from different cotton growing areas over the study period 2016-17. The variations in susceptibility among the tested insects depended on the age of the insect and susceptibility decreased with the age of larvae. The overall results show that the average resistant ratio (RR) of all field-collected populations (FSD, SWL, MLT, BWP and DGK) exposed to Bt toxin Cry1Ac ranged from 3.381-fold to 7.381-fold for 1st instar, 2.370-fold to 3.739-fold for 2nd instar, 1.115-fold to 1.762-fold for 3rd instar and 1.141-fold to 2.504-fold for 4th instar, depicting maximum RR from MLT population, whereas minimum RR for FSD and SWL population. The results regarding moult inhibitory concentration of H. armigera larvae (1-4th instars) exposed to different concentrations of Bt Cry1Ac toxin indicated that among all field populations, overall Multan (MLT) and Bahawalpur (BWP) populations showed higher MIC₅₀ values as compared to Faisalabad (FSD) and Sahiwal (SWL), whereas DG Khan (DGK) population showed an intermediate moult inhibitory concentrations. This information is important for the development of more effective resistance monitoring programs. The development of Bt Cry toxins baseline susceptibility data before the widespread commercial release of transgenic Bt cotton cultivars in Pakistan is important for the development of more effective resistance monitoring programs to identify the resistant H. armigera populations.

Keywords: Bt cotton, baseline, Cry1Ac toxins, H. armigera

Procedia PDF Downloads 147
24697 Analysis of Cooperative Learning Behavior Based on the Data of Students' Movement

Authors: Wang Lin, Li Zhiqiang

Abstract:

The purpose of this paper is to analyze the cooperative learning behavior pattern based on the data of students' movement. The study firstly reviewed the cooperative learning theory and its research status, and briefly introduced the k-means clustering algorithm. Then, it used clustering algorithm and mathematical statistics theory to analyze the activity rhythm of individual student and groups in different functional areas, according to the movement data provided by 10 first-year graduate students. It also focused on the analysis of students' behavior in the learning area and explored the law of cooperative learning behavior. The research result showed that the cooperative learning behavior analysis method based on movement data proposed in this paper is feasible. From the results of data analysis, the characteristics of behavior of students and their cooperative learning behavior patterns could be found.

Keywords: behavior pattern, cooperative learning, data analyze, k-means clustering algorithm

Procedia PDF Downloads 191
24696 Combining Diffusion Maps and Diffusion Models for Enhanced Data Analysis

Authors: Meng Su

Abstract:

High-dimensional data analysis often presents challenges in capturing the complex, nonlinear relationships and manifold structures inherent to the data. This article presents a novel approach that leverages the strengths of two powerful techniques, Diffusion Maps and Diffusion Probabilistic Models (DPMs), to address these challenges. By integrating the dimensionality reduction capability of Diffusion Maps with the data modeling ability of DPMs, the proposed method aims to provide a comprehensive solution for analyzing and generating high-dimensional data. The Diffusion Map technique preserves the nonlinear relationships and manifold structure of the data by mapping it to a lower-dimensional space using the eigenvectors of the graph Laplacian matrix. Meanwhile, DPMs capture the dependencies within the data, enabling effective modeling and generation of new data points in the low-dimensional space. The generated data points can then be mapped back to the original high-dimensional space, ensuring consistency with the underlying manifold structure. Through a detailed example implementation, the article demonstrates the potential of the proposed hybrid approach to achieve more accurate and effective modeling and generation of complex, high-dimensional data. Furthermore, it discusses possible applications in various domains, such as image synthesis, time-series forecasting, and anomaly detection, and outlines future research directions for enhancing the scalability, performance, and integration with other machine learning techniques. By combining the strengths of Diffusion Maps and DPMs, this work paves the way for more advanced and robust data analysis methods.

Keywords: diffusion maps, diffusion probabilistic models (DPMs), manifold learning, high-dimensional data analysis

Procedia PDF Downloads 114
24695 A Security Cloud Storage Scheme Based Accountable Key-Policy Attribute-Based Encryption without Key Escrow

Authors: Ming Lun Wang, Yan Wang, Ning Ruo Sun

Abstract:

With the development of cloud computing, more and more users start to utilize the cloud storage service. However, there exist some issues: 1) cloud server steals the shared data, 2) sharers collude with the cloud server to steal the shared data, 3) cloud server tampers the shared data, 4) sharers and key generation center (KGC) conspire to steal the shared data. In this paper, we use advanced encryption standard (AES), hash algorithms, and accountable key-policy attribute-based encryption without key escrow (WOKE-AKP-ABE) to build a security cloud storage scheme. Moreover, the data are encrypted to protect the privacy. We use hash algorithms to prevent the cloud server from tampering the data uploaded to the cloud. Analysis results show that this scheme can resist conspired attacks.

Keywords: cloud storage security, sharing storage, attributes, Hash algorithm

Procedia PDF Downloads 392
24694 Logic Programming and Artificial Neural Networks in Pharmacological Screening of Schinus Essential Oils

Authors: José Neves, M. Rosário Martins, Fátima Candeias, Diana Ferreira, Sílvia Arantes, Júlio Cruz-Morais, Guida Gomes, Joaquim Macedo, António Abelha, Henrique Vicente

Abstract:

Some plants of genus Schinus have been used in the folk medicine as topical antiseptic, digestive, purgative, diuretic, analgesic or antidepressant, and also for respiratory and urinary infections. Chemical composition of essential oils of S. molle and S. terebinthifolius had been evaluated and presented high variability according with the part of the plant studied and with the geographic and climatic regions. The pharmacological properties, namely antimicrobial, anti-tumoural and anti-inflammatory activities are conditioned by chemical composition of essential oils. Taking into account the difficulty to infer the pharmacological properties of Schinus essential oils without hard experimental approach, this work will focus on the development of a decision support system, in terms of its knowledge representation and reasoning procedures, under a formal framework based on Logic Programming, complemented with an approach to computing centered on Artificial Neural Networks and the respective Degree-of-Confidence that one has on such an occurrence.

Keywords: artificial neuronal networks, essential oils, knowledge representation and reasoning, logic programming, Schinus molle L., Schinus terebinthifolius Raddi

Procedia PDF Downloads 547
24693 The Study on Life of Valves Evaluation Based on Tests Data

Authors: Binjuan Xu, Qian Zhao, Ping Jiang, Bo Guo, Zhijun Cheng, Xiaoyue Wu

Abstract:

Astronautical valves are key units in engine systems of astronautical products; their reliability will influence results of rocket or missile launching, even lead to damage to staff and devices on the ground. Besides failure in engine system may influence the hitting accuracy and flight shot of missiles. Therefore high reliability is quite essential to astronautical products. There are quite a few literature doing research based on few failure test data to estimate valves’ reliability, thus this paper proposed a new method to estimate valves’ reliability, according to the corresponding tests of different failure modes, this paper takes advantage of tests data which acquired from temperature, vibration, and action tests to estimate reliability in every failure modes, then this paper has regarded these three kinds of tests as three stages in products’ process to integrate these results to acquire valves’ reliability. Through the comparison of results achieving from tests data and simulated data, the results have illustrated how to obtain valves’ reliability based on the few failure data with failure modes and prove that the results are effective and rational.

Keywords: censored data, temperature tests, valves, vibration tests

Procedia PDF Downloads 347
24692 Development of Energy Benchmarks Using Mandatory Energy and Emissions Reporting Data: Ontario Post-Secondary Residences

Authors: C. Xavier Mendieta, J. J McArthur

Abstract:

Governments are playing an increasingly active role in reducing carbon emissions, and a key strategy has been the introduction of mandatory energy disclosure policies. These policies have resulted in a significant amount of publicly available data, providing researchers with a unique opportunity to develop location-specific energy and carbon emission benchmarks from this data set, which can then be used to develop building archetypes and used to inform urban energy models. This study presents the development of such a benchmark using the public reporting data. The data from Ontario’s Ministry of Energy for Post-Secondary Educational Institutions are being used to develop a series of building archetype dynamic building loads and energy benchmarks to fill a gap in the currently available building database. This paper presents the development of a benchmark for college and university residences within ASHRAE climate zone 6 areas in Ontario using the mandatory disclosure energy and greenhouse gas emissions data. The methodology presented includes data cleaning, statistical analysis, and benchmark development, and lessons learned from this investigation are presented and discussed to inform the development of future energy benchmarks from this larger data set. The key findings from this initial benchmarking study are: (1) the importance of careful data screening and outlier identification to develop a valid dataset; (2) the key features used to develop a model of the data are building age, size, and occupancy schedules and these can be used to estimate energy consumption; and (3) policy changes affecting the primary energy generation significantly affected greenhouse gas emissions, and consideration of these factors was critical to evaluate the validity of the reported data.

Keywords: building archetypes, data analysis, energy benchmarks, GHG emissions

Procedia PDF Downloads 309
24691 The Development of the Spatial and Hierarchic Urban Structure of the Ultra-Orthodox Jewish Population in Israel

Authors: Lee Cahaner, Nissim Leon

Abstract:

The segregation of populations is one of the main axes in the research of urban geography, which refers to the spatial and functional relationships between settlements. In Israel, this phenomenon has its unique expression in the spatial processes concerning the ultra-orthodox population. This population holds a set of interactions within itself as well as with the non-orthodox surrounding population because of historical and contemporary motivations on its which strength depends on its homogeneousness and separation. Its demographic growth rate and the internal social processes that the ultra-orthodox society undergoes create a new image of the ultra-orthodox concentration and its location in the Israeli space. The goals of the present study have also been defined with the express intention of filling the scholarly vacuum noted above: firstly, to discuss the development of the Israeli ultra-Orthodox sector’s hierarchical and spatial structure as of 2015, in light of the principles and mechanisms that guide it and vis-à-vis the general population’s hierarchical locality system; secondly, to map Israel’s ultra-Orthodox population, with attention to its physical boundaries, its subdivisions (Hassidic, Lithuanian, Sephardic) and the geographical and demographic processes that have characterized it in recent years; and thirdly, to shed light on the interactions between ultra-Orthodox localities via several different parameters, e.g. migration, education, transportation, employment, consumerism and community services. In order to understand the changes in ultra-Orthodox geographic distribution and the social processes that these changes have generated, a number of research activities were conducted during the course of this study− notably, gathering and assembling material from earlier academic studies, newspaper advertisements, state and private archives; in-depth interviews with major figures in the ultra-Orthodox community and others who come into contact with it; tours of the core areas of ultra-Orthodox settlement; and gathering quantitative and qualitative data from the statistical reports of governmental and other bodies. In addition, a multi-participant (2400-respondent) quantitative survey was conducted among residents of the new ultra-Orthodox cities, designed to elucidate the attributes and spatial attitudes of the residents− as a means of tracing and understanding this new settlement pattern within ultra-Orthodox space. A major portion of the quantitative and qualitative material was processed to form a system of maps that visually describe the distribution of Israel’s ultra-Orthodox population.

Keywords: migration, new cities, segregation, ultra-orthodox

Procedia PDF Downloads 405
24690 Collision Detection Algorithm Based on Data Parallelism

Authors: Zhen Peng, Baifeng Wu

Abstract:

Modern computing technology enters the era of parallel computing with the trend of sustainable and scalable parallelism. Single Instruction Multiple Data (SIMD) is an important way to go along with the trend. It is able to gather more and more computing ability by increasing the number of processor cores without the need of modifying the program. Meanwhile, in the field of scientific computing and engineering design, many computation intensive applications are facing the challenge of increasingly large amount of data. Data parallel computing will be an important way to further improve the performance of these applications. In this paper, we take the accurate collision detection in building information modeling as an example. We demonstrate a model for constructing a data parallel algorithm. According to the model, a complex object is decomposed into the sets of simple objects; collision detection among complex objects is converted into those among simple objects. The resulting algorithm is a typical SIMD algorithm, and its advantages in parallelism and scalability is unparalleled in respect to the traditional algorithms.

Keywords: data parallelism, collision detection, single instruction multiple data, building information modeling, continuous scalability

Procedia PDF Downloads 294
24689 Changing Arbitrary Data Transmission Period by Using Bluetooth Module on Gas Sensor Node of Arduino Board

Authors: Hiesik Kim, Yong-Beom Kim, Jaheon Gu

Abstract:

Internet of Things (IoT) applications are widely serviced and spread worldwide. Local wireless data transmission technique must be developed to rate up with some technique. Bluetooth wireless data communication is wireless technique is technique made by Special Inter Group (SIG) using the frequency range 2.4 GHz, and it is exploiting Frequency Hopping to avoid collision with a different device. To implement experiment, equipment for experiment transmitting measured data is made by using Arduino as open source hardware, gas sensor, and Bluetooth module and algorithm controlling transmission rate is demonstrated. Experiment controlling transmission rate also is progressed by developing Android application receiving measured data, and controlling this rate is available at the experiment result. It is important that in the future, improvement for communication algorithm be needed because a few error occurs when data is transferred or received.

Keywords: Arduino, Bluetooth, gas sensor, IoT, transmission

Procedia PDF Downloads 281
24688 Real-Time Sensor Fusion for Mobile Robot Localization in an Oil and Gas Refinery

Authors: Adewole A. Ayoade, Marshall R. Sweatt, John P. H. Steele, Qi Han, Khaled Al-Wahedi, Hamad Karki, William A. Yearsley

Abstract:

Understanding the behavioral characteristics of sensors is a crucial step in fusing data from several sensors of different types. This paper introduces a practical, real-time approach to integrate heterogeneous sensor data to achieve higher accuracy than would be possible from any one individual sensor in localizing a mobile robot. We use this approach in both indoor and outdoor environments and it is especially appropriate for those environments like oil and gas refineries due to their sparse and featureless nature. We have studied the individual contribution of each sensor data to the overall combined accuracy achieved from the fusion process. A Sequential Update Extended Kalman Filter(EKF) using validation gates was used to integrate GPS data, Compass data, WiFi data, Inertial Measurement Unit(IMU) data, Vehicle Velocity, and pose estimates from Fiducial marker system. Results show that the approach can enable a mobile robot to navigate autonomously in any environment using a priori information.

Keywords: inspection mobile robot, navigation, sensor fusion, sequential update extended Kalman filter

Procedia PDF Downloads 475
24687 User’s Susceptibility Factors to Malware Attacks: A Systematic Literature Review

Authors: Awad A. Younis, Elise Stronberg, Shifa Noor

Abstract:

Malware attacks due to end-user vulnerabilities have been noticeably increased in the past few years. Investigating the factors that make an end-user vulnerable to those attacks is critical because they can be utilized to set up proactive strategies such as awareness and education to mitigate the impacts of those attacks. Some existing studies investigated demographic, behavioral, and cultural factors that make an end-user susceptible to malware attacks. However, it has been challenging to draw more general conclusions from individual studies due to the varieties in the type of end-users and different types of malware. Therefore, we conducted a systematic literature review (SLR) of the existing research for end-user susceptibility factors to malware attacks. The results showed while some demographic factors are mostly associated with malware infection regardless of the end users' type, age, and gender are not consistent among the same and different types of end-users. Besides, the association of culture and personality factors with malware infection are consistent in most of the selected studies and for all type of end-users. Moreover, malware infection varies based on age, geographic location, and host types. We propose that future studies should carefully take into consideration the type of end-users because different end users may be exposed to different threats or be targeted based on their user domains’ characteristics. Additionally, as different types of malware use different tactics to trick end-users, taking the malware types into consideration is important.

Keywords: cybersecurity, malware, end-users, demographics, personality, culture, systematic literature review

Procedia PDF Downloads 235
24686 Energy Efficient Massive Data Dissemination Through Vehicle Mobility in Smart Cities

Authors: Salman Naseer

Abstract:

One of the main challenges of operating a smart city (SC) is collecting the massive data generated from multiple data sources (DS) and to transmit them to the control units (CU) for further data processing and analysis. These ever-increasing data demands require not only more and more capacity of the transmission channels but also results in resource over-provision to meet the resilience requirements, thus the unavoidable waste because of the data fluctuations throughout the day. In addition, the high energy consumption (EC) and carbon discharges from these data transmissions posing serious issues to the environment we live in. Therefore, to overcome the issues of intensive EC and carbon emissions (CE) of massive data dissemination in Smart Cities, we propose an energy efficient and carbon reduction approach by utilizing the daily mobility of the existing vehicles as an alternative communications channel to accommodate the data dissemination in smart cities. To illustrate the effectiveness and efficiency of our approach, we take the Auckland City in New Zealand as an example, assuming massive data generated by various sources geographically scattered throughout the Auckland region to the control centres located in city centre. The numerical results show that our proposed approach can provide up to 5 times lower delay as transferring the large volume of data by utilizing the existing daily vehicles’ mobility than the conventional transmission network. Moreover, our proposed approach offers about 30% less EC and CE than that of conventional network transmission approach.

Keywords: smart city, delay tolerant network, infrastructure offloading, opportunistic network, vehicular mobility, energy consumption, carbon emission

Procedia PDF Downloads 147
24685 Exploring Data Stewardship in Fog Networking Using Blockchain Algorithm

Authors: Ruvaitha Banu, Amaladhithyan Krishnamoorthy

Abstract:

IoT networks today solve various consumer problems, from home automation systems to aiding in driving autonomous vehicles with the exploration of multiple devices. For example, in an autonomous vehicle environment, multiple sensors are available on roads to monitor weather and road conditions and interact with each other to aid the vehicle in reaching its destination safely and timely. IoT systems are predominantly dependent on the cloud environment for data storage, and computing needs that result in latency problems. With the advent of Fog networks, some of this storage and computing is pushed to the edge/fog nodes, saving the network bandwidth and reducing the latency proportionally. Managing the data stored in these fog nodes becomes crucial as it might also store sensitive information required for a certain application. Data management in fog nodes is strenuous because Fog networks are dynamic in terms of their availability and hardware capability. It becomes more challenging when the nodes in the network also live a short span, detaching and joining frequently. When an end-user or Fog Node wants to access, read, or write data stored in another Fog Node, then a new protocol becomes necessary to access/manage the data stored in the fog devices as a conventional static way of managing the data doesn’t work in Fog Networks. The proposed solution discusses a protocol that acts by defining sensitivity levels for the data being written and read. Additionally, a distinct data distribution and replication model among the Fog nodes is established to decentralize the access mechanism. In this paper, the proposed model implements stewardship towards the data stored in the Fog node using the application of Reinforcement Learning so that access to the data is determined dynamically based on the requests.

Keywords: IoT, fog networks, data stewardship, dynamic access policy

Procedia PDF Downloads 64
24684 An Automated Approach to Consolidate Galileo System Availability

Authors: Marie Bieber, Fabrice Cosson, Olivier Schmitt

Abstract:

Europe's Global Navigation Satellite System, Galileo, provides worldwide positioning and navigation services. The satellites in space are only one part of the Galileo system. An extensive ground infrastructure is essential to oversee the satellites and ensure accurate navigation signals. High reliability and availability of the entire Galileo system are crucial to continuously provide positioning information of high quality to users. Outages are tracked, and operational availability is regularly assessed. A highly flexible and adaptive tool has been developed to automate the Galileo system availability analysis. Not only does it enable a quick availability consolidation, but it also provides first steps towards improving the data quality of maintenance tickets used for the analysis. This includes data import and data preparation, with a focus on processing strings used for classification and identifying faulty data. Furthermore, the tool allows to handle a low amount of data, which is a major constraint when the aim is to provide accurate statistics.

Keywords: availability, data quality, system performance, Galileo, aerospace

Procedia PDF Downloads 171
24683 Use of In-line Data Analytics and Empirical Model for Early Fault Detection

Authors: Hyun-Woo Cho

Abstract:

Automatic process monitoring schemes are designed to give early warnings for unusual process events or abnormalities as soon as possible. For this end, various techniques have been developed and utilized in various industrial processes. It includes multivariate statistical methods, representation skills in reduced spaces, kernel-based nonlinear techniques, etc. This work presents a nonlinear empirical monitoring scheme for batch type production processes with incomplete process measurement data. While normal operation data are easy to get, unusual fault data occurs infrequently and thus are difficult to collect. In this work, noise filtering steps are added in order to enhance monitoring performance by eliminating irrelevant information of the data. The performance of the monitoring scheme was demonstrated using batch process data. The results showed that the monitoring performance was improved significantly in terms of detection success rate of process fault.

Keywords: batch process, monitoring, measurement, kernel method

Procedia PDF Downloads 326
24682 The Impact of the General Data Protection Regulation on Human Resources Management in Schools

Authors: Alexandra Aslanidou

Abstract:

The General Data Protection Regulation (GDPR), concerning the protection of natural persons within the European Union with regard to the processing of personal data and on the free movement of such data, became applicable in the European Union (EU) on 25 May 2018 and transformed the way personal data were being treated under the Data Protection Directive (DPD) regime, generating sweeping organizational changes to both public sector and business. A social practice that is considerably influenced in the way of its day-to-day operations is Human Resource (HR) management, for which the importance of GDPR cannot be underestimated. That is because HR processes personal data coming in all shapes and sizes from many different systems and sources. The significance of the proper functioning of an HR department, specifically in human-centered, service-oriented environments such as the education field, is decisive due to the fact that HR operations in schools, conducted effectively, determine the quality of the provided services and consequently have a considerable impact on the success of the educational system. The purpose of this paper is to analyze the decisive role that GDPR plays in HR departments that operate in schools and in order to practically evaluate the aftermath of the Regulation during the first months of its applicability; a comparative use cases analysis in five highly dynamic schools, across three EU Member States, was attempted.

Keywords: general data protection regulation, human resource management, educational system

Procedia PDF Downloads 105
24681 Real-Time Data Stream Partitioning over a Sliding Window in Real-Time Spatial Big Data

Authors: Sana Hamdi, Emna Bouazizi, Sami Faiz

Abstract:

In recent years, real-time spatial applications, like location-aware services and traffic monitoring, have become more and more important. Such applications result dynamic environments where data as well as queries are continuously moving. As a result, there is a tremendous amount of real-time spatial data generated every day. The growth of the data volume seems to outspeed the advance of our computing infrastructure. For instance, in real-time spatial Big Data, users expect to receive the results of each query within a short time period without holding in account the load of the system. But with a huge amount of real-time spatial data generated, the system performance degrades rapidly especially in overload situations. To solve this problem, we propose the use of data partitioning as an optimization technique. Traditional horizontal and vertical partitioning can increase the performance of the system and simplify data management. But they remain insufficient for real-time spatial Big data; they can’t deal with real-time and stream queries efficiently. Thus, in this paper, we propose a novel data partitioning approach for real-time spatial Big data named VPA-RTSBD (Vertical Partitioning Approach for Real-Time Spatial Big data). This contribution is an implementation of the Matching algorithm for traditional vertical partitioning. We find, firstly, the optimal attribute sequence by the use of Matching algorithm. Then, we propose a new cost model used for database partitioning, for keeping the data amount of each partition more balanced limit and for providing a parallel execution guarantees for the most frequent queries. VPA-RTSBD aims to obtain a real-time partitioning scheme and deals with stream data. It improves the performance of query execution by maximizing the degree of parallel execution. This affects QoS (Quality Of Service) improvement in real-time spatial Big Data especially with a huge volume of stream data. The performance of our contribution is evaluated via simulation experiments. The results show that the proposed algorithm is both efficient and scalable, and that it outperforms comparable algorithms.

Keywords: real-time spatial big data, quality of service, vertical partitioning, horizontal partitioning, matching algorithm, hamming distance, stream query

Procedia PDF Downloads 159
24680 A Hybrid Data-Handler Module Based Approach for Prioritization in Quality Function Deployment

Authors: P. Venu, Joeju M. Issac

Abstract:

Quality Function Deployment (QFD) is a systematic technique that creates a platform where the customer responses can be positively converted to design attributes. The accuracy of a QFD process heavily depends on the data that it is handling which is captured from customers or QFD team members. Customized computer programs that perform Quality Function Deployment within a stipulated time have been used by various companies across the globe. These programs heavily rely on storage and retrieval of the data on a common database. This database must act as a perfect source with minimum missing values or error values in order perform actual prioritization. This paper introduces a missing/error data handler module which uses Genetic Algorithm and Fuzzy numbers. The prioritization of customer requirements of sesame oil is illustrated and a comparison is made between proposed data handler module-based deployment and manual deployment.

Keywords: hybrid data handler, QFD, prioritization, module-based deployment

Procedia PDF Downloads 299
24679 Visitor Management in the National Parks: Recreational Carrying Capacity Assessment of Çıralı Coast, Turkey

Authors: Tendü H. Göktuğ, Gönül T. İçemer, Bülent Deniz

Abstract:

National parks, which are rich in natural and cultural resources values are protected in the context of the idea to develop sustainability, are among the most important recreated areas demanding with each passing day. Increasing recreational use or unplanned use forms negatively affect the resource values and visitor satisfaction. The intent of national parks management is to protect the natural and cultural resource values and to provide the visitors with a quality of recreational experience, as well. In this context, the current studies to improve the appropriate tourism and recreation planning and visitor management, approach have focused on recreational carrying capacity analysis. The aim of this study is to analyze recreational carrying capacity of Çıralı Coast in the Bey Mountains Coastal National Park to compare the analyze results with the current usage format and to develop alternative management strategies. In the first phase of the study, the annual and daily visitations, geographic, bio-physical, and managerial characteristics of the park and the type of recreational usage and the recreational areas were analyzed. In addition to these, ecological observations were carried out in order to determine recreational-based pressures on the ecosystems. On-site questionnaires were administrated to a sample of 284 respondents in the August 2015 - 2016 to collect data concerning the demographics and visit characteristics. The second phase of the study, the coastal area separated into four different usage zones and the methodology proposed by Cifuentes (1992) was used for capacity analyses. This method supplies the calculation of physical, real and effective carrying capacities by using environmental, ecological, climatic and managerial parameters in a formulation. Expected numbers which estimated three levels of carrying capacities were compared to current numbers of national parks’ visitors. In the study, it was determined that the current recreational uses in the north of the beach were caused by ecological pressures, and the current numbers in the south of beach much more than estimated numbers of visitors. Based on these results management strategies were defined and the appropriate management tools were developed in accordance with these strategies. The authors are grateful for the financial support of this project by The Scientific and Technological Research Council of Turkey (No: 114O344)

Keywords: Çıralı Coast, national parks, recreational carrying capacity, visitor management

Procedia PDF Downloads 278
24678 Predicting Groundwater Areas Using Data Mining Techniques: Groundwater in Jordan as Case Study

Authors: Faisal Aburub, Wael Hadi

Abstract:

Data mining is the process of extracting useful or hidden information from a large database. Extracted information can be used to discover relationships among features, where data objects are grouped according to logical relationships; or to predict unseen objects to one of the predefined groups. In this paper, we aim to investigate four well-known data mining algorithms in order to predict groundwater areas in Jordan. These algorithms are Support Vector Machines (SVMs), Naïve Bayes (NB), K-Nearest Neighbor (kNN) and Classification Based on Association Rule (CBA). The experimental results indicate that the SVMs algorithm outperformed other algorithms in terms of classification accuracy, precision and F1 evaluation measures using the datasets of groundwater areas that were collected from Jordanian Ministry of Water and Irrigation.

Keywords: classification, data mining, evaluation measures, groundwater

Procedia PDF Downloads 286
24677 Jurisdictional Issues between Competition Law and Data Protection Law in Protection of Privacy of Online Consumers

Authors: Pankhudi Khandelwal

Abstract:

The revenue models of digital giants such as Facebook and Google, use targeted advertising for revenues. Such a model requires huge amounts of consumer data. While the data protection law deals with the protection of personal data, however, this data is acquired by the companies on the basis of consent, performance of a contract, or legitimate interests. This paper analyses the role that competition law can play in evading these loopholes for the protection of data and privacy of online consumers. Digital markets have certain distinctive features such as network effects and feedback loop, which gives incumbents of these markets a first-mover advantage. This creates a situation where the winner takes it all, thus creating entry barriers and concentration in the market. It has been also seen that this dominant position is then used by the undertakings for leveraging in other markets. This can be harmful to the consumers in form of less privacy, less choice, and stifling innovation, as seen in the cases of Facebook Cambridge Analytica, Google Shopping, and Google Android. Therefore, the article aims to provide a legal framework wherein the data protection law and competition law can come together to provide a balance in regulating digital markets. The issue has become more relevant in light of the Facebook decision by German competition authority, where it was held that Facebook had abused its dominant position by not complying with data protection rules, which constituted an exploitative practice. The paper looks into the jurisdictional boundaries that the data protection and competition authorities can work from and suggests ex ante regulation through data protection law and ex post regulation through competition law. It further suggests a change in the consumer welfare standard where harm to privacy should be considered as an indicator of low quality.

Keywords: data protection, dominance, ex ante regulation, ex post regulation

Procedia PDF Downloads 187
24676 Application of Knowledge Discovery in Database Techniques in Cost Overruns of Construction Projects

Authors: Mai Ghazal, Ahmed Hammad

Abstract:

Cost overruns in construction projects are considered as worldwide challenges since the cost performance is one of the main measures of success along with schedule performance. To overcome this problem, studies were conducted to investigate the cost overruns' factors, also projects' historical data were analyzed to extract new and useful knowledge from it. This research is studying and analyzing the effect of some factors causing cost overruns using the historical data from completed construction projects. Then, using these factors to estimate the probability of cost overrun occurrence and predict its percentage for future projects. First, an intensive literature review was done to study all the factors that cause cost overrun in construction projects, then another review was done for previous researcher papers about mining process in dealing with cost overruns. Second, a proposed data warehouse was structured which can be used by organizations to store their future data in a well-organized way so it can be easily analyzed later. Third twelve quantitative factors which their data are frequently available at construction projects were selected to be the analyzed factors and suggested predictors for the proposed model.

Keywords: construction management, construction projects, cost overrun, cost performance, data mining, data warehousing, knowledge discovery, knowledge management

Procedia PDF Downloads 377
24675 Sampling Error and Its Implication for Capture Fisheries Management in Ghana

Authors: Temiloluwa J. Akinyemi, Denis W. Aheto, Wisdom Akpalu

Abstract:

Capture fisheries in developing countries provide significant animal protein and directly supports the livelihoods of several communities. However, the misperception of biophysical dynamics owing to a lack of adequate scientific data has contributed to the suboptimal management in marine capture fisheries. This is because yield and catch potentials are sensitive to the quality of catch and effort data. Yet, studies on fisheries data collection practices in developing countries are hard to find. This study investigates the data collection methods utilized by fisheries technical officers within the four fishing regions of Ghana. We found that the officers employed data collection and sampling procedures which were not consistent with the technical guidelines curated by FAO. For example, 50 instead of 166 landing sites were sampled, while 290 instead of 372 canoes were sampled. We argue that such sampling errors could result in the over-capitalization of capture fish stocks and significant losses in resource rents.

Keywords: Fisheries data quality, fisheries management, Ghana, Sustainable Fisheries

Procedia PDF Downloads 99
24674 Religious Government Interaction in Urban Settings

Authors: Rebecca Sager, Gary Adler, Damon Mayrl, Jonathan Cooley

Abstract:

The United States’ unique constitutional structure and religious roots have fostered the flourishing of local communities through the close interaction of church and state. Today, these local relationships play out in these circumstances, including increased religious diversity and changing jurisprudence to more accommodating church-state interaction. This project seeks to understand the meanings of church-state interaction among diverse religious leaders in a variety of local settings. Using data from interviews with over 200 religious leaders in six states in the US, we examine how religious groups interact with various non-elected and elected government officials. We have interviewed local religious actors in eight communities characterized by the difference in location and religious homogeneity. These include a small city within a major metropolitan area, several religiously diverse cities in various areas across the country, a small college town with religious diversity set in a religiously-homogenous rural area, and a small farming community with minimal religious diversity. We identified three types of religious actors in each of our geographic areas: congregations, religious non-profit organizations, and clergy coalitions. Given the well-known difficulties in identifying religious organizations, we used the following to construct a local population list from which to sample: the Association of Religion Data Archives ProPublica’s Nonprofit Explorer, Guidestar, and the Internal Revenue Service Exempt Business Master File. Our sample for selecting interviewees were stratified by three criteria: religious tradition (Christian v. non-Christian), sectarian orientation (Mainline/Catholic v. Evangelical Protestant), and organizational form (congregation vs. other). Each interview included the elicitation of local church-state interactions experienced by the organization and organizational members, the enumeration of information sources for navigating church-state interactions, and the personal and community background of interviewees. We coded interviews to identify the cognitive schema of “church” and “state,” the models of legitimate relations between the two, and discretion rules for managing interaction and avoiding conflict. We also enumerate arenas in which and issues for which local state officials are engaged. In this paper, we focus on Korean religious groups and examine how their interactions differ from other congregations, including other immigrant congregations. These churches were particularly common in one large metropolitan area. We find that Korean churches are much more likely to be concerned about any governmental interactions and have fewer connections than non-Korean churches leading to more disconnection from their communities. We argue that due to their status as new immigrant churches without a lot of community ties for many members and being in a large city, Korean churches were particularly concerned about too much interaction with any type of government officials, even ones that could be potentially helpful. While other immigrant churches were somewhat willing to work with government groups, such as Latino-based Catholic groups, Korean churches were the least likely to want to create these connections. Understanding these churches and how immigrant church identity varies and creates different types of interaction is crucial to understanding how church/state interaction can be more meaningful over space and place.

Keywords: religion, congregations, government, politics

Procedia PDF Downloads 90
24673 The Impact of the Variation of Sky View Factor on Landscape Degree of Enclosure of Urban Blue and Green Belt

Authors: Yi-Chun Huang, Kuan-Yun Chen, Chuang-Hung Lin

Abstract:

Urban Green Belt and Blue is a part of the city landscape, it is an important constituent element of the urban environment and appearance. The Hsinchu East Gate Moat is situated in the center of the city, which not only has a wealth of historical and cultural resources, but also combines the Green Belt and the Blue Belt qualities at the same time. The Moat runs more than a thousand meters through the vital Green Belt and the Blue Belt in downtown, and each section is presented in different qualities of moat from south to north. The water area and the green belt of surroundings are presented linear and banded spread. The water body and the rich diverse river banks form an urban green belt of rich layers. The watercourse with green belt design lets users have connections with blue belts in different ways; therefore, the integration of Hsinchu East Gate and moat have become one of the unique urban landscapes in Taiwan. The study is based on the fact-finding case of Hsinchu East Gate Moat where situated in northern Taiwan, to research the impact between the SVF variation of the city and spatial sequence of Urban Green Belt and Blue landscape and visual analysis by constituent cross-section, and then comparing the influence of different leaf area index – the variable ecological factors to the degree of enclosure. We proceed to survey the landscape design of open space, to measure existing structural features of the plant canopy which contain the height of plants and branches, the crown diameter, breast-height diameter through access to diagram of Geographic Information Systems (GIS) and on-the-spot actual measurement. The north and south districts of blue green belt areas are divided 20 meters into a unit from East Gate Roundabout as the epicenter, and to set up a survey points to measure the SVF above the survey points; then we proceed to quantitative analysis from the data to calculate open landscape degree of enclosure. The results can be reference for the composition of future river landscape and the practical operation for dynamic space planning of blue and green belt landscape.

Keywords: sky view factor, degree of enclosure, spatial sequence, leaf area indices

Procedia PDF Downloads 558
24672 Using GIS and AHP Model to Explore the Parking Problem in Khomeinishahr

Authors: Davood Vatankhah, Reza Mokhtari Malekabadi, Mohsen Saghaei

Abstract:

Function of urban transportation systems depends on the existence of the required infrastructures, appropriate placement of different components, and the cooperation of these components with each other. Establishing various neighboring parking spaces in city neighborhood in order to prevent long-term and inappropriate parking of cars in the allies is one of the most effective operations in reducing the crowding and density of the neighborhoods. Every place with a certain application attracts a number of daily travels which happen throughout the city. A large percentage of the people visiting these places go to these travels by their own cars; therefore, they need a space to park their cars. The amount of this need depends on the usage function and travel demand of the place. The study aims at investigating the spatial distribution of the public parking spaces, determining the effective factors in locating, and their combination in GIS environment in Khomeinishahr of Isfahan city. Ultimately, the study intends to create an appropriate pattern for locating parking spaces, determining the request for parking spaces of the traffic areas, choosing the proper places for providing the required public parking spaces, and also proposing new spots in order to promote quality and quantity aspects of the city in terms of enjoying public parking spaces. Regarding the method, the study is based on applied purpose and regarding nature, it is analytic-descriptive. The population of the study includes people of the center of Khomeinishahr which is located on Northwest of Isfahan having about 5000 hectares of geographic area and the population of 241318 people are in the center of Komeinishahr. In order to determine the sample size, Cochran formula was used and according to the population of 26483 people of the studied area, 231 questionnaires were used. Data analysis was carried out by usage of SPSS software and after estimating the required space for parking spaces, initially, the effective criteria in locating the public parking spaces are weighted by the usage of Analytic Hierarchical Process in the Arc GIS software. Then, appropriate places for establishing parking spaces were determined by fuzzy method of Order Weighted Average (OWA). The results indicated that locating of parking spaces in Khomeinishahr have not been carried out appropriately and per capita of the parking spaces is not desirable in relation to the population and request; therefore, in addition to the present parking lots, 1434 parking lots are needed in the area of the study for each day; therefore, there is not a logical proportion between parking request and the number of parking lots in Khomeinishahr.

Keywords: GIS, locating, parking, khomeinishahr

Procedia PDF Downloads 312