Search results for: decline of pH and Temperature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7547

Search results for: decline of pH and Temperature

6377 Effect of Fire on Structural Behavior of Normal and High Strength Concrete Beams

Authors: Alaa I. Arafa, Hemdan O. A. Said. Marwa A. M. Ali

Abstract:

This paper investigates and evaluates experimentally the structural behavior of high strength concrete (HSC) beams under fire and compares it with that of Normal strength concrete (NSC) beams. The main investigated parameters are: concrete compressive strength (300 or 600 kg/cm2); the concrete cover thickness (3 or 5 cm); the degree of temperature (room temperature or 600 oC); the type of cooling (air or water); and the fire exposure time (3 or 5 hours). Test results showed that the concrete compressive strength decreases significantly as the exposure time to fire increases.

Keywords: experimental, fire, high strength concrete beams, monotonic loading

Procedia PDF Downloads 377
6376 RFID Logistic Management with Cold Chain Monitoring: Cold Store Case Study

Authors: Mira Trebar

Abstract:

Logistics processes of perishable food in the supply chain include the distribution activities and the real time temperature monitoring to fulfil the cold chain requirements. The paper presents the use of RFID (Radio Frequency Identification) technology as an identification tool of receiving and shipping activities in the cold store. At the same time, the use of RFID data loggers with temperature sensors is presented to observe and store the temperatures for the purpose of analyzing the processes and having the history data available for traceability purposes and efficient recall management.

Keywords: logistics, warehouse, RFID device, cold chain

Procedia PDF Downloads 611
6375 Effects of Different Meteorological Variables on Reference Evapotranspiration Modeling: Application of Principal Component Analysis

Authors: Akinola Ikudayisi, Josiah Adeyemo

Abstract:

The correct estimation of reference evapotranspiration (ETₒ) is required for effective irrigation water resources planning and management. However, there are some variables that must be considered while estimating and modeling ETₒ. This study therefore determines the multivariate analysis of correlated variables involved in the estimation and modeling of ETₒ at Vaalharts irrigation scheme (VIS) in South Africa using Principal Component Analysis (PCA) technique. Weather and meteorological data between 1994 and 2014 were obtained both from South African Weather Service (SAWS) and Agricultural Research Council (ARC) in South Africa for this study. Average monthly data of minimum and maximum temperature (°C), rainfall (mm), relative humidity (%), and wind speed (m/s) were the inputs to the PCA-based model, while ETₒ is the output. PCA technique was adopted to extract the most important information from the dataset and also to analyze the relationship between the five variables and ETₒ. This is to determine the most significant variables affecting ETₒ estimation at VIS. From the model performances, two principal components with a variance of 82.7% were retained after the eigenvector extraction. The results of the two principal components were compared and the model output shows that minimum temperature, maximum temperature and windspeed are the most important variables in ETₒ estimation and modeling at VIS. In order words, ETₒ increases with temperature and windspeed. Other variables such as rainfall and relative humidity are less important and cannot be used to provide enough information about ETₒ estimation at VIS. The outcome of this study has helped to reduce input variable dimensionality from five to the three most significant variables in ETₒ modelling at VIS, South Africa.

Keywords: irrigation, principal component analysis, reference evapotranspiration, Vaalharts

Procedia PDF Downloads 234
6374 Effect of Climate Change and Water Sources: Sustainability of Rural Water Sanitation and Hygiene of Tanahun District

Authors: Bharat Sapkota

Abstract:

Nepal is the one of the victim country of climate change. Decreasing snow line, sometimes higher and sometime non-rain fall are common phenomena in hill area. Natural flood disaster and drought is also common every year in certain place of the country. So this paper analyze the effect of climate and natural water sources for sustainability of water sanitation and hygiene of Tanahun district. It is one of the Rural Water Supply and Sanitation Project Western Nepal Phase-II (RWSSP-WN Phase-II) project district out of 14 project districts of western and mid-western Nepal. RWSSP-WN II is a bilateral development cooperation of governments of Nepal and Finland. Big investment is still going on in water sanitation and hygiene sector but sustainability is still a challenge throughout the country. So RWSSP-WN has started the strengthen of the capacity of local Governments to deliver services in water supply, sanitation and hygiene and its sustainability through the implementation of cross cutting approach of climate change and disaster risk reduction. The study shows that the average yield in 685 natural point sources were around 0.045 l/s in 2014 but it was twice as high in 2004 i.e. 0.09 l/s. The maximum measured yield in 2014 was 1.87 l/s, whereas, the maximum yield was 3 l/s in 2004. Likewise, spring source mean and maximum yield measured in 2014 were 0.16 l/s and 3.33 l/s respectively, whereas, mean and maximum yields in 2004 were 0.204 l/s and 3 l/s respectively. Small streams average yield measured in 2014 was 0.32 l/s with the maximum of around 4.99 l/s. In 2004, mean and maximum yields of streams were 0.485 l/s and 5 l/s respectively. The overall climate between years 2002 to 2013 and measured yield data between 2004 and 2014 shows climate as one of the causes of water source decline. The temperature is rising with pace of 0.041°C per year and rainfall is decreased by 16.8 mm/year. The Khosla’s empirical formula shows decrease of 1.7 cm/year in runoff. At present sustainability of water, sanitation and hygiene is more challenge due to sources decreasing in the district. Sanitation and hygiene total behavior change and watershed conservation as well as design and implementation of recharge pound construction are the way forward of sustainability of water, sanitation and hygiene.

Keywords: water sanitation, hygiene, sustainability, climate change

Procedia PDF Downloads 319
6373 Exfoliation of Functionalized High Structural Integrity Graphene Nanoplatelets at Extremely Low Temperature

Authors: Mohannad N. H. Al-Malichi

Abstract:

Because of its exceptional properties, graphene has become the most promising nanomaterial for the development of a new generation of advanced materials from battery electrodes to structural composites. However, current methods to meet requirements for the mass production of high-quality graphene are limited by harsh oxidation, high temperatures, and tedious processing steps. To extend the scope of the bulk production of graphene, herein, a facile, reproducible and cost-effective approach has been developed. This involved heating a specific mixture of chemical materials at an extremely low temperature (70 C) for a short period (7 minutes) to exfoliate functionalized graphene platelets with high structural integrity. The obtained graphene platelets have an average thickness of 3.86±0.71 nm and a lateral size less than ~2 µm with a low defect intensity ID/IG ~0.06. The thin film (~2 µm thick) exhibited a low surface resistance of ~0.63 Ω/sq⁻¹, confirming its high electrical conductivity. Additionally, these nanoplatelets were decorated with polar functional groups (epoxy and carboxyl groups), thus have the potential to toughen and provide multifunctional polymer nanocomposites. Moreover, such a simple method can be further exploited for the novel exfoliation of other layered two-dimensional materials such as MXenes.

Keywords: functionalized graphene nanoplatelets, high structural integrity graphene, low temperature exfoliation of graphene, functional graphene platelets

Procedia PDF Downloads 104
6372 Optimization of Reaction Parameters' Influences on Production of Bio-Oil from Fast Pyrolysis of Oil Palm Empty Fruit Bunch Biomass in a Fluidized Bed Reactor

Authors: Chayanoot Sangwichien, Taweesak Reungpeerakul, Kyaw Thu

Abstract:

Oil palm mills in Southern Thailand produced a large amount of biomass solid wastes. Lignocellulose biomass is the main source for production of biofuel which can be combined or used as an alternative to fossil fuels. Biomass composed of three main constituents of cellulose, hemicellulose, and lignin. Thermochemical conversion process applied to produce biofuel from biomass. Pyrolysis of biomass is the best way to thermochemical conversion of biomass into pyrolytic products (bio-oil, gas, and char). Operating parameters play an important role to optimize the product yields from fast pyrolysis of biomass. This present work concerns with the modeling of reaction kinetics parameters for fast pyrolysis of empty fruit bunch in the fluidized bed reactor. A global kinetic model used to predict the product yields from fast pyrolysis of empty fruit bunch. The reaction temperature and vapor residence time parameters are mainly affected by product yields of EFB pyrolysis. The reaction temperature and vapor residence time parameters effects on empty fruit bunch pyrolysis are considered at the reaction temperature in the range of 450-500˚C and at a vapor residence time of 2 s, respectively. The optimum simulated bio-oil yield of 53 wt.% obtained at the reaction temperature and vapor residence time of 450˚C and 2 s, 500˚C and 1 s, respectively. The simulated data are in good agreement with the reported experimental data. These simulated data can be applied to the performance of experiment work for the fast pyrolysis of biomass.

Keywords: kinetics, empty fruit bunch, fast pyrolysis, modeling

Procedia PDF Downloads 187
6371 Application of Artificial Neural Network to Prediction of Feature Academic Performance of Students

Authors: J. K. Alhassan, C. S. Actsu

Abstract:

This study is on the prediction of feature performance of undergraduate students with Artificial Neural Networks (ANN). With the growing decline in the quality academic performance of undergraduate students, it has become essential to predict the students’ feature academic performance early in their courses of first and second years and to take the necessary precautions using such prediction-based information. The feed forward multilayer neural network model was used to train and develop a network and the test carried out with some of the input variables. A result of 80% accuracy was obtained from the test which was carried out, with an average error of 0.009781.

Keywords: academic performance, artificial neural network, prediction, students

Procedia PDF Downloads 441
6370 Optimization of Oxygen Plant Parameters Simulating with MATLAB

Authors: B. J. Sonani, J. K. Ratnadhariya, Srinivas Palanki

Abstract:

Cryogenic engineering is the fast growing branch of the modern technology. There are various applications of the cryogenic engineering such as liquefaction in gas industries, metal industries, medical science, space technology, and transportation. The low-temperature technology developed superconducting materials which lead to reduce the friction and wear in various components of the systems. The liquid oxygen, hydrogen and helium play vital role in space application. The liquefaction process is produced very low temperature liquid for various application in research and modern application. The air liquefaction system for oxygen plants in gas industries is based on the Claude cycle. The effect of process parameters on the overall system is difficult to be analysed by manual calculations, and this provides the motivation to use process simulators for understanding the steady state and dynamic behaviour of such systems. The parametric study of this system via MATLAB simulations provide useful guidelines for preliminary design of air liquefaction system based on the Claude cycle. Every organization is always trying for reduce the cost and using the optimum performance of the plant for the staying in the competitive market.

Keywords: cryogenic, liquefaction, low -temperature, oxygen, claude cycle, optimization, MATLAB

Procedia PDF Downloads 308
6369 A Controlled Mathematical Model for Population Dynamics in an Infested Honeybees Colonies

Authors: Chakib Jerry, Mounir Jerry

Abstract:

In this paper, a mathematical model of infested honey bees colonies is formulated in order to investigate Colony Collapse Disorder in a honeybee colony. CCD, as it is known, is a major problem on honeybee farms because of the massive decline in colony numbers. We introduce to the model a control variable which represents forager protection. We study the controlled model to derive conditions under which the bee colony can fight off epidemic. Secondly we study the problem of minimizing prevention cost under model’s dynamics constraints.

Keywords: honey bee, disease transmission model, disease control honeybees, optimal control

Procedia PDF Downloads 405
6368 Induced Bone Tissue Temperature in Drilling Procedures: A Comparative Laboratory Study with and without Lubrication

Authors: L. Roseiro, C. Veiga, V. Maranha, A. Neto, N. Laraqi, A. Baïri, N. Alilat

Abstract:

In orthopedic surgery there are various situations in which the surgeon needs to implement methods of cutting and drilling the bone. With this type of procedure the generated friction leads to a localized increase in temperature, which may lead to the bone necrosis. Recognizing the importance of studying this phenomenon, an experimental evaluation of the temperatures developed during the procedure of drilling bone has been done. Additionally the influence of the use of the procedure with / without additional lubrication during drilling of bone has also been done. The obtained results are presented and discussed and suggests an advantage in using additional lubrication as a way to minimize the appearance of bone tissue necrosis during bone drilling procedures.

Keywords: bone necrosis, bone drilling, thermography, surgery

Procedia PDF Downloads 571
6367 Thermodynamic Analysis and Experimental Study of Agricultural Waste Plasma Processing

Authors: V. E. Messerle, A. B. Ustimenko, O. A. Lavrichshev

Abstract:

A large amount of manure and its irrational use negatively affect the environment. As compared with biomass fermentation, plasma processing of manure enhances makes it possible to intensify the process of obtaining fuel gas, which consists mainly of synthesis gas (CO + H₂), and increase plant productivity by 150–200 times. This is achieved due to the high temperature in the plasma reactor and a multiple reduction in waste processing time. This paper examines the plasma processing of biomass using the example of dried mixed animal manure (dung with a moisture content of 30%). Characteristic composition of dung, wt.%: Н₂О – 30, С – 29.07, Н – 4.06, О – 32.08, S – 0.26, N – 1.22, P₂O₅ – 0.61, K₂O – 1.47, СаО – 0.86, MgO – 0.37. The thermodynamic code TERRA was used to numerically analyze dung plasma gasification and pyrolysis. Plasma gasification and pyrolysis of dung were analyzed in the temperature range 300–3,000 K and pressure 0.1 MPa for the following thermodynamic systems: 100% dung + 25% air (plasma gasification) and 100% dung + 25% nitrogen (plasma pyrolysis). Calculations were conducted to determine the composition of the gas phase, the degree of carbon gasification, and the specific energy consumption of the processes. At an optimum temperature of 1,500 K, which provides both complete gasification of dung carbon and the maximum yield of combustible components (99.4 vol.% during dung gasification and 99.5 vol.% during pyrolysis), and decomposition of toxic compounds of furan, dioxin, and benz(a)pyrene, the following composition of combustible gas was obtained, vol.%: СО – 29.6, Н₂ – 35.6, СО₂ – 5.7, N₂ – 10.6, H₂O – 17.9 (gasification) and СО – 30.2, Н₂ – 38.3, СО₂ – 4.1, N₂ – 13.3, H₂O – 13.6 (pyrolysis). The specific energy consumption of gasification and pyrolysis of dung at 1,500 K is 1.28 and 1.33 kWh/kg, respectively. An installation with a DC plasma torch with a rated power of 100 kW and a plasma reactor with a dung capacity of 50 kg/h was used for dung processing experiments. The dung was gasified in an air (or nitrogen during pyrolysis) plasma jet, which provided a mass-average temperature in the reactor volume of at least 1,600 K. The organic part of the dung was gasified, and the inorganic part of the waste was melted. For pyrolysis and gasification of dung, the specific energy consumption was 1.5 kWh/kg and 1.4 kWh/kg, respectively. The maximum temperature in the reactor reached 1,887 K. At the outlet of the reactor, a gas of the following composition was obtained, vol.%: СO – 25.9, H₂ – 32.9, СO₂ – 3.5, N₂ – 37.3 (pyrolysis in nitrogen plasma); СO – 32.6, H₂ – 24.1, СO₂ – 5.7, N₂ – 35.8 (air plasma gasification). The specific heat of combustion of the combustible gas formed during pyrolysis and plasma-air gasification of agricultural waste is 10,500 and 10,340 kJ/kg, respectively. Comparison of the integral indicators of dung plasma processing showed satisfactory agreement between the calculation and experiment.

Keywords: agricultural waste, experiment, plasma gasification, thermodynamic calculation

Procedia PDF Downloads 22
6366 Electronics Thermal Management Driven Design of an IP65-Rated Motor Inverter

Authors: Sachin Kamble, Raghothama Anekal, Shivakumar Bhavi

Abstract:

Thermal management of electronic components packaged inside an IP65 rated enclosure is of prime importance in industrial applications. Electrical enclosure protects the multiple board configurations such as inverter, power, controller board components, busbars, and various power dissipating components from harsh environments. Industrial environments often experience relatively warm ambient conditions, and the electronic components housed in the enclosure dissipate heat, due to which the enclosures and the components require thermal management as well as reduction of internal ambient temperatures. Design of Experiments based thermal simulation approach with MOSFET arrangement, Heat sink design, Enclosure Volume, Copper and Aluminum Spreader, Power density, and Printed Circuit Board (PCB) type were considered to optimize air temperature inside the IP65 enclosure to ensure conducive operating temperature for controller board and electronic components through the different modes of heat transfer viz. conduction, natural convection and radiation using Ansys ICEPAK. MOSFET’s with the parallel arrangement, IP65 enclosure molded heat sink with rectangular fins on both enclosures, specific enclosure volume to satisfy the power density, Copper spreader to conduct heat to the enclosure, optimized power density value and selecting Aluminum clad PCB which improves the heat transfer were the contributors towards achieving a conducive operating temperature inside the IP-65 rated Motor Inverter enclosure. A reduction of 52 ℃ was achieved in internal ambient temperature inside the IP65 enclosure between baseline and final design parameters, which met the operative temperature requirements of the electronic components inside the IP-65 rated Motor Inverter.

Keywords: Ansys ICEPAK, aluminium clad PCB, IP 65 enclosure, motor inverter, thermal simulation

Procedia PDF Downloads 108
6365 Common Ragweed (Ambrosia artemisiifolia): Changing Proteomic Patterns of Pollen under Elevated NO₂ Concentration and/or Future Rising Temperature Scenario

Authors: Xiaojie Cheng, Ulrike Frank, Feng Zhao, Karin Pritsch

Abstract:

Ragweed (Ambrosia artemisiifolia) is an invasive weed that has become an increasing global problem. In addition to affecting land use and crop yields, ragweed has a strong impact on human health as it produces highly allergenic pollen. Global warming will result in an earlier and longer pollen season enhanced pollen production and an increase in pollen allergenicity with a negative effect on atopic patients. The aims of this study were to investigate the effects of increasing temperature, the future climate scenario in the Munich area, southern Germany, predicted on the basis of RCP8.5 until the end of 2050s, or/and NO₂, a major air pollutant, 1) on the vegetative and reproductive characteristics of ragweed plants, 2) on the total allergenicity of ragweed pollen, 3) on the total pollen proteomic patterns. Ragweed plants were cultivated for the whole plant vegetation period under controlled conditions either under ambient climate conditions or 4°C higher temperatures with or without additional NO₂. Higher temperature resulted in bigger plant sizes, longer male inflorescences, and longer pollen seasons. The total allergenic potential of the pollen was accessed by dot blot using serum from ragweed pollen sensitized patients. The comparative immunoblot analysis revealed that the in vivo fumigation of ragweed plants with elevated NO₂-concentrations significantly increased the allergenic potential of the pollen, and in combination with increased temperature, the allergenic potential was even higher. On the other hand, label-free protein quantification by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was performed. The results showed that more proteins were significantly up- and down-regulated under higher temperatures with/without elevated NO₂ conditions. Most of the highly expressed proteins were participating intensively in the metabolic process, the cellular process, and the stress defense process. These findings suggest that rising temperature and elevated NO₂ are important environmental factors for higher abiotic stress activities, catalytic activities, and thus higher allergenic potential observed in pollen proteins.

Keywords: climate change, NO₂, pollen proteome, ragweed, temperature

Procedia PDF Downloads 168
6364 Densities and Viscosities of Binary Mixture Containing Diethylamine and 2-Alkanol

Authors: Elham jassemi Zargani, Mohammad almasi

Abstract:

Densities and viscosities for binary mixtures of diethylamine + 2 Alkanol (2 propanol up to 2 pentanol) were measured over the entire composition range and temperature interval of 293.15 to 323.15 K. Excess molar volumes V_m^E and viscosity deviations Δη were calculated and correlated by the Redlich−Kister type function to derive the coefficients and estimate the standard error. For mixtures of diethylamine with used 2-alkanols, V_m^E and Δη are negative over the entire range of mole fraction. The observed variations of these parameters, with alkanols chain length and temperature, are discussed in terms of the inter-molecular interactions between the unlike molecules of the binary mixtures.

Keywords: densities, viscosities, diethylamine, 2-alkanol, Redlich-Kister

Procedia PDF Downloads 370
6363 Determination of Alkali Treatment Conditions Effects That Influence the Variability of Kenaf Fiber Mean Cross-Sectional Area

Authors: Mohd Yussni Hashim, Mohd Nazrul Roslan, Shahruddin Mahzan Mohd Zin, Saparudin Ariffin

Abstract:

Fiber cross-sectional area value is a crucial factor in determining the strength properties of natural fiber. Furthermore, unlike synthetic fiber, a diameter and cross-sectional area of natural fiber has a large variation along and between the fibers. This study aims to determine the main and interaction effects of alkali treatment conditions that influence kenaf bast fiber mean cross-sectional area. Three alkali treatment conditions at two different levels were selected. The conditions setting were alkali concentrations at two and ten w/v %; fiber immersed temperature at room temperature and 1000C; and fiber immersed duration for 30 and 480 minute. Untreated kenaf fiber was used as a control unit. Kenaf bast fiber bundle mounting tab was prepared according to ASTM C1557-03. The cross-sectional area was measured using a Leica video analyzer. The study result showed that kenaf fiber bundle mean cross-sectional area was reduced 6.77% to 29.88% after alkali treatment. From the analysis of variance, it shows that the interaction of alkali concentration and immersed time has a higher magnitude at 0.1619 compared to alkali concentration and immersed temperature interaction that was 0.0896. For the main effect, alkali concentration factor contributes to the higher magnitude at 0.1372 which indicated the decrease pattern of variability when the level changed from lower to the higher level. Then, it was followed by immersed temperature at 0.1261 and immersed time at 0.0696 magnitudes.

Keywords: natural fiber, kenaf bast fiber bundles, alkali treatment, cross-sectional area

Procedia PDF Downloads 409
6362 Unsteady and Steady State in Natural Convection

Authors: Syukri Himran, Erwin Eka Putra, Nanang Roni

Abstract:

This study explains the natural convection of viscous fluid flowing on semi-infinite vertical plate. A set of the governing equations describing the continuity, momentum and energy, have been reduced to dimensionless forms by introducing the references variables. To solve the problems, the equations are formulated by explicit finite-difference in time dependent form and computations are performed by Fortran program. The results describe velocity, temperature profiles both in transient and steady state conditions. An approximate value of heat transfer coefficient and the effects of Pr on convection flow are also presented.

Keywords: natural convection, vertical plate, velocity and temperature profiles, steady and unsteady

Procedia PDF Downloads 473
6361 Influences of Plunge Speed on Axial Force and Temperature of Friction Stir Spot Welding in Thin Aluminum A1100

Authors: Suwarsono, Ario S. Baskoro, Gandjar Kiswanto, Budiono

Abstract:

Friction Stir Welding (FSW) is a relatively new technique for joining metal. In some cases on aluminum joining, FSW gives better results compared with the arc welding processes, including the quality of welds and produces less distortion.FSW welding process for a light structure and thin materials requires small forces as possible, to avoid structure deflection. The joining process on FSW occurs because of melting temperature and compressive forces, the temperature generation of caused by material deformation and friction between the cutting tool and material. In this research, High speed rotation of spindle was expected to reduce the force required for deformation. The welding material was Aluminum A1100, with thickness of 0.4 mm. The tool was made of HSS material which was shaped by micro grinding process. Tool shoulder diameter is 4 mm, and the length of pin was 0.6 mm (with pin diameter= 1.5 mm). The parameters that varied were the plunge speed (2 mm/min, 3 mm/min, 4 mm/min). The tool speed is fixed at 33,000 rpm. Responses of FSSW parameters to analyze were Axial Force (Z-Force), Temperature and the Shear Strength of welds. Research found the optimum µFSSW parameters, it can be concluded that the most important parameters in the μFSSW process was plunge speed. lowest plunge speed (2 mm / min) causing the lowest axial force (110.40 Newton). The increases of plunge speed will increase the axial force (maximum Z-Farce= 236.03 Newton), and decrease the shear strength of welds.

Keywords: friction stir spot welding, aluminum A1100, plunge speed, axial force, shear strength

Procedia PDF Downloads 294
6360 High Temperature Oxidation Resistance of NiCrAl Bond Coat Produced by Spark Plasma Sintering as Thermal Barrier Coatings

Authors: Folorunso Omoniyi, Peter Olubambi, Rotimi Sadiku

Abstract:

Thermal barrier coating (TBC) system is used in both aero engines and other gas turbines to offer oxidation protection to superalloy substrate component. In the present work, it shows the ability of a new fabrication technique to develop rapidly new coating composition and microstructure. The compact powders were prepared by Powder Metallurgy method involving powder mixing and the bond coat was synthesized through the application of Spark Plasma Sintering (SPS) at 10500C to produce a fully dense (97%) NiCrAl bulk samples. The influence of sintering temperature on the hardness of NiCrAl, done by Micro Vickers hardness tester, was investigated. And Oxidation test was carried out at 1100oC for 20h, 40h, and 100h. The resulting coat was characterized with optical microscopy, scanning electron microscopy (SEM), energy dispersive x-ray analysis (EDAX) and x-ray diffraction (XRD). Micro XRD analysis after the oxidation test revealed the formation of protective oxides and non-protective oxides.

Keywords: high-temperature oxidation, powder metallurgy, spark plasma sintering, thermal barrier coating

Procedia PDF Downloads 485
6359 Combustion Analysis of Suspended Sodium Droplet

Authors: T. Watanabe

Abstract:

Combustion analysis of suspended sodium droplet is performed by solving numerically the Navier-Stokes equations and the energy conservation equations. The combustion model consists of the pre-ignition and post-ignition models. The reaction rate for the pre-ignition model is based on the chemical kinetics, while that for the post-ignition model is based on the mass transfer rate of oxygen. The calculated droplet temperature is shown to be in good agreement with the existing experimental data. The temperature field in and around the droplet is obtained as well as the droplet shape variation, and the present numerical model is confirmed to be effective for the combustion analysis.

Keywords: analysis, combustion, droplet, sodium

Procedia PDF Downloads 198
6358 Intensification of Heat Transfer in Magnetically Assisted Reactor

Authors: Dawid Sołoducha, Tomasz Borowski, Marian Kordas, Rafał Rakoczy

Abstract:

The magnetic field in the past few years became an important part of many studies. Magnetic field (MF) may be used to affect the process in many ways; for example, it can be used as a factor to stabilize the system. We can use MF to steer the operation, to activate or inhibit the process, or even to affect the vital activity of microorganisms. Using various types of magnetic field generators is always connected with the delivery of some heat to the system. Heat transfer is a very important phenomenon; it can influence the process positively and negatively, so it’s necessary to measure heat stream transferred from the place of generation and prevent negative influence on the operation. The aim of the presented work was to apply various types of magnetic fields and to measure heat transfer phenomena. The results were obtained by continuous measurement at several measuring points with temperature probes. Results were compilated in the form of temperature profiles. The study investigated the undetermined heat transfer in a custom system equipped with a magnetic field generator. Experimental investigations are provided for the explanation of the influence of the various type of magnetic fields on the heat transfer process. The tested processes are described by means of the criteria which defined heat transfer intensification under the action of magnetic field.

Keywords: heat transfer, magnetic field, undetermined heat transfer, temperature profile

Procedia PDF Downloads 181
6357 Modeling and Numerical Simulation of Heat Transfer and Internal Loads at Insulating Glass Units

Authors: Nina Penkova, Kalin Krumov, Liliana Zashcova, Ivan Kassabov

Abstract:

The insulating glass units (IGU) are widely used in the advanced and renovated buildings in order to reduce the energy for heating and cooling. Rules for the choice of IGU to ensure energy efficiency and thermal comfort in the indoor space are well known. The existing of internal loads - gage or vacuum pressure in the hermetized gas space, requires additional attention at the design of the facades. The internal loads appear at variations of the altitude, meteorological pressure and gas temperature according to the same at the process of sealing. The gas temperature depends on the presence of coatings, coating position in the transparent multi-layer system, IGU geometry and space orientation, its fixing on the facades and varies with the climate conditions. An algorithm for modeling and numerical simulation of thermal fields and internal pressure in the gas cavity at insulating glass units as function of the meteorological conditions is developed. It includes models of the radiation heat transfer in solar and infrared wave length, indoor and outdoor convection heat transfer and free convection in the hermetized gas space, assuming the gas as compressible. The algorithm allows prediction of temperature and pressure stratification in the gas domain of the IGU at different fixing system. The models are validated by comparison of the numerical results with experimental data obtained by Hot-box testing. Numerical calculations and estimation of 3D temperature, fluid flow fields, thermal performances and internal loads at IGU in window system are implemented.

Keywords: insulating glass units, thermal loads, internal pressure, CFD analysis

Procedia PDF Downloads 258
6356 Designing a Thermal Management System for Lithium Ion Battery Packs in Electric Vehicles

Authors: Ekin Esen, Mohammad Alipour, Riza Kizilel

Abstract:

Rechargeable lithium-ion batteries have been replacing lead-acid batteries for the last decade due to their outstanding properties such as high energy density, long shelf life, and almost no memory effect. Besides these, being very light compared to lead acid batteries has gained them their dominant place in the portable electronics market, and they are now the leading candidate for electric vehicles (EVs) and hybrid electric vehicles (HEVs). However, their performance strongly depends on temperature, and this causes some inconveniences for their utilization in extreme temperatures. Since weather conditions vary across the globe, this situation limits their utilization for EVs and HEVs and makes a thermal management system obligatory for the battery units. The objective of this study is to understand thermal characteristics of Li-ion battery modules for various operation conditions and design a thermal management system to enhance battery performance in EVs and HEVs. In the first part of our study, we investigated thermal behavior of commercially available pouch type 20Ah LiFePO₄ (LFP) cells under various conditions. Main parameters were chosen as ambient temperature and discharge current rate. Each cell was charged and discharged at temperatures of 0°C, 10°C, 20°C, 30°C, 40°C, and 50°C. The current rate of charging process was 1C while it was 1C, 2C, 3C, 4C, and 5C for discharge process. Temperatures of 7 different points on the cells were measured throughout charging and discharging with N-type thermocouples, and a detailed temperature profile was obtained. In the second part of our study, we connected 4 cells in series by clinching and prepared 4S1P battery modules similar to ones in EVs and HEVs. Three reference points were determined according to the findings of the first part of the study, and a thermocouple is placed on each reference point on the cells composing the 4S1P battery modules. In the end, temperatures of 6 points in the module and 3 points on the top surface were measured and changes in the surface temperatures were recorded for different discharge rates (0.2C, 0.5C, 0.7C, and 1C) at various ambient temperatures (0°C – 50°C). Afterwards, aluminum plates with channels were placed between the cells in the 4S1P battery modules, and temperatures were controlled with airflow. Airflow was provided with a regular compressor, and the effect of flow rate on cell temperature was analyzed. Diameters of the channels were in mm range, and shapes of the channels were determined in order to make the cell temperatures uniform. Results showed that the designed thermal management system could help keeping the cell temperatures in the modules uniform throughout charge and discharge processes. Other than temperature uniformity, the system was also beneficial to keep cell temperature close to the optimum working temperature of Li-ion batteries. It is known that keeping the temperature at an optimum degree and maintaining uniform temperature throughout utilization can help obtaining maximum power from the cells in battery modules for a longer time. Furthermore, it will increase safety by decreasing the risk of thermal runaways. Therefore, the current study is believed to be beneficial for wider use of Li batteries for battery modules of EVs and HEVs globally.

Keywords: lithium ion batteries, thermal management system, electric vehicles, hybrid electric vehicles

Procedia PDF Downloads 146
6355 Numerical Simulation of Phase Transfer during Cryosurgery for an Irregular Tumor Using Hybrid Approach

Authors: Rama Bhargava, Surabhi Nishad

Abstract:

The infusion of nanofluids has dramatically enhanced the heat-carrying capacity of the fluids, applicable to many engineering and medical process where the temperature below freezing is required. Cryosurgery is an efficient therapy for the treatment of cancer, but sometimes the excessive cooling may harm the nearby healthy cells. Efforts are therefore done to develop a model which can cause to generate the low temperature as required. In the present study, a mathematical model is developed based on the bioheat transfer equation to simulate the heat transfer from the probe on a tumor (with irregular domain) using the hybrid technique consisting of element free Galerkin method with αα-family of approximation. The probe is loaded will nano-particles. The effects of different nanoparticles, namely Al₂O₃, Fe₃O₄, Au on the heat-producing rate, is obtained. It is observed that the temperature can be brought to (60°C)-(-30°C) at a faster freezing rate on the infusion of different nanoparticles. Besides increasing the freezing rate, the volume of the nanoparticle can also control the size and growth of ice crystals formed during the freezing process. The study is also made to find the time required to achieve the desired temperature. The problem is further extended for multi tumors of different shapes and sizes. The irregular shape of the frozen domain and the direction of ice growth are very sensitive issues, posing a challenge for simulation. The Meshfree method has been one of the accurate methods in such problems as a domain is naturally irregular. The discretization is done using the nodes only. MLS approximation is taken in order to generate the shape functions. Sufficiently accurate results are obtained.

Keywords: cryosurgery, EFGM, hybrid, nanoparticles

Procedia PDF Downloads 109
6354 The Decline of Islamic Influence in the Global Geopolitics

Authors: M. S. Riyazulla

Abstract:

Since the dawn of the 21st century, there has been a perceptible decline in Islamic supremacy in world affairs, apart from the gradual waning of the amiable relations and relevance of Islamic countries in the International political arena. For a long, Islamic countries have been marginalised by the superpowers in the global conflicting issues. This was evident in the context of their recent invasions and interference in Afghanistan, Syria, Iraq, and Libya. The leading International Islamic organizations like the Arab League, Organization of Islamic Cooperation, Gulf Cooperation Council, and Muslim World League did not play any prominent role there in resolving the crisis that ensued due to the exogenous and endogenous causes. Hence, there is a need for Islamic countries to create a credible International Islamic organization that could dictate its terms and shape a new Islamic world order. The prominent Islamic countries are divided on ideological and religious fault lines. Their concord is indispensable to enhance their image and placate the relations with other countries and communities. The massive boon of oil and gas could be synergistically utilised to exhibit their omnipotence and eminence through constructive ways. The prevailing menace of Islamophobia could be abated through syncretic messages, discussions, and deliberations by the sagacious Islamic scholars with the other community leaders. Presently, as Muslims are at a crossroads, a dynamic leadership could navigate the agitated Muslim community on the constructive path and herald political stability around the world. The present political disorder, chaos, and economic challenges necessities a paradigm shift in approach to worldly affairs. This could also be accomplished through the advancement in science and technology, particularly space exploration, for peaceful purposes. The Islamic world, in order to regain its lost preeminence, should rise to the occasion in promoting peace and tranquility in the world and should evolve a rational and human-centric solution to global disputes and concerns. As a splendid contribution to humanity and for amicable international relations, they should devote all their resources and scientific intellect towards space exploration and should safely transport man from the Earth to the nearest and most accessible cosmic body, the Moon, within one hundred years as the mankind is facing the existential threat on the planet.

Keywords: carboniferous period, Earth, extinction, fossil fuels, global leaders, Islamic glory, international order, life, marginalization, Moon, natural catastrophes

Procedia PDF Downloads 57
6353 Unsteady Stagnation-Point Flow towards a Shrinking Sheet with Radiation Effect

Authors: F. M. Ali, R. Nazar, N. M. Arifin, I. Pop

Abstract:

In this paper, the problem of unsteady stagnation-point flow and heat transfer induced by a shrinking sheet in the presence of radiation effect is studied. The transformed boundary layer equations are solved numerically by the shooting method. The influence of radiation, unsteadiness and shrinking parameters, and the Prandtl number on the reduced skin friction coefficient and the heat transfer coefficient, as well as the velocity and temperature profiles are presented and discussed in detail. It is found that dual solutions exist and the temperature distribution becomes less significant with radiation parameter.

Keywords: heat transfer, radiation effect, shrinking sheet unsteady flow

Procedia PDF Downloads 368
6352 Effect of Temperatures on Growth and Development Time of Aphis fabae Scopoli (Homoptera: Aphididae): On Bean (Phaseolus vulgaris L.)

Authors: Rochelyn Dona, Serdar Satar

Abstract:

The aim of this study was to evaluate the biological parameters of A. fabae Scopoli (Hemiptera: Aphididae). Developmental, survival, and reproductive data were collected for Aphis fabae reared on detached bean leaves (Phaseolus vulgaris L.) ‘pinto beans’ at five temperature regimes (12, 16, 20, 24, and 28 °C), 65% relative humidity (RH), relative and a photoperiod of 16:8 (LD) h. The developmental times of immature stages ranged from 16, 65 days at 12°C to 5.70 days at 24°C, but a slight increase again at 28°C (6.62 days). At 24°C from this study presented the developmental threshold for A. fabae slightly to 24°C. The average longevity of mature females significantly decreased from 42.32 days at 12°C to 16.12 days at 28°C. The reproduction rate per female was 62.27 at 16°C and 12.72 at 28°C. The mean generation period of the population ranged from 29.24 at 12°C to 11.50 at 28°C. The highest intrinsic rate of increase (rm = 0.41) were recorded at 24°C, the lowest at 12°C (rm = 0.15). It was evident that temperatures over 28°C augmented the development time, accelerated the death ratio of the nymphal stages, Shrunk Adult longevity, and reduced fecundity. The optimal range of temperature for the population growth of A. fabae on the bean was 16°C-24°C, according to this study.

Keywords: developmental time, intrinsic rate, reproduction period, temperature dependence

Procedia PDF Downloads 209
6351 Effect of Pack Aluminising Conditions on βNiAl Coatings

Authors: A. D. Chandio, P. Xiao

Abstract:

In this study, nickel aluminide coatings were deposited onto CMSX-4 single crystal superalloy and pure Ni substrates by using in-situ chemical vapour deposition (CVD) technique. The microstructural evolutions and coating thickness (CT) were studied upon the variation of processing conditions i.e. time and temperature. The results demonstrated (under identical conditions) that coating formed on pure Ni contains no substrate entrapments and have lower CT in comparison to one deposited on the CMSX-4 counterpart. In addition, the interdiffusion zone (IDZ) of Ni substrate is a γ’-Ni3Al in comparison to the CMSX-4 alloy that is βNiAl phase. The higher CT on CMSX-4 superalloy is attributed to presence of γ-Ni/γ’-Ni3Al structure which contains ~ 15 at.% Al before deposition (that is already present in superalloy). Two main deposition parameters (time and temperature) of the coatings were also studied in addition to standard comparison of substrate effects. The coating formation time was found to exhibit profound effect on CT, whilst temperature was found to change coating activities. In addition, the CT showed linear trend from 800 to 1000 °C, thereafter reduction was observed. This was attributed to the change in coating activities.

Keywords: βNiAl, in-situ CVD, CT, CMSX-4, Ni, microstructure

Procedia PDF Downloads 216
6350 Recovery of Cd (II) and Pb (II) under the Effect of Temperature with the Synthetic Zeolite NaA

Authors: Karima Menad, Ahmed Feddag

Abstract:

In this study, large crystals of the zeolite NaA were synthesized by hydrothermal way. By following this zeolite was used to recover two heavy metals that are allowing the most dangerous toxic, lead and cadmium. The synthesized zeolite was analyzed by XRD and SEM aims to verify its purity and its good morphology; after it was undergoing ion exchange operations by aqueous solution with lead and cadmium in two salts Pb(CH3COOH)2 and CdCl2 at different concentrations. The exchange was carried out under the effect of two temperatures (25 °C and 60 °C). The contents of Pb++, Cd++ and Na+ were analyzed by atomic absorption and the results are given in the form of exchange rates. At the end the samples are analyzed by XRD exchanged to confirm their conservation of their zeolite framework. It is found that the exchange rate increases with the increase of initial concentration and the best results are found for the temperature of 60 °C.

Keywords: exchange rate, ion exchange, LTA zeolite, zeolite NaA

Procedia PDF Downloads 394
6349 Study on the Controlled Growth of Lanthanum Hydroxide and Manganese Oxide Nano Composite under the Presence of Cationic Surfactant

Authors: Neeraj Kumar Verma

Abstract:

Lanthanum hydroxide and manganese oxide nanocomposite are synthesized by chemical routes. Physical characterization is done by TEM to look at the size and dispersion of the nanoparticles in the composite. Chemical characterization is done by X-ray diffraction technique and FTIR to ascertain the attachment of the functionalities and bond stretching. Further thermal analysis is done by thermogravimetric analysis to find the tendency of the thermal decomposition in the elevated temperature range of 0-1000°C. Proper analysis and correlation of the various results obtained suggested the controlled growth of crystalline without agglomeration and good stability in the various temperature ranges of the composite.

Keywords: nanoparticles, XRD, TEM, lanthanum hydroxide, manganese oxide

Procedia PDF Downloads 449
6348 Effect of High-Energy Ball Milling on the Electrical and Piezoelectric Properties of (K0.5Na0.5)(Nb0.9Ta0.1)O3 Lead-Free Piezoceramics

Authors: Chongtham Jiten, K. Chandramani Singh, Radhapiyari Laishram

Abstract:

Nanocrystalline powders of the lead-free piezoelectric material, tantalum-substituted potassium sodium niobate (K0.5Na0.5)(Nb0.9Ta0.1)O3 (KNNT), were produced using a Retsch PM100 planetary ball mill by setting the milling time to 15h, 20h, 25h, 30h, 35h and 40h, at a fixed speed of 250rpm. The average particle size of the milled powders was found to decrease from 12nm to 3nm as the milling time increases from 15h to 25h, which is in agreement with the existing theoretical model. An anomalous increase to 98nm and then a drop to 3nm in the particle size were observed as the milling time further increases to 30h and 40h respectively. Various sizes of these starting KNNT powders were used to investigate the effect of milling time on the microstructure, dielectric properties, phase transitions and piezoelectric properties of the resulting KNNT ceramics. The particle size of starting KNNT was somewhat proportional to the grain size. As the milling time increases from 15h to 25h, the resulting ceramics exhibit enhancement in the values of relative density from 94.8% to 95.8%, room temperature dielectric constant (εRT) from 878 to 1213, and piezoelectric charge coefficient (d33) from 108pC/N to 128pC/N. For this range of ceramic samples, grain size refinement suppresses the maximum dielectric constant (εmax), shifts the Curie temperature (Tc) to a lower temperature and the orthorhombic-tetragonal phase transition (Tot) to a higher temperature. Further increase of milling time from 25h to 40h produces a gradual degradation in the values of relative density, εRT, and d33 of the resulting ceramics.

Keywords: perovskite, dielectric, ceramics, high-energy milling

Procedia PDF Downloads 303