Search results for: computational chemistry
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2601

Search results for: computational chemistry

1431 Formation of Miniband Structure in Dimer Fibonacci GaAs/Ga1-XAlXAs Superlattices

Authors: Aziz Zoubir, Sefir Yamina, Djelti Redouan, Bentata Samir

Abstract:

The effect of a uniform electric field across multibarrier systems (GaAs/AlxGa1-xAs) is exhaustively explored by a computational model using exact Airy function formalism and the transfer-matrix technique. In the case of biased Dimer Fibonacci Height Barrier superlattices (DFHBSL) structure a strong reduction in transmission properties was observed and the width of the miniband structure linearly decreases with the increase of the applied bias. This is due to the confinement of the states in the miniband structure, which becomes increasingly important (Wannier-Stark effect).

Keywords: Dimer Fibonacci Height Barrier superlattices, singular extended states, exact Airy function, transfer matrix formalism

Procedia PDF Downloads 503
1430 Size-Reduction Strategies for Iris Codes

Authors: Jutta Hämmerle-Uhl, Georg Penn, Gerhard Pötzelsberger, Andreas Uhl

Abstract:

Iris codes contain bits with different entropy. This work investigates different strategies to reduce the size of iris code templates with the aim of reducing storage requirements and computational demand in the matching process. Besides simple sub-sampling schemes, also a binary multi-resolution representation as used in the JBIG hierarchical coding mode is assessed. We find that iris code template size can be reduced significantly while maintaining recognition accuracy. Besides, we propose a two stage identification approach, using small-sized iris code templates in a pre-selection satge, and full resolution templates for final identification, which shows promising recognition behaviour.

Keywords: iris recognition, compact iris code, fast matching, best bits, pre-selection identification, two-stage identification

Procedia PDF Downloads 437
1429 A Two Stage Stochastic Mathematical Model for the Tramp Ship Routing with Time Windows Problem

Authors: Amin Jamili

Abstract:

Nowadays, the majority of international trade in goods is carried by sea, and especially by ships deployed in the industrial and tramp segments. This paper addresses routing the tramp ships and determining the schedules including the arrival times to the ports, berthing times at the ports, and the departure times in an operational planning level. In the operational planning level, the weather can be almost exactly forecasted, however in some routes some uncertainties may remain. In this paper, the voyaging times between some of the ports are considered to be uncertain. To that end, a two-stage stochastic mathematical model is proposed. Moreover, a case study is tested with the presented model. The computational results show that this mathematical model is promising and can represent acceptable solutions.

Keywords: routing, scheduling, tram ships, two stage stochastic model, uncertainty

Procedia PDF Downloads 432
1428 Carbon Blacks: A Broad Type of Carbon Materials with Different Electrocatalytic Activity to Produce H₂O₂

Authors: Alvaro Ramírez, Martín Muñoz-Morales, Ester López- Fernández, Javier Llanos, C. Ania

Abstract:

Carbon blacks are value-added materials typically produced through the incomplete combustion or thermal decomposition of hydrocarbons. Traditionally, they have been used as catalysts in many different applications, but in the last decade, their potential in green chemistry has gained significant attention. Among them, the electrochemical production of H₂O₂ has attracted interest because of their properties as high oxidant capacity or their industrial interest as a bleaching agent. Carbon blacks are commonly used in this application in a catalytic ink that is drop-casted on supporting electrodes and acts as catalysts for the electrochemical production of H₂O₂ through oxygen reduction reaction (ORR). However, the different structural and electrochemical behaviors of each type of carbon black influence their applications. In this line, the term ‘carbon black’, has to be considered as a generic name that does not guarantee any physicochemical properties if any further description is mentioned. In fact, different specific surface area (SSA), surface functional groups, porous structure, and electro catalysts effect seem very important for electrochemical applications, and considerable differences were found during the analysis of four types of carbon blacks. Thus, the aim of this work is to evaluate the influence of SSA, porous structure, oxygen functional groups, and structural defects to differentiate among these carbon blacks (e.g. Vulcan XC72, Superior Graphite Co, Printex XE2, and Prolabo) for H₂O₂ production via ORR, using carbon paper as electrode support with improved selectivity and efficiency. Results indicate that the number and size of pores, along with surface functional groups, are key parameters that significantly affect the overall process efficiency.

Keywords: carbon blacks, oxygen reduction reaction, hydrogen peroxide, porosity, surface functional groups

Procedia PDF Downloads 40
1427 An Exact Algorithm for Location–Transportation Problems in Humanitarian Relief

Authors: Chansiri Singhtaun

Abstract:

This paper proposes a mathematical model and examines the performance of an exact algorithm for a location–transportation problems in humanitarian relief. The model determines the number and location of distribution centers in a relief network, the amount of relief supplies to be stocked at each distribution center and the vehicles to take the supplies to meet the needs of disaster victims under capacity restriction, transportation and budgetary constraints. The computational experiments are conducted on the various sizes of problems that are generated. Branch and bound algorithm is applied for these problems. The results show that this algorithm can solve problem sizes of up to three candidate locations with five demand points and one candidate location with up to twenty demand points without premature termination.

Keywords: disaster response, facility location, humanitarian relief, transportation

Procedia PDF Downloads 444
1426 Influence of Intra-Yarn Permeability on Mesoscale Permeability of Plain Weave and 3D Fabrics

Authors: Debabrata Adhikari, Mikhail Matveev, Louise Brown, Andy Long, Jan Kočí

Abstract:

A good understanding of mesoscale permeability of complex architectures in fibrous porous preforms is of particular interest in order to achieve efficient and cost-effective resin impregnation of liquid composite molding (LCM). Fabrics used in structural reinforcements are typically woven or stitched. However, 3D fabric reinforcement is of particular interest because of the versatility in the weaving pattern with the binder yarn and in-plain yarn arrangements to manufacture thick composite parts, overcome the limitation in delamination, improve toughness etc. To predict the permeability based on the available pore spaces between the inter yarn spaces, unit cell-based computational fluid dynamics models have been using the Stokes Darcy model. Typically, the preform consists of an arrangement of yarns with spacing in the order of mm, wherein each yarn consists of thousands of filaments with spacing in the order of μm. The fluid flow during infusion exchanges the mass between the intra and inter yarn channels, meaning there is no dead-end of flow between the mesopore in the inter yarn space and the micropore in the yarn. Several studies have employed the Brinkman equation to take into account the flow through dual-scale porosity reinforcement to estimate their permeability. Furthermore, to reduce the computational effort of dual scale flow, scale separation criteria based on the ratio between yarn permeability to the yarn spacing was also proposed to quantify the dual scale and negligible micro-scale flow regime for the prediction of mesoscale permeability. In the present work, the key parameter to identify the influence of intra yarn permeability on the mesoscale permeability has been investigated with the systematic study of weft and warp yarn spacing on the plane weave as well as the position of binder yarn and number of in-plane yarn layers on 3D weave fabric. The permeability tensor has been estimated using an OpenFOAM-based model for the various weave pattern with idealized geometry of yarn implemented using open-source software TexGen. Additionally, scale separation criterion has been established based on the various configuration of yarn permeability for the 3D fabric with both the isotropic and anisotropic yarn from Gebart’s model. It was observed that the variation of mesoscale permeability Kxx within 30% when the isotropic porous yarn is considered for a 3D fabric with binder yarn. Furthermore, the permeability model developed in this study will be used for multi-objective optimizations of the preform mesoscale geometry in terms of yarn spacing, binder pattern, and a number of layers with an aim to obtain improved permeability and reduced void content during the LCM process.

Keywords: permeability, 3D fabric, dual-scale flow, liquid composite molding

Procedia PDF Downloads 94
1425 Mutual Authentication for Sensor-to-Sensor Communications in IoT Infrastructure

Authors: Shadi Janbabaei, Hossein Gharaee Garakani, Naser Mohammadzadeh

Abstract:

Internet of things is a new concept that its emergence has caused ubiquity of sensors in human life, so that at any time, all data are collected, processed and transmitted by these sensors. In order to establish a secure connection, the first challenge is authentication between sensors. However, this challenge also requires some features so that the authentication is done properly. Anonymity, untraceability, and being lightweight are among the issues that need to be considered. In this paper, we have evaluated the authentication protocols and have analyzed the security vulnerabilities found in them. Then an improved light weight authentication protocol for sensor-to-sensor communications is presented which uses the hash function and logical operators. The analysis of protocol shows that security requirements have been met and the protocol is resistant against various attacks. In the end, by decreasing the number of computational cost functions, it is argued that the protocol is lighter than before.

Keywords: anonymity, authentication, Internet of Things, lightweight, un-traceability

Procedia PDF Downloads 286
1424 Numerical Investigation of Natural Convection of Pine, Olive and Orange Leaves

Authors: Ali Reza Tahavvor, Saeed Hosseini, Nazli Jowkar, Behnam Amiri

Abstract:

Heat transfer of leaves is a crucial factor in optimal operation of metabolic functions in plants. In order to quantify this phenomenon in different leaves and investigate the influence of leaf shape on heat transfer, natural convection for pine, orange and olive leaves was simulated as representatives of different groups of leaf shapes. CFD techniques were used in this simulation with the purpose to calculate heat transfer of leaves in similar environmental conditions. The problem was simulated for steady state and three-dimensional conditions. From obtained results, it was concluded that heat fluxes of all three different leaves are almost identical, however, total rate of heat transfer have highest and lowest values for orange leaves and pine leaves, respectively.

Keywords: computational fluid dynamic, heat flux, heat transfer, natural convection

Procedia PDF Downloads 359
1423 A Numerical Simulation of Arterial Mass Transport in Presence of Magnetic Field-Links to Atherosclerosis

Authors: H. Aminfar, M. Mohammadpourfard, K. Khajeh

Abstract:

This paper has focused on the most important parameters in the LSC uptake; inlet Re number and Sc number in the presence of non-uniform magnetic field. The magnetic field is arising from the thin wire with electric current placed vertically to the arterial blood vessel. According to the results of this study, applying magnetic field can be a treatment for atherosclerosis by reducing LSC along the vessel wall. Homogeneous porous layer as a arterial wall has been regarded. Blood flow has been considered laminar and incompressible containing Ferro fluid (blood and 4 % vol. Fe₃O₄) under steady state conditions. Numerical solution of governing equations was obtained by using the single-phase model and control volume technique for flow field.

Keywords: LDL surface concentration (LSC), magnetic field, computational fluid dynamics, porous wall

Procedia PDF Downloads 403
1422 Secure Bio Semantic Computing Scheme

Authors: Hiroshi Yamaguchi, Phillip C. Y. Sheu, Ryo Fujita, Shigeo Tsujii

Abstract:

In this paper, the secure BioSemantic Scheme is presented to bridge biological/biomedical research problems and computational solutions via semantic computing. Due to the diversity of problems in various research fields, the semantic capability description language (SCDL) plays and important role as a common language and generic form for problem formalization. SCDL is expected the essential for future semantic and logical computing in Biosemantic field. We show several example to Biomedical problems in this paper. Moreover, in the coming age of cloud computing, the security problem is considered to be crucial issue and we presented a practical scheme to cope with this problem.

Keywords: biomedical applications, private information retrieval (PIR), semantic capability description language (SCDL), semantic computing

Procedia PDF Downloads 388
1421 Safety Testing of Commercial Lithium-Ion Batteries and Failure Modes Analysis

Authors: Romeo Malik, Yashraj Tripathy, Anup Barai

Abstract:

Transportation safety is a major concern for vehicle electrification on a large-scale. The failure cost of lithium-ion batteries is substantial and is significantly impacted by higher liability and replacement cost. With continuous advancement on the material front in terms of higher energy density, upgrading safety characteristics are becoming more crucial for broader integration of lithium-ion batteries. Understanding and impeding thermal runaway is the prime issue for battery safety researchers. In this study, a comprehensive comparison of thermal runaway mechanisms for two different cathode types, Li(Ni₀.₃Co₀.₃Mn₀.₃)O₂ and Li(Ni₀.₈Co₀.₁₅Al₀.₀₅)O₂ is explored. Both the chemistries were studied for different states of charge, and the various abuse scenarios that lead to thermal runaway is investigated. Abuse tests include mechanical abuse, electrical abuse, and thermal abuse. Batteries undergo thermal runaway due to a series of combustible reactions taking place internally; this is observed as multiple jets of flame reaching temperatures of the order of 1000ºC. The physicochemical characterisation was performed on cells, prior to and after abuse. Battery’s state of charge and chemistry have a significant effect on the flame temperature profiles which is otherwise quantified as heat released. Majority of the failures during transportation is due to these external short circuit. Finally, a mitigation approach is proposed to impede the thermal runaway hazard. Transporting lithium-ion batteries under low states of charge is proposed as a way forward. Batteries at low states of charge have demonstrated minimal heat release under thermal runaway reducing the risk of secondary hazards such as thermal runaway propagation.

Keywords: battery reliability, lithium-ion batteries, thermal runaway characterisation, tomography

Procedia PDF Downloads 117
1420 Single Machine Scheduling Problem to Minimize the Number of Tardy Jobs

Authors: Ali Allahverdi, Harun Aydilek, Asiye Aydilek

Abstract:

Minimizing the number of tardy jobs is an important factor to consider while making scheduling decisions. This is because on-time shipments are vital for lowering cost and increasing customers’ satisfaction. This paper addresses the single machine scheduling problem with the objective of minimizing the number of tardy jobs. The only known information is the lower and upper bounds for processing times, and deterministic job due dates. A dominance relation is established, and an algorithm is proposed. Several heuristics are generated from the proposed algorithm. Computational analysis indicates that the performance of one of the heuristics is very close to the optimal solution, i.e., on average, less than 1.5 % from the optimal solution.

Keywords: single machine scheduling, number of tardy jobs, heuristi, lower and upper bounds

Procedia PDF Downloads 552
1419 A Hybrid LES-RANS Approach to Analyse Coupled Heat Transfer and Vortex Structures in Separated and Reattached Turbulent Flows

Authors: C. D. Ellis, H. Xia, X. Chen

Abstract:

Experimental and computational studies investigating heat transfer in separated flows have been of increasing importance over the last 60 years, as efforts are being made to understand and improve the efficiency of components such as combustors, turbines, heat exchangers, nuclear reactors and cooling channels. Understanding of not only the time-mean heat transfer properties but also the unsteady properties is vital for design of these components. As computational power increases, more sophisticated methods of modelling these flows become available for use. The hybrid LES-RANS approach has been applied to a blunt leading edge flat plate, utilising a structured grid at a moderate Reynolds number of 20300 based on the plate thickness. In the region close to the wall, the RANS method is implemented for two turbulence models; the one equation Spalart-Allmaras model and Menter’s two equation SST k-ω model. The LES region occupies the flow away from the wall and is formulated without any explicit subgrid scale LES modelling. Hybridisation is achieved between the two methods by the blending of the nearest wall distance. Validation of the flow was obtained by assessing the mean velocity profiles in comparison to similar studies. Identifying the vortex structures of the flow was obtained by utilising the λ2 criterion to identify vortex cores. The qualitative structure of the flow compared with experiments of similar Reynolds number. This identified the 2D roll up of the shear layer, breaking down via the Kelvin-Helmholtz instability. Through this instability the flow progressed into hairpin like structures, elongating as they advanced downstream. Proper Orthogonal Decomposition (POD) analysis has been performed on the full flow field and upon the surface temperature of the plate. As expected, the breakdown of POD modes for the full field revealed a relatively slow decay compared to the surface temperature field. Both POD fields identified the most energetic fluctuations occurred in the separated and recirculation region of the flow. Latter modes of the surface temperature identified these levels of fluctuations to dominate the time-mean region of maximum heat transfer and flow reattachment. In addition to the current research, work will be conducted in tracking the movement of the vortex cores and the location and magnitude of temperature hot spots upon the plate. This information will support the POD and statistical analysis performed to further identify qualitative relationships between the vortex dynamics and the response of the surface heat transfer.

Keywords: heat transfer, hybrid LES-RANS, separated and reattached flow, vortex dynamics

Procedia PDF Downloads 226
1418 Solid Particles Transport and Deposition Prediction in a Turbulent Impinging Jet Using the Lattice Boltzmann Method and a Probabilistic Model on GPU

Authors: Ali Abdul Kadhim, Fue Lien

Abstract:

Solid particle distribution on an impingement surface has been simulated utilizing a graphical processing unit (GPU). In-house computational fluid dynamics (CFD) code has been developed to investigate a 3D turbulent impinging jet using the lattice Boltzmann method (LBM) in conjunction with large eddy simulation (LES) and the multiple relaxation time (MRT) models. This paper proposed an improvement in the LBM-cellular automata (LBM-CA) probabilistic method. In the current model, the fluid flow utilizes the D3Q19 lattice, while the particle model employs the D3Q27 lattice. The particle numbers are defined at the same regular LBM nodes, and transport of particles from one node to its neighboring nodes are determined in accordance with the particle bulk density and velocity by considering all the external forces. The previous models distribute particles at each time step without considering the local velocity and the number of particles at each node. The present model overcomes the deficiencies of the previous LBM-CA models and, therefore, can better capture the dynamic interaction between particles and the surrounding turbulent flow field. Despite the increasing popularity of LBM-MRT-CA model in simulating complex multiphase fluid flows, this approach is still expensive in term of memory size and computational time required to perform 3D simulations. To improve the throughput of each simulation, a single GeForce GTX TITAN X GPU is used in the present work. The CUDA parallel programming platform and the CuRAND library are utilized to form an efficient LBM-CA algorithm. The methodology was first validated against a benchmark test case involving particle deposition on a square cylinder confined in a duct. The flow was unsteady and laminar at Re=200 (Re is the Reynolds number), and simulations were conducted for different Stokes numbers. The present LBM solutions agree well with other results available in the open literature. The GPU code was then used to simulate the particle transport and deposition in a turbulent impinging jet at Re=10,000. The simulations were conducted for L/D=2,4 and 6, where L is the nozzle-to-surface distance and D is the jet diameter. The effect of changing the Stokes number on the particle deposition profile was studied at different L/D ratios. For comparative studies, another in-house serial CPU code was also developed, coupling LBM with the classical Lagrangian particle dispersion model. Agreement between results obtained with LBM-CA and LBM-Lagrangian models and the experimental data is generally good. The present GPU approach achieves a speedup ratio of about 350 against the serial code running on a single CPU.

Keywords: CUDA, GPU parallel programming, LES, lattice Boltzmann method, MRT, multi-phase flow, probabilistic model

Procedia PDF Downloads 205
1417 Numerical Study of the Dynamic Behavior of an Air Conditioning with a Muti Confined Swirling Jet

Authors: Mohamed Roudane

Abstract:

The objective of this study is to know the dynamic behavior of a multi swirling jet used for air conditioning inside a room. To conduct this study, we designed a facility to ensure proper conditions of confinement in which we placed five air blowing devices with adjustable vanes, providing multiple swirling turbulent jets. The jets were issued in the same direction and the same spacing defined between them. This study concerned the numerical simulation of the dynamic mixing of confined swirling multi-jets, and examined the influence of important parameters of a swirl diffuser system on the dynamic performance characteristics. The CFD investigations are carried out by a hybrid mesh to discretize the computational domain. In this work, the simulations have been performed using the finite volume method and FLUENT solver, in which the standard k-ε RNG turbulence model was used for turbulence computations.

Keywords: simulation, dynamic behavior, swirl, turbulent jet

Procedia PDF Downloads 395
1416 CFD Simulation of Surge Wave Generated by Flow-Like Landslides

Authors: Liu-Chao Qiu

Abstract:

The damage caused by surge waves generated in water bodies by flow-like landslides can be very high in terms of human lives and economic losses. The complicated phenomena occurred in this highly unsteady process are difficult to model because three interacting phases: air, water and sediment are involved. The problem therefore is challenging since the effects of non-Newtonian fluid describing the rheology of the flow-like landslides, multi-phase flow and free surface have to be included in the simulation. In this work, the commercial computational fluid dynamics (CFD) package FLUENT is used to model the surge waves due to flow-like landslides. The comparison between the numerical results and experimental data reported in the literature confirms the accuracy of the method.

Keywords: flow-like landslide, surge wave, VOF, non-Newtonian fluids, multi-phase flows, free surface flow

Procedia PDF Downloads 414
1415 Economized Sensor Data Processing with Vehicle Platooning

Authors: Henry Hexmoor, Kailash Yelasani

Abstract:

We present vehicular platooning as a special case of crowd-sensing framework where sharing sensory information among a crowd is used for their collective benefit. After offering an abstract policy that governs processes involving a vehicular platoon, we review several common scenarios and components surrounding vehicular platooning. We then present a simulated prototype that illustrates efficiency of road usage and vehicle travel time derived from platooning. We have argued that one of the paramount benefits of platooning that is overlooked elsewhere, is the substantial computational savings (i.e., economizing benefits) in acquisition and processing of sensory data among vehicles sharing the road. The most capable vehicle can share data gathered from its sensors with nearby vehicles grouped into a platoon.

Keywords: cloud network, collaboration, internet of things, social network

Procedia PDF Downloads 190
1414 A Simulation Modeling Approach for Optimization of Storage Space Allocation in Container Terminal

Authors: Gamal Abd El-Nasser A. Said, El-Sayed M. El-Horbaty

Abstract:

Container handling problems at container terminals are NP-hard problems. This paper presents an approach using discrete-event simulation modeling to optimize solution for storage space allocation problem, taking into account all various interrelated container terminal handling activities. The proposed approach is applied on a real case study data of container terminal at Alexandria port. The computational results show the effectiveness of the proposed model for optimization of storage space allocation in container terminal where 54% reduction in containers handling time in port is achieved.

Keywords: container terminal, discrete-event simulation, optimization, storage space allocation

Procedia PDF Downloads 320
1413 Design Optimization and Thermoacoustic Analysis of Pulse Tube Cryocooler Components

Authors: K. Aravinth, C. T. Vignesh

Abstract:

The usage of pulse tube cryocoolers is significantly increased mainly due to the advantage of the absence of moving parts. The underlying idea of this project is to optimize the design of pulse tube, regenerator, a resonator in cryocooler and analyzing the thermo-acoustic oscillations with respect to the design parameters. Computational Fluid Dynamic (CFD) model with time-dependent validation is done to predict its performance. The continuity, momentum, and energy equations are solved for various porous media regions. The effect of changing the geometries and orientation will be validated and investigated in performance. The pressure, temperature and velocity fields in the regenerator and pulse tube are evaluated. This optimized design performance results will be compared with the existing pulse tube cryocooler design. The sinusoidal behavior of cryocooler in acoustic streaming patterns in pulse tube cryocooler will also be evaluated.

Keywords: acoustics, cryogenics, design, optimization

Procedia PDF Downloads 172
1412 Trajectory Planning Algorithms for Autonomous Agricultural Vehicles

Authors: Caner Koc, Dilara Gerdan Koc, Mustafa Vatandas

Abstract:

The fundamental components of autonomous agricultural robot design, such as having a working understanding of coordinates, correctly constructing the desired route, and sensing environmental elements, are the most important. A variety of sensors, hardware, and software are employed by agricultural robots to find these systems.These enable the fully automated driving system of an autonomous vehicle to simulate how a human-driven vehicle would respond to changing environmental conditions. To calculate the vehicle's motion trajectory using data from the sensors, this automation system typically consists of a sophisticated software architecture based on object detection and driving decisions. In this study, the software architecture of an autonomous agricultural vehicle is compared to the trajectory planning techniques.

Keywords: agriculture 5.0, computational intelligence, motion planning, trajectory planning

Procedia PDF Downloads 71
1411 Single Ion Conductors for Lithium-Ion Battery Application

Authors: Seyda Tugba Gunday Anil, Ayhan Bozkurt

Abstract:

Next generation lithium batteries are taking more attention and single-ion polymer electrolytes are expected to play a significant role in the development of these kinds of energy storage systems. In the present work we used a different strategy to design of novel solid single-ion conducting inorganic polymer electrolytes based on lithium polyvinyl alcohol oxalate borate (Li(PVAOB), lithium polyacrylic acid oxalate borate (LiPAAOB) and poly (ethylene glycol) methacrylate (PEGMA). Free radical polymerization was used to convert PEGMA into PPEGMA and LiPAAOB is prepared from poly (acrylic acid), oxalic acid and boric acid. Blend polymer electrolytes were produced by mixing of LiPAAOB or Li (PVAOB with PPEGMA at different stoichiometric ratios to enhance the single ion conductivity of the systems. To exploit the flexible chemistry and increase the segmental mobility of the blend electrolyte, the composition was changed up to 80% with respect to the guest polymer, PPEGMA. FT-IR and differential scanning calorimeter techniques confirmed the interaction between the host and guest polymers. TGA verified that the thermal stability of the blends increased up to approximately 200 C. Scanning electron microscopy images confirm the homogeneity of the blend electrolytes. CV studies showed that electrochemical stability electrochemical stability window is approximately 5 V versus Li/Li⁺. The effect of PPEGMA on to the Lithium-ion conductivity was investigated using dielectric impedance analyzer. The maximum single ion conductivity was measured as 1.3 × 10⁻⁴ S/cm at 100 C for the sample LiPAAOB-80PPEGMA. Clearly, the results confirmed the positive effect to the increment in ionic conductivity of the blend electrolytes with the addition of PPEGMA.

Keywords: single-ion conductor, inorganic polymer, blends, polymer electrolyte

Procedia PDF Downloads 164
1410 Multiscale Connected Component Labelling and Applications to Scientific Microscopy Image Processing

Authors: Yayun Hsu, Henry Horng-Shing Lu

Abstract:

In this paper, a new method is proposed to extending the method of connected component labeling from processing binary images to multi-scale modeling of images. By using the adaptive threshold of multi-scale attributes, this approach minimizes the possibility of missing those important components with weak intensities. In addition, the computational cost of this approach remains similar to that of the typical approach of component labeling. Then, this methodology is applied to grain boundary detection and Drosophila Brain-bow neuron segmentation. These demonstrate the feasibility of the proposed approach in the analysis of challenging microscopy images for scientific discovery.

Keywords: microscopic image processing, scientific data mining, multi-scale modeling, data mining

Procedia PDF Downloads 433
1409 Recovery of Au and Other Metals from Old Electronic Components by Leaching and Liquid Extraction Process

Authors: Tomasz Smolinski, Irena Herdzik-Koniecko, Marta Pyszynska, M. Rogowski

Abstract:

Old electronic components can be easily found nowadays. Significant quantities of valuable metals such as gold, silver or copper are used for the production of advanced electronic devices. Old useless electronic device slowly became a new source of precious metals, very often more efficient than natural. For example, it is possible to recover more gold from 1-ton personal computers than seventeen tons of gold ore. It makes urban mining industry very profitable and necessary for sustainable development. For the recovery of metals from waste of electronic equipment, various treatment options based on conventional physical, hydrometallurgical and pyrometallurgical processes are available. In this group hydrometallurgy processes with their relatively low capital cost, low environmental impact, potential for high metal recoveries and suitability for small scale applications, are very promising options. Institute of Nuclear Chemistry and Technology has great experience in hydrometallurgy processes especially focused on recovery metals from industrial and agricultural wastes. At the moment, urban mining project is carried out. The method of effective recovery of valuable metals from central processing units (CPU) components has been developed. The principal processes such as acidic leaching and solvent extraction were used for precious metals recovery from old processors and graphic cards. Electronic components were treated by acidic solution at various conditions. Optimal acid concentration, time of the process and temperature were selected. Precious metals have been extracted to the aqueous phase. At the next step, metals were selectively extracted by organic solvents such as oximes or tributyl phosphate (TBP) etc. Multistage mixer-settler equipment was used. The process was optimized.

Keywords: electronic waste, leaching, hydrometallurgy, metal recovery, solvent extraction

Procedia PDF Downloads 133
1408 Lexicon-Based Sentiment Analysis for Stock Movement Prediction

Authors: Zane Turner, Kevin Labille, Susan Gauch

Abstract:

Sentiment analysis is a broad and expanding field that aims to extract and classify opinions from textual data. Lexicon-based approaches are based on the use of a sentiment lexicon, i.e., a list of words each mapped to a sentiment score, to rate the sentiment of a text chunk. Our work focuses on predicting stock price change using a sentiment lexicon built from financial conference call logs. We present a method to generate a sentiment lexicon based upon an existing probabilistic approach. By using a domain-specific lexicon, we outperform traditional techniques and demonstrate that domain-specific sentiment lexicons provide higher accuracy than generic sentiment lexicons when predicting stock price change.

Keywords: computational finance, sentiment analysis, sentiment lexicon, stock movement prediction

Procedia PDF Downloads 123
1407 Lexicon-Based Sentiment Analysis for Stock Movement Prediction

Authors: Zane Turner, Kevin Labille, Susan Gauch

Abstract:

Sentiment analysis is a broad and expanding field that aims to extract and classify opinions from textual data. Lexicon-based approaches are based on the use of a sentiment lexicon, i.e., a list of words each mapped to a sentiment score, to rate the sentiment of a text chunk. Our work focuses on predicting stock price change using a sentiment lexicon built from financial conference call logs. We introduce a method to generate a sentiment lexicon based upon an existing probabilistic approach. By using a domain-specific lexicon, we outperform traditional techniques and demonstrate that domain-specific sentiment lexicons provide higher accuracy than generic sentiment lexicons when predicting stock price change.

Keywords: computational finance, sentiment analysis, sentiment lexicon, stock movement prediction

Procedia PDF Downloads 168
1406 An Optimal Bayesian Maintenance Policy for a Partially Observable System Subject to Two Failure Modes

Authors: Akram Khaleghei Ghosheh Balagh, Viliam Makis, Leila Jafari

Abstract:

In this paper, we present a new maintenance model for a partially observable system subject to two failure modes, namely a catastrophic failure and a failure due to the system degradation. The system is subject to condition monitoring and the degradation process is described by a hidden Markov model. A cost-optimal Bayesian control policy is developed for maintaining the system. The control problem is formulated in the semi-Markov decision process framework. An effective computational algorithm is developed and illustrated by a numerical example.

Keywords: partially observable system, hidden Markov model, competing risks, multivariate Bayesian control

Procedia PDF Downloads 453
1405 Nanopharmaceutical: A Comprehensive Appearance of Drug Delivery System

Authors: Mahsa Fathollahzadeh

Abstract:

The various nanoparticles employed in drug delivery applications include micelles, liposomes, solid lipid nanoparticles, polymeric nanoparticles, functionalized nanoparticles, nanocrystals, cyclodextrins, dendrimers, and nanotubes. Micelles, composed of amphiphilic block copolymers, can encapsulate hydrophobic molecules, allowing for targeted delivery. Liposomes, vesicular structures made up of phospholipids, can encapsulate both hydrophobic and hydrophilic molecules, providing a flexible platform for delivering therapeutic agents. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) are designed to improve the stability and bioavailability of lipophilic drugs. Polymeric nanoparticles, such as poly(lactic-co-glycolic acid) (PLGA), are biodegradable and can be engineered to release drugs in a controlled manner. Functionalized nanoparticles, coated with targeting ligands or antibodies, can specifically target diseased cells or tissues. Nanocrystals, engineered to have specific surface properties, can enhance the solubility and bioavailability of poorly soluble drugs. Cyclodextrins, doughnut-shaped molecules with hydrophobic cavities, can be complex with hydrophobic molecules, allowing for improved solubility and bioavailability. Dendrimers, branched polymers with a central core, can be designed to deliver multiple therapeutic agents simultaneously. Nanotubes and metallic nanoparticles, such as gold nanoparticles, offer real-time tracking capabilities and can be used to detect biomolecular interactions. The use of these nanoparticles has revolutionized the field of drug delivery, enabling targeted and controlled release of therapeutic agents, reduced toxicity, and improved patient outcomes.

Keywords: nanotechnology, nanopharmaceuticals, drug-delivery, proteins, ligands, nanoparticles, chemistry

Procedia PDF Downloads 46
1404 Magnetohydrodynamic Flows in a Misaligned Duct under a Uniform Magnetic Field

Authors: Mengqi Zhu, Chang Nyung Kim

Abstract:

This study numerically investigates three-dimensional liquid-metal (LM) magnetohydrodynamic (MHD) flows in a misaligned duct under a uniform magnetic field. The duct consists of two misaligned horizontal channels (one is inflow channel, the other is outflow channel) and one central vertical channel. Computational fluid dynamics simulations are performed to predict the behavior of the MHD flows, using commercial code CFX. In the current study, a case with Hartmann number 1000 is considered. The electromagnetic features of LM MHD flows are elucidated to examine the interdependency of the flow velocity, current density, electric potential, pressure drop and Lorentz force. The results show that pressure decreases linearly along the main flow direction.

Keywords: CFX, liquid-metal magnetohydrodynamic flows, misaligned duct, pressure drop

Procedia PDF Downloads 281
1403 Cryptanalysis of ID-Based Deniable Authentication Protocol Based On Diffie-Hellman Problem on Elliptic Curve

Authors: Eun-Jun Yoon

Abstract:

Deniable authentication protocol is a new security authentication mechanism which can enable a receiver to identify the true source of a given message, but not to prove the identity of the sender to a third party. In 2013, Kar proposed a secure ID-based deniable authentication protocol whose security is based on computational infeasibility of solving Elliptic Curve Diffie-Hellman Problem (ECDHP). Kar claimed that the proposed protocol achieves properties of deniable authentication, mutual authentication, and message confidentiality. However, this paper points out that Kar's protocol still suffers from sender spoofing attack and message modification attack unlike its claims.

Keywords: deniable authentication, elliptic curve cryptography, Diffie-Hellman problem, cryptanalysis

Procedia PDF Downloads 328
1402 Fluid Flow in Roughened Square Tube for Internal Blade Cooling

Authors: M. H. Alhajeri, Hamad M. Alhajeri, A. H. Alenezi, Abdulrahman Almutairi, Ayedh Alajmi

Abstract:

A computational investigation has been undertaken to study fluid flow through roughened tube with turbulators. Such flows are of particular interest in cooling internally high pressure turbine blades. Turbulators are fixed in each side of the passage (tube) to promote turbulence and enhance heat transfer. The tube had an aspect ratio of 1 and the position of the ribs closest to the bend are at 0.45d from the entrance and exit of the bend. The aim of this study is to examine the tube roughened by turbulator by studying some flow parameters upstream and downstream of the turbulator. It is cleared that the eddies sizes are decreased downstream in the first two turbulators and increased after the turbulators increases the turbulence in the tube and enhanced the heat transfer in the blade.

Keywords: fluid flow, turbulator, computation, blade

Procedia PDF Downloads 421