Search results for: game prediction
1688 Comparing Performance of Neural Network and Decision Tree in Prediction of Myocardial Infarction
Authors: Reza Safdari, Goli Arji, Robab Abdolkhani Maryam zahmatkeshan
Abstract:
Background and purpose: Cardiovascular diseases are among the most common diseases in all societies. The most important step in minimizing myocardial infarction and its complications is to minimize its risk factors. The amount of medical data is increasingly growing. Medical data mining has a great potential for transforming these data into information. Using data mining techniques to generate predictive models for identifying those at risk for reducing the effects of the disease is very helpful. The present study aimed to collect data related to risk factors of heart infarction from patients’ medical record and developed predicting models using data mining algorithm. Methods: The present work was an analytical study conducted on a database containing 350 records. Data were related to patients admitted to Shahid Rajaei specialized cardiovascular hospital, Iran, in 2011. Data were collected using a four-sectioned data collection form. Data analysis was performed using SPSS and Clementine version 12. Seven predictive algorithms and one algorithm-based model for predicting association rules were applied to the data. Accuracy, precision, sensitivity, specificity, as well as positive and negative predictive values were determined and the final model was obtained. Results: five parameters, including hypertension, DLP, tobacco smoking, diabetes, and A+ blood group, were the most critical risk factors of myocardial infarction. Among the models, the neural network model was found to have the highest sensitivity, indicating its ability to successfully diagnose the disease. Conclusion: Risk prediction models have great potentials in facilitating the management of a patient with a specific disease. Therefore, health interventions or change in their life style can be conducted based on these models for improving the health conditions of the individuals at risk.Keywords: decision trees, neural network, myocardial infarction, Data Mining
Procedia PDF Downloads 4291687 Assessment and Evaluation of Football Performance
Authors: Bulus Kpame, Mukhtar Mohammed Alhaji, Garba Jibril
Abstract:
In any team sport, the most important variables that should be used to measure performance are physical condition, and technical and tactical performance. In a complex game like football, it is extremely difficult to measure the relative importance of each of these variables. However, physical fitness itself has been shown to consist of several components, like endurance, strength, flexibility, agility, coordination and speed. Each of these components has been shown to consist of several subcomponents. This paper attempts to describe a test battery to assess and evaluate physical performance in football players. This battery comprises a functional, structured training session of about 2.5hrs. it consists of quality rating of the warm-up procedure, tests of flexibility, football skills, power, speed, and endurance. Acceptable values for performance in each of the tests are also presented under each test. It is hoped that this battery of tests will be helpful to the coach in determining the effect of a specific training program. It would also be helpful to train physician and trainer, to monitor progress during rehabilitation after sustaining any injury.Keywords: assessment, evaluation, performance, programs
Procedia PDF Downloads 4081686 Personal Identity and Group Identity under Threat following Exclusion: A Study in Singapore and in the Netherlands
Authors: Z. N. Huwaë, E.M. W. Tong, Y. H. M. See
Abstract:
In the present study, the researchers examined whether people from collectivistic cultures perceive a more group identity threat following social exclusion, whereas a more personal identity threat would be the case for those from individualistic cultures. In doing so, they investigated whether threatened identities depend on whether people are excluded by ingroup members (same ethnic background) or outgroup members (another ethnic background), as exclusion studies have shown mixed results when it comes to being excluded by ingroup versus outgroup members. For this purpose, students in Singapore and in the Netherlands participated in an online ball-tossing game (Cyberball) where they were excluded or included by other players with either the same or other ethnicity. Tentative results showed that both Singaporean and Dutch participants reported a more threat to their group identity than to their personal identity following exclusion and this did not depend on who excluded them. These tentative findings suggest that threatened identities following exclusion may not depend on cultural factors or on the source of exclusion.Keywords: cultures, exclusion, experiment, group membership, identities
Procedia PDF Downloads 1171685 Machine Learning Approach for Predicting Students’ Academic Performance and Study Strategies Based on Their Motivation
Authors: Fidelia A. Orji, Julita Vassileva
Abstract:
This research aims to develop machine learning models for students' academic performance and study strategy prediction, which could be generalized to all courses in higher education. Key learning attributes (intrinsic, extrinsic, autonomy, relatedness, competence, and self-esteem) used in building the models are chosen based on prior studies, which revealed that the attributes are essential in students’ learning process. Previous studies revealed the individual effects of each of these attributes on students’ learning progress. However, few studies have investigated the combined effect of the attributes in predicting student study strategy and academic performance to reduce the dropout rate. To bridge this gap, we used Scikit-learn in python to build five machine learning models (Decision Tree, K-Nearest Neighbour, Random Forest, Linear/Logistic Regression, and Support Vector Machine) for both regression and classification tasks to perform our analysis. The models were trained, evaluated, and tested for accuracy using 924 university dentistry students' data collected by Chilean authors through quantitative research design. A comparative analysis of the models revealed that the tree-based models such as the random forest (with prediction accuracy of 94.9%) and decision tree show the best results compared to the linear, support vector, and k-nearest neighbours. The models built in this research can be used in predicting student performance and study strategy so that appropriate interventions could be implemented to improve student learning progress. Thus, incorporating strategies that could improve diverse student learning attributes in the design of online educational systems may increase the likelihood of students continuing with their learning tasks as required. Moreover, the results show that the attributes could be modelled together and used to adapt/personalize the learning process.Keywords: classification models, learning strategy, predictive modeling, regression models, student academic performance, student motivation, supervised machine learning
Procedia PDF Downloads 1281684 Artificial Neural Networks and Hidden Markov Model in Landslides Prediction
Authors: C. S. Subhashini, H. L. Premaratne
Abstract:
Landslides are the most recurrent and prominent disaster in Sri Lanka. Sri Lanka has been subjected to a number of extreme landslide disasters that resulted in a significant loss of life, material damage, and distress. It is required to explore a solution towards preparedness and mitigation to reduce recurrent losses associated with landslides. Artificial Neural Networks (ANNs) and Hidden Markov Model (HMMs) are now widely used in many computer applications spanning multiple domains. This research examines the effectiveness of using Artificial Neural Networks and Hidden Markov Model in landslides predictions and the possibility of applying the modern technology to predict landslides in a prominent geographical area in Sri Lanka. A thorough survey was conducted with the participation of resource persons from several national universities in Sri Lanka to identify and rank the influencing factors for landslides. A landslide database was created using existing topographic; soil, drainage, land cover maps and historical data. The landslide related factors which include external factors (Rainfall and Number of Previous Occurrences) and internal factors (Soil Material, Geology, Land Use, Curvature, Soil Texture, Slope, Aspect, Soil Drainage, and Soil Effective Thickness) are extracted from the landslide database. These factors are used to recognize the possibility to occur landslides by using an ANN and HMM. The model acquires the relationship between the factors of landslide and its hazard index during the training session. These models with landslide related factors as the inputs will be trained to predict three classes namely, ‘landslide occurs’, ‘landslide does not occur’ and ‘landslide likely to occur’. Once trained, the models will be able to predict the most likely class for the prevailing data. Finally compared two models with regards to prediction accuracy, False Acceptance Rates and False Rejection rates and This research indicates that the Artificial Neural Network could be used as a strong decision support system to predict landslides efficiently and effectively than Hidden Markov Model.Keywords: landslides, influencing factors, neural network model, hidden markov model
Procedia PDF Downloads 3841683 Portable Glove Controlled Video Game for Hand Rehabilitation
Authors: Vinesh Janarthanan, Mohammad H. Rahman
Abstract:
There are numerous neurological conditions that may result in a loss of motor function. Such conditions may include cerebral palsy, Parkinson’s disease, stroke or multiple sclerosis. Due to impaired motor function, specifically in the hand and arm, living independently becomes tremendously more difficult. Rehabilitation programs are the main method to treat these kinds of disabled individuals. However, these programs require longtime commitment from the clinicians/therapists, demand person to person caring, and typically the treatment duration is usually very long. Aside from the treatment received from the therapist, the continuation of neuroplasticity at home is essential to maximizing development and restoring the biological function. To contribute in this area, we have researched and developed a portable and comfortable hand glove for fine motor skills rehabilitation. The glove provides interactive home-based therapy to engage the patient with simple games. The key to this treatment is the repetition of moving the hand and being capable of positioning the hand in various ways.Keywords: home based, wearable sensors, glove, rehabilitation, motor function, video games
Procedia PDF Downloads 1471682 Predicting Food Waste and Losses Reduction for Fresh Products in Modified Atmosphere Packaging
Authors: Matar Celine, Gaucel Sebastien, Gontard Nathalie, Guilbert Stephane, Guillard Valerie
Abstract:
To increase the very short shelf life of fresh fruits and vegetable, Modified Atmosphere Packaging (MAP) allows an optimal atmosphere composition to be maintained around the product and thus prevent its decay. This technology relies on the modification of internal packaging atmosphere due to equilibrium between production/consumption of gases by the respiring product and gas permeation through the packaging material. While, to the best of our knowledge, benefit of MAP for fresh fruits and vegetable has been widely demonstrated in the literature, its effect on shelf life increase has never been quantified and formalized in a clear and simple manner leading difficult to anticipate its economic and environmental benefit, notably through the decrease of food losses. Mathematical modelling of mass transfers in the food/packaging system is the basis for a better design and dimensioning of the food packaging system. But up to now, existing models did not permit to estimate food quality nor shelf life gain reached by using MAP. However, shelf life prediction is an indispensable prerequisite for quantifying the effect of MAP on food losses reduction. The objective of this work is to propose an innovative approach to predict shelf life of MAP food product and then to link it to a reduction of food losses and wastes. In this purpose, a ‘Virtual MAP modeling tool’ was developed by coupling a new predictive deterioration model (based on visual surface prediction of deterioration encompassing colour, texture and spoilage development) with models of the literature for respiration and permeation. A major input of this modelling tool is the maximal percentage of deterioration (MAD) which was assessed from dedicated consumers’ studies. Strawberries of the variety Charlotte were selected as the model food for its high perishability, high respiration rate; 50-100 ml CO₂/h/kg produced at 20°C, allowing it to be a good representative of challenging post-harvest storage. A value of 13% was determined as a limit of acceptability for the consumers, permitting to define products’ shelf life. The ‘Virtual MAP modeling tool’ was validated in isothermal conditions (5, 10 and 20°C) and in dynamic temperature conditions mimicking commercial post-harvest storage of strawberries. RMSE values were systematically lower than 3% for respectively, O₂, CO₂ and deterioration profiles as a function of time confirming the goodness of model fitting. For the investigated temperature profile, a shelf life gain of 0.33 days was obtained in MAP compared to the conventional storage situation (no MAP condition). Shelf life gain of more than 1 day could be obtained for optimized post-harvest conditions as numerically investigated. Such shelf life gain permitted to anticipate a significant reduction of food losses at the distribution and consumer steps. This food losses' reduction as a function of shelf life gain has been quantified using a dedicated mathematical equation that has been developed for this purpose.Keywords: food losses and wastes, modified atmosphere packaging, mathematical modeling, shelf life prediction
Procedia PDF Downloads 1831681 Abridging Pharmaceutical Analysis and Drug Discovery via LC-MS-TOF, NMR, in-silico Toxicity-Bioactivity Profiling for Therapeutic Purposing Zileuton Impurities: Need of Hour
Authors: Saurabh B. Ganorkar, Atul A. Shirkhedkar
Abstract:
The need for investigations protecting against toxic impurities though seems to be a primary requirement; the impurities which may prove non - toxic can be explored for their therapeutic potential if any to assist advanced drug discovery. The essential role of pharmaceutical analysis can thus be extended effectively to achieve it. The present study successfully achieved these objectives with characterization of major degradation products as impurities for Zileuton which has been used for to treat asthma since years. The forced degradation studies were performed to identify the potential degradation products using Ultra-fine Liquid-chromatography. Liquid-chromatography-Mass spectrometry (Time of Flight) and Proton Nuclear Magnetic Resonance Studies were utilized effectively to characterize the drug along with five major oxidative and hydrolytic degradation products (DP’s). The mass fragments were identified for Zileuton and path for the degradation was investigated. The characterized DP’s were subjected to In-Silico studies as XP Molecular Docking to compare the gain or loss in binding affinity with 5-Lipooxygenase enzyme. One of the impurity of was found to have the binding affinity more than the drug itself indicating for its potential to be more bioactive as better Antiasthmatic. The close structural resemblance has the ability to potentiate or reduce bioactivity and or toxicity. The chances of being active biologically at other sites cannot be denied and the same is achieved to some extent by predictions for probability of being active with Prediction of Activity Spectrum for Substances (PASS) The impurities found to be bio-active as Antineoplastic, Antiallergic, and inhibitors of Complement Factor D. The toxicological abilities as Ames-Mutagenicity, Carcinogenicity, Developmental Toxicity and Skin Irritancy were evaluated using Toxicity Prediction by Komputer Assisted Technology (TOPKAT). Two of the impurities were found to be non-toxic as compared to original drug Zileuton. As the drugs are purposed and repurposed effectively the impurities can also be; as they can have more binding affinity; less toxicity and better ability to be bio-active at other biological targets.Keywords: UFLC, LC-MS-TOF, NMR, Zileuton, impurities, toxicity, bio-activity
Procedia PDF Downloads 1951680 Comparison of Different Reanalysis Products for Predicting Extreme Precipitation in the Southern Coast of the Caspian Sea
Authors: Parvin Ghafarian, Mohammadreza Mohammadpur Panchah, Mehri Fallahi
Abstract:
Synoptic patterns from surface up to tropopause are very important for forecasting the weather and atmospheric conditions. There are many tools to prepare and analyze these maps. Reanalysis data and the outputs of numerical weather prediction models, satellite images, meteorological radar, and weather station data are used in world forecasting centers to predict the weather. The forecasting extreme precipitating on the southern coast of the Caspian Sea (CS) is the main issue due to complex topography. Also, there are different types of climate in these areas. In this research, we used two reanalysis data such as ECMWF Reanalysis 5th Generation Description (ERA5) and National Centers for Environmental Prediction /National Center for Atmospheric Research (NCEP/NCAR) for verification of the numerical model. ERA5 is the latest version of ECMWF. The temporal resolution of ERA5 is hourly, and the NCEP/NCAR is every six hours. Some atmospheric parameters such as mean sea level pressure, geopotential height, relative humidity, wind speed and direction, sea surface temperature, etc. were selected and analyzed. Some different type of precipitation (rain and snow) was selected. The results showed that the NCEP/NCAR has more ability to demonstrate the intensity of the atmospheric system. The ERA5 is suitable for extract the value of parameters for specific point. Also, ERA5 is appropriate to analyze the snowfall events over CS (snow cover and snow depth). Sea surface temperature has the main role to generate instability over CS, especially when the cold air pass from the CS. Sea surface temperature of NCEP/NCAR product has low resolution near coast. However, both data were able to detect meteorological synoptic patterns that led to heavy rainfall over CS. However, due to the time lag, they are not suitable for forecast centers. The application of these two data is for research and verification of meteorological models. Finally, ERA5 has a better resolution, respect to NCEP/NCAR reanalysis data, but NCEP/NCAR data is available from 1948 and appropriate for long term research.Keywords: synoptic patterns, heavy precipitation, reanalysis data, snow
Procedia PDF Downloads 1231679 Physics Informed Deep Residual Networks Based Type-A Aortic Dissection Prediction
Abstract:
Purpose: Acute Type A aortic dissection is a well-known cause of extremely high mortality rate. A highly accurate and cost-effective non-invasive predictor is critically needed so that the patient can be treated at earlier stage. Although various CFD approaches have been tried to establish some prediction frameworks, they are sensitive to uncertainty in both image segmentation and boundary conditions. Tedious pre-processing and demanding calibration procedures requirement further compound the issue, thus hampering their clinical applicability. Using the latest physics informed deep learning methods to establish an accurate and cost-effective predictor framework are amongst the main goals for a better Type A aortic dissection treatment. Methods: Via training a novel physics-informed deep residual network, with non-invasive 4D MRI displacement vectors as inputs, the trained model can cost-effectively calculate all these biomarkers: aortic blood pressure, WSS, and OSI, which are used to predict potential type A aortic dissection to avoid the high mortality events down the road. Results: The proposed deep learning method has been successfully trained and tested with both synthetic 3D aneurysm dataset and a clinical dataset in the aortic dissection context using Google colab environment. In both cases, the model has generated aortic blood pressure, WSS, and OSI results matching the expected patient’s health status. Conclusion: The proposed novel physics-informed deep residual network shows great potential to create a cost-effective, non-invasive predictor framework. Additional physics-based de-noising algorithm will be added to make the model more robust to clinical data noises. Further studies will be conducted in collaboration with big institutions such as Cleveland Clinic with more clinical samples to further improve the model’s clinical applicability.Keywords: type-a aortic dissection, deep residual networks, blood flow modeling, data-driven modeling, non-invasive diagnostics, deep learning, artificial intelligence.
Procedia PDF Downloads 891678 Via ad Reducendam Intensitatem Energiae Industrialis in Provincia Sino ad Conservationem Energiae
Authors: John Doe
Abstract:
This paper presents the research project “Escape Through Culture”, which is co-funded by the European Union and national resources through the Operational Programme “Competitiveness, Entrepreneurship and Innovation” 2014-2020 and the Single RTDI State Aid Action "RESEARCH - CREATE - INNOVATE". The project implementation is assumed by three partners, (1) the Computer Technology Institute and Press "Diophantus" (CTI), experienced with the design and implementation of serious games, natural language processing and ICT in education, (2) the Laboratory of Environmental Communication and Audiovisual Documentation (LECAD), part of the University of Thessaly, Department of Architecture, which is experienced with the study of creative transformation and reframing of the urban and environmental multimodal experiences through the use of AR and VR technologies, and (3) “Apoplou”, an IT Company with experience in the implementation of interactive digital applications. The research project proposes the design of innovative infrastructure of digital educational escape games for mobile devices and computers, with the use of Virtual Reality and Augmented Reality for the promotion of Greek cultural heritage in Greece and abroad. In particular, the project advocates the combination of Greek cultural heritage and literature, digital technologies advancements and the implementation of innovative gamifying practices. The cultural experience of the players will take place in 3 layers: (1) In space: the digital games produced are going to utilize the dual character of the space as a cultural landscape (the real space - landscape but also the space - landscape as presented with the technologies of augmented reality and virtual reality). (2) In literary texts: the selected texts of Greek writers will support the sense of place and the multi-sensory involvement of the user, through the context of space-time, language and cultural characteristics. (3) In the philosophy of the "escape game" tool: whether played in a computer environment, indoors or outdoors, the spatial experience is one of the key components of escape games. The innovation of the project lies both in the junction of Augmented/Virtual Reality with the promotion of cultural points of interest, as well as in the interactive, gamified practices of literary texts. The digital escape game infrastructure will be highly interactive, integrating the projection of Greek landscape cultural elements and digital literary text analysis, supporting the creation of escape games, establishing and highlighting new playful ways of experiencing iconic cultural places, such as Elefsina, Skiathos etc. The literary texts’ content will relate to specific elements of the Greek cultural heritage depicted by prominent Greek writers and poets. The majority of the texts will originate from Greek educational content available in digital libraries and repositories developed and maintained by CTI. The escape games produced will be available for use during educational field trips, thematic tourism holidays, etc. In this paper, the methodology adopted for infrastructure development will be presented. The research is based on theories of place, gamification, gaming development, making use of corpus linguistics concepts and digital humanities practices for the compilation and the analysis of literary texts.Keywords: escape games, cultural landscapes, gamification, digital humanities, literature
Procedia PDF Downloads 2461677 Synchronization of a Perturbed Satellite Attitude Motion
Authors: Sadaoui Djaouida
Abstract:
In this paper, the predictive control method is proposed to control the synchronization of two perturbed satellites attitude motion. Based on delayed feedback control of continuous-time systems combines with the prediction-based method of discrete-time systems, this approach only needs a single controller to realize synchronization, which has considerable significance in reducing the cost and complexity for controller implementation.Keywords: predictive control, synchronization, satellite attitude, control engineering
Procedia PDF Downloads 5551676 How Supply Chains Can Benefit from Open Innovation: Inspiration from Toyota Production System
Authors: Sam Solaimani, Jack A. A. van der Veen, Mehdi Latifi
Abstract:
Considering the increasingly VUCA (Volatile, Uncertain, Complex, Ambiguous) business market, innovation is the name of the game in contemporary business. Innovation is not solely created within the organization itself; its 'network environment' appears to be equally important for innovation. There are, at least, two streams of literature that emphasize the idea of using the extended organization to foster innovation capability, namely, Supply Chain Collaboration (SCC) (also rooted in the Lean philosophy) and Open Innovation (OI). Remarkably, these two concepts are still considered as being totally different in the sense that these appear in different streams of literature and applying different concepts in pursuing the same purposes. This paper explores the commonalities between the two concepts in order to conceptually further our understanding of how OI can effectively be applied in Supply Chain networks. Drawing on available literature in OI, SCC and Lean, the paper concludes with five principles that help firms to contextualize the implementation of OI to the peculiar setting of SC. Theoretically, the present paper aims at contributing to the relatively under-researched theme of Supply Chain Innovation. More in practical terms, the paper provides OI and SCC communities with a workable know-how to seize on and sustain OI initiatives.Keywords: lean philosophy, open innovation, supply chain collaboration, supply chain management
Procedia PDF Downloads 3231675 Multiscale Analysis of Shale Heterogeneity in Silurian Longmaxi Formation from South China
Authors: Xianglu Tang, Zhenxue Jiang, Zhuo Li
Abstract:
Characterization of shale multi scale heterogeneity is an important part to evaluate size and space distribution of shale gas reservoirs in sedimentary basins. The origin of shale heterogeneity has always been a hot research topic for it determines shale micro characteristics description and macro quality reservoir prediction. Shale multi scale heterogeneity was discussed based on thin section observation, FIB-SEM, QEMSCAN, TOC, XRD, mercury intrusion porosimetry (MIP), and nitrogen adsorption analysis from 30 core samples in Silurian Longmaxi formation. Results show that shale heterogeneity can be characterized by pore structure and mineral composition. The heterogeneity of shale pore is showed by different size pores at nm-μm scale. Macropores (pore diameter > 50 nm) have a large percentage of pore volume than mesopores (pore diameter between 2~ 50 nm) and micropores (pore diameter < 2nm). However, they have a low specific surface area than mesopores and micropores. Fractal dimensions of the pores from nitrogen adsorption data are higher than 2.7, what are higher than 2.8 from MIP data, showing extremely complex pore structure. This complexity in pore structure is mainly due to the organic matter and clay minerals with complex pore network structures, and diagenesis makes it more complicated. The heterogeneity of shale minerals is showed by mineral grains, lamina, and different lithology at nm-km scale under the continuous changing horizon. Through analyzing the change of mineral composition at each scale, random arrangement of mineral equal proportion, seasonal climate changes, large changes of sedimentary environment, and provenance supply are considered to be the main reasons that cause shale minerals heterogeneity from microcosmic to macroscopic. Due to scale effect, the change of shale multi scale heterogeneity is a discontinuous process, and there is a transformation boundary between homogeneous and in homogeneous. Therefore, a shale multi scale heterogeneity changing model is established by defining four types of homogeneous unit at different scales, which can be used to guide the prediction of shale gas distribution from micro scale to macro scale.Keywords: heterogeneity, homogeneous unit, multiscale, shale
Procedia PDF Downloads 4521674 Acculturation Profiles of Syrian Refugees in Turkey
Authors: Abdurrahim Guler
Abstract:
Immigrants who came to a new country experience some socio-cultural difficulties which are different from theirs. The study aims to investigate how Syrian Refugees manage their life in Turkey and the relationship between acculturation profiles and demographic background of Syrian refugees who came to Turkey after civil war has intensified in Syria. Data are collected from 280 adult Syrian refugees who were born in Syria. The study adopts bi-dimensional acculturation approach stating that both heritage and dominant host cultures can live together. Results suggest that demographic backgrounds, religion, and religiosity are significantly linked to both heritage and dominant host culture. Syrian refugees who are not affiliated with Islam are found to significantly preserve their ethnic/heritage culture. Generally, Syrian refugees are more willing to integrate Turkish society but not to assimilate. The results also confirmed acculturation process as a bi-dimensional, not a zero-sum game since we found a significant positive correlation between the heritage and the dominant host cultures which assume the independence and orthogonal of involvements in the dominant host and heritage cultures.Keywords: acculturation, demographic backgrounds, heritage culture, religion, Syrian refugees
Procedia PDF Downloads 2201673 Research on Contract's Explicit Incentive and Reputation's Implicit Incentive Mechanism towards Construction Contractors
Authors: Li Ma, Meishuang Ma, Mengying Huang
Abstract:
The quality of construction projects reflects the credit and responsibilities of construction contractors for the owners and the whole society. Because the construction contractors master more relevant information about the entrusted engineering project under construction while the owners are in unfavorable position of gaining information, asymmetric information may lead the contractors act against the owners in order to pursue their own interests. Building a powerful motivation mechanism is the key to guarantee investor economic interests and the life and property of users in construction projects. Based on principal-agent theory and game theory, the authors develop relevant mathematical models to analyze and compare the contractor’s utility functions under different combinations of contracts’ explicit incentive mechanism and reputation’s implicit incentive mechanism aiming at finding out the conditions for incentive validity. The research concludes that the most rational motivation way is to combine the explicit and implicit incentive effects of both contracts and reputation mechanism, and puts forth some measures for problems on account of China’s current situation.Keywords: construction contractors, contract, reputation, incentive mechanism
Procedia PDF Downloads 5091672 The Impact of Technology on Computer Systems and Technology
Authors: Bishoy Abouelsoud Saad Amin
Abstract:
This paper examines the use of computer and its related health hazard among computer users in South-Western zone of Nigeria. Two hundred and eighteen (218) computer users constituted the population used to evaluate association between posture, extensive computer use and related health hazard. The instruments for the study are a questionnaire on demographics, lifestyle, body features and work ability index while mean rating, standard deviation and t test were used for data analysis. Identified health related hazard include damages to the eyesight, bad posture, arthritis, musculoskeletal disorders, headache, stress and so on. The results showed that factors such as work demand, posture, closeness to computer screen and excessive working hours on computers constitute health hazards in both old and young computer users of various gender. It is therefore recommended that total number of hours spent with computer should be monitored and controlled.Keywords: computer game, metaphor, middle school students, virtual environments computer auditing, risk, measures to prevent, information management computer-related health hazard, musculoskeletal disorders, computer usage, work ability index
Procedia PDF Downloads 681671 Surveying Adolescent Males in India Regarding Mobile Phone Use and Sexual and Reproductive Health Education
Authors: Rohan M. Dalal, Elena Pirondini, Shanu Somvanshi
Abstract:
Introduction: The current state of reproductive health outcomes in lower-income countries is poor, with inadequate knowledge and culture among adolescent boys. Moreover, boys have traditionally not been a priority target. To explore the opportunity to educate adolescent boys in the developing world regarding accurate reproductive health information, the purpose of this study is to investigate how adolescent boys in the developing world engage and use technology, utilizing cell phones. This electronic survey and video interview study were conducted to determine the feasibility of a mobile phone platform for an educational video game specifically designed for boys that will improve health knowledge, influence behavior, and change health outcomes, namely teen pregnancies. Methods: With the assistance of Plan India, a subsidiary of Plan International, informed consent was obtained from parents of adolescent males who participated in an electronic survey and video interviews via Microsoft Teams. An electronic survey was created with 27 questions, including topics of mobile phone usage, gaming preferences, and sexual and reproductive health, with a sample size of 181 adolescents, ages 11-25, near New Delhi, India. The interview questions were written to explore more in-depth topics after the completion of the electronic survey. Eight boys, aged 15, were interviewed for 40 minutes about gaming and usage of mobile phones as well as sexual and reproductive health. Data/Results. 154 boys and 27 girls completed the survey. They rated their English fluency as relatively high. 97% of boys (149/154) had access to mobile phones. The majority of phones were smartphones (97%, 143/148). 48% (71/149) of boys borrowed cell phones. The most popular phone platform was Samsung (22%, 33/148). 36% (54/148) of adolescent males looked at their phones 1-10 times per day for 1-2 hours. 55% (81/149) of the boys had parental restrictions. 51% (76/148) had 32 GB of storage on their phone. 78% (117/150) of the boys had wifi access. 80% (120/150) of respondents reported ease in downloading apps. 97% (145/150) of male adolescents had social media, including WhatsApp, Facebook, and YouTube. 58% (87/150) played video games. Favorite video games included Free Fire, PubG, and other shooting games. In the video interviews, the boys revealed what made games fun and engaging, including customized avatars, progression to higher levels, realistic interactive platforms, shooting/guns, the ability to perform multiple actions, and a variety of worlds/settings/adventures. Ideas to improve engagement in sexual and reproductive health classes included open discussions in the community, enhanced access to information, and posting on social media. Conclusion: This study involving an electronic survey and video interviews provides an initial foray into understanding mobile phone usage among adolescent males and understanding sexual and reproductive health education in New Delhi, India. The data gathered from this study support using mobile phone platforms, and this will be used to create a serious video game to educate adolescent males about sexual and reproductive health in an attempt to lower the rate of unwanted pregnancies in the world.Keywords: adolescent males, India, mobile phone, sexual and reproductive health
Procedia PDF Downloads 1291670 Fatigue Analysis and Life Estimation of the Helicopter Horizontal Tail under Cyclic Loading by Using Finite Element Method
Authors: Defne Uz
Abstract:
Horizontal Tail of helicopter is exposed to repeated oscillatory loading generated by aerodynamic and inertial loads, and bending moments depending on operating conditions and maneuvers of the helicopter. In order to ensure that maximum stress levels do not exceed certain fatigue limit of the material and to prevent damage, a numerical analysis approach can be utilized through the Finite Element Method. Therefore, in this paper, fatigue analysis of the Horizontal Tail model is studied numerically to predict high-cycle and low-cycle fatigue life related to defined loading. The analysis estimates the stress field at stress concentration regions such as around fastener holes where the maximum principal stresses are considered for each load case. Critical element identification of the main load carrying structural components of the model with rivet holes is performed as a post-process since critical regions with high-stress values are used as an input for fatigue life calculation. Once the maximum stress is obtained at the critical element and the related mean and alternating components, it is compared with the endurance limit by applying Soderberg approach. The constant life straight line provides the limit for several combinations of mean and alternating stresses. The life calculation based on S-N (Stress-Number of Cycles) curve is also applied with fully reversed loading to determine the number of cycles corresponds to the oscillatory stress with zero means. The results determine the appropriateness of the design of the model for its fatigue strength and the number of cycles that the model can withstand for the calculated stress. The effect of correctly determining the critical rivet holes is investigated by analyzing stresses at different structural parts in the model. In the case of low life prediction, alternative design solutions are developed, and flight hours can be estimated for the fatigue safe operation of the model.Keywords: fatigue analysis, finite element method, helicopter horizontal tail, life prediction, stress concentration
Procedia PDF Downloads 1451669 Performance and Limitations of Likelihood Based Information Criteria and Leave-One-Out Cross-Validation Approximation Methods
Authors: M. A. C. S. Sampath Fernando, James M. Curran, Renate Meyer
Abstract:
Model assessment, in the Bayesian context, involves evaluation of the goodness-of-fit and the comparison of several alternative candidate models for predictive accuracy and improvements. In posterior predictive checks, the data simulated under the fitted model is compared with the actual data. Predictive model accuracy is estimated using information criteria such as the Akaike information criterion (AIC), the Bayesian information criterion (BIC), the Deviance information criterion (DIC), and the Watanabe-Akaike information criterion (WAIC). The goal of an information criterion is to obtain an unbiased measure of out-of-sample prediction error. Since posterior checks use the data twice; once for model estimation and once for testing, a bias correction which penalises the model complexity is incorporated in these criteria. Cross-validation (CV) is another method used for examining out-of-sample prediction accuracy. Leave-one-out cross-validation (LOO-CV) is the most computationally expensive variant among the other CV methods, as it fits as many models as the number of observations. Importance sampling (IS), truncated importance sampling (TIS) and Pareto-smoothed importance sampling (PSIS) are generally used as approximations to the exact LOO-CV and utilise the existing MCMC results avoiding expensive computational issues. The reciprocals of the predictive densities calculated over posterior draws for each observation are treated as the raw importance weights. These are in turn used to calculate the approximate LOO-CV of the observation as a weighted average of posterior densities. In IS-LOO, the raw weights are directly used. In contrast, the larger weights are replaced by their modified truncated weights in calculating TIS-LOO and PSIS-LOO. Although, information criteria and LOO-CV are unable to reflect the goodness-of-fit in absolute sense, the differences can be used to measure the relative performance of the models of interest. However, the use of these measures is only valid under specific circumstances. This study has developed 11 models using normal, log-normal, gamma, and student’s t distributions to improve the PCR stutter prediction with forensic data. These models are comprised of four with profile-wide variances, four with locus specific variances, and three which are two-component mixture models. The mean stutter ratio in each model is modeled as a locus specific simple linear regression against a feature of the alleles under study known as the longest uninterrupted sequence (LUS). The use of AIC, BIC, DIC, and WAIC in model comparison has some practical limitations. Even though, IS-LOO, TIS-LOO, and PSIS-LOO are considered to be approximations of the exact LOO-CV, the study observed some drastic deviations in the results. However, there are some interesting relationships among the logarithms of pointwise predictive densities (lppd) calculated under WAIC and the LOO approximation methods. The estimated overall lppd is a relative measure that reflects the overall goodness-of-fit of the model. Parallel log-likelihood profiles for the models conditional on equal posterior variances in lppds were observed. This study illustrates the limitations of the information criteria in practical model comparison problems. In addition, the relationships among LOO-CV approximation methods and WAIC with their limitations are discussed. Finally, useful recommendations that may help in practical model comparisons with these methods are provided.Keywords: cross-validation, importance sampling, information criteria, predictive accuracy
Procedia PDF Downloads 3921668 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach
Authors: Mpho Mokoatle, Darlington Mapiye, James Mashiyane, Stephanie Muller, Gciniwe Dlamini
Abstract:
Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on $k$-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0%, 80.5%, 80.5%, 63.6%, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms.Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing
Procedia PDF Downloads 1671667 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach
Authors: Darlington Mapiye, Mpho Mokoatle, James Mashiyane, Stephanie Muller, Gciniwe Dlamini
Abstract:
Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on k-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0 %, 80.5 %, 80.5 %, 63.6 %, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanismsKeywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing
Procedia PDF Downloads 1591666 Realization of Wearable Inertial Measurement Units-Sensor-Fusion Harness to Control Therapeutic Smartphone Applications
Authors: Svilen Dimitrov, Manthan Pancholi, Norbert Schmitz, Didier Stricker
Abstract:
This paper presents the end-to-end development of a wearable motion sensing harness consisting of computational unit and four inertial measurement units to control three smartphone therapeutic games for children. The inertial data is processed in real time to obtain lower body motion information like knee raises, feet taps and squads. By providing a Wi-Fi connection interface the sensor harness acts wireless remote control for smartphone applications. By performing various lower body movements the users provoke corresponding game state changes. In contrary to the current similar offers, like Nintendo Wii Remote, Xbox Kinect and Playstation Move, this product, consisting of the sensor harness and the applications on top of it, are fully wearable, which means they do not rely on the user to be bound to concrete soft- or hardwareequipped space.Keywords: wearable harness, inertial measurement units, smartphone therapeutic games, motion tracking, lower-body activity monitoring
Procedia PDF Downloads 4031665 Stop Texting While Learning: A Meta-Analysis of Social Networks Use and Academic Performances
Authors: Proud Arunrangsiwed, Sarinya Kongtieng
Abstract:
Teachers and university lecturers face an unsolved problem, which is students’ multitasking behaviors during class time, such as texting or playing a game. It is important to examine the most powerful predictor that can result in students’ educational performances. Meta-analysis was used to analyze the research articles, which were published with the keywords, multitasking, class performance, and texting. We selected 14 research articles published during 2008-2013 from online databases, and four articles met the predetermined inclusion criteria. Effect size of each pair of variables was used as the dependent variable. The findings revealed that the students’ expectancy and value on SNSs usages is the best significant predictor of their educational performances, followed by their motivation and ability in using SNSs, prior educational performances, usage behaviors of SNSs in class, and their personal characteristics, respectively. Future study should conduct a longitudinal design to better understand the effect of multitasking in the classroom.Keywords: meta-regression analysis, social networking sites, academic Performances, multitasking, motivation
Procedia PDF Downloads 2771664 Prediction of Formation Pressure Using Artificial Intelligence Techniques
Authors: Abdulmalek Ahmed
Abstract:
Formation pressure is the main function that affects drilling operation economically and efficiently. Knowing the pore pressure and the parameters that affect it will help to reduce the cost of drilling process. Many empirical models reported in the literature were used to calculate the formation pressure based on different parameters. Some of these models used only drilling parameters to estimate pore pressure. Other models predicted the formation pressure based on log data. All of these models required different trends such as normal or abnormal to predict the pore pressure. Few researchers applied artificial intelligence (AI) techniques to predict the formation pressure by only one method or a maximum of two methods of AI. The objective of this research is to predict the pore pressure based on both drilling parameters and log data namely; weight on bit, rotary speed, rate of penetration, mud weight, bulk density, porosity and delta sonic time. A real field data is used to predict the formation pressure using five different artificial intelligence (AI) methods such as; artificial neural networks (ANN), radial basis function (RBF), fuzzy logic (FL), support vector machine (SVM) and functional networks (FN). All AI tools were compared with different empirical models. AI methods estimated the formation pressure by a high accuracy (high correlation coefficient and low average absolute percentage error) and outperformed all previous. The advantage of the new technique is its simplicity, which represented from its estimation of pore pressure without the need of different trends as compared to other models which require a two different trend (normal or abnormal pressure). Moreover, by comparing the AI tools with each other, the results indicate that SVM has the advantage of pore pressure prediction by its fast processing speed and high performance (a high correlation coefficient of 0.997 and a low average absolute percentage error of 0.14%). In the end, a new empirical correlation for formation pressure was developed using ANN method that can estimate pore pressure with a high precision (correlation coefficient of 0.998 and average absolute percentage error of 0.17%).Keywords: Artificial Intelligence (AI), Formation pressure, Artificial Neural Networks (ANN), Fuzzy Logic (FL), Support Vector Machine (SVM), Functional Networks (FN), Radial Basis Function (RBF)
Procedia PDF Downloads 1491663 Experimental and Theoratical Methods to Increase Core Damping for Sandwitch Cantilever Beam
Authors: Iyd Eqqab Maree, Moouyad Ibrahim Abbood
Abstract:
The purpose behind this study is to predict damping effect for steel cantilever beam by using two methods of passive viscoelastic constrained layer damping. First method is Matlab Program, this method depend on the Ross, Kerwin and Unger (RKU) model for passive viscoelastic damping. Second method is experimental lab (frequency domain method), in this method used the half-power bandwidth method and can be used to determine the system loss factors for damped steel cantilever beam. The RKU method has been applied to a cantilever beam because beam is a major part of a structure and this prediction may further leads to utilize for different kinds of structural application according to design requirements in many industries. In this method of damping a simple cantilever beam is treated by making sandwich structure to make the beam damp, and this is usually done by using viscoelastic material as a core to ensure the damping effect. The use of viscoelastic layers constrained between elastic layers is known to be effective for damping of flexural vibrations of structures over a wide range of frequencies. The energy dissipated in these arrangements is due to shear deformation in the viscoelastic layers, which occurs due to flexural vibration of the structures. The theory of dynamic stability of elastic systems deals with the study of vibrations induced by pulsating loads that are parametric with respect to certain forms of deformation. There is a very good agreement of the experimental results with the theoretical findings. The main ideas of this thesis are to find the transition region for damped steel cantilever beam (4mm and 8mm thickness) from experimental lab and theoretical prediction (Matlab R2011a). Experimentally and theoretically proved that the transition region for two specimens occurs at modal frequency between mode 1 and mode 2, which give the best damping, maximum loss factor and maximum damping ratio, thus this type of viscoelastic material core (3M468) is very appropriate to use in automotive industry and in any mechanical application has modal frequency eventuate between mode 1 and mode 2.Keywords: 3M-468 material core, loss factor and frequency, domain method, bioinformatics, biomedicine, MATLAB
Procedia PDF Downloads 2711662 Structural Strength Evaluation and Wear Prediction of Double Helix Steel Wire Ropes for Heavy Machinery
Authors: Krunal Thakar
Abstract:
Wire ropes combine high tensile strength and flexibility as compared to other general steel products. They are used in various application areas such as cranes, mining, elevators, bridges, cable cars, etc. The earliest reported use of wire ropes was for mining hoist application in 1830s. Over the period, there have been substantial advancement in the design of wire ropes for various application areas. Under operational conditions, wire ropes are subjected to varying tensile loads and bending loads resulting in material wear and eventual structural failure due to fretting fatigue. The conventional inspection methods to determine wire failure is only limited to outer wires of rope. However, till date, there is no effective mathematical model to examine the inter wire contact forces and wear characteristics. The scope of this paper is to present a computational simulation technique to evaluate inter wire contact forces and wear, which are in many cases responsible for rope failure. Two different type of ropes, IWRC-6xFi(29) and U3xSeS(48) were taken for structural strength evaluation and wear prediction. Both ropes have a double helix twisted wire profile as per JIS standards and are mainly used in cranes. CAD models of both ropes were developed in general purpose design software using in house developed formulation to generate double helix profile. Numerical simulation was done under two different load cases (a) Axial Tension and (b) Bending over Sheave. Different parameters such as stresses, contact forces, wear depth, load-elongation, etc., were investigated and compared between both ropes. Numerical simulation method facilitates the detailed investigation of inter wire contact and wear characteristics. In addition, various selection parameters like sheave diameter, rope diameter, helix angle, swaging, maximum load carrying capacity, etc., can be quickly analyzed.Keywords: steel wire ropes, numerical simulation, material wear, structural strength, axial tension, bending over sheave
Procedia PDF Downloads 1521661 Modeling and Prediction of Hot Deformation Behavior of IN718
Authors: M. Azarbarmas, J. M. Cabrera, J. Calvo, M. Aghaie-Khafri
Abstract:
The modeling of hot deformation behavior for unseen conditions is important in metal-forming. In this study, the hot deformation of IN718 has been characterized in the temperature range 950-1100 and strain rate range 0.001-0.1 s-1 using hot compression tests. All stress-strain curves showed the occurrence of dynamic recrystallization. These curves were implemented quantitatively in mathematics, and then constitutive equation indicating the relationship between the flow stress and hot deformation parameters was obtained successfully.Keywords: compression test, constitutive equation, dynamic recrystallization, hot working
Procedia PDF Downloads 4251660 Prediction of Crack Propagation in Bonded Joints Using Fracture Mechanics
Authors: Reza Hedayati, Meysam Jahanbakhshi
Abstract:
In this work, Fracture Mechanics is used to predict crack propagation in the adhesive jointing aluminum and composite plates. Three types of loadings and two types of glass-epoxy composite sequences: [0/90]2s and [0/45/-45/90]s are considered for the composite plate. Therefore 2*3=6 cases are considered and their results are compared. The debonding initiation load, complete debonding load, crack face profile and load-displacement diagram have been compared for the six cases.Keywords: fracture, adhesive joint, debonding, APDL, LEFM
Procedia PDF Downloads 4131659 Predicting Automotive Interior Noise Including Wind Noise by Statistical Energy Analysis
Authors: Yoshio Kurosawa
Abstract:
The applications of soundproof materials for reduction of high frequency automobile interior noise have been researched. This paper presents a sound pressure prediction technique including wind noise by Hybrid Statistical Energy Analysis (HSEA) in order to reduce weight of acoustic insulations. HSEA uses both analytical SEA and experimental SEA. As a result of chassis dynamo test and road test, the validity of SEA modeling was shown, and utility of the method was confirmed.Keywords: vibration, noise, road noise, statistical energy analysis
Procedia PDF Downloads 351