Search results for: approximate computing
159 Design and Construction of a Home-Based, Patient-Led, Therapeutic, Post-Stroke Recovery System Using Iterative Learning Control
Authors: Marco Frieslaar, Bing Chu, Eric Rogers
Abstract:
Stroke is a devastating illness that is the second biggest cause of death in the world (after heart disease). Where it does not kill, it leaves survivors with debilitating sensory and physical impairments that not only seriously harm their quality of life, but also cause a high incidence of severe depression. It is widely accepted that early intervention is essential for recovery, but current rehabilitation techniques largely favor hospital-based therapies which have restricted access, expensive and specialist equipment and tend to side-step the emotional challenges. In addition, there is insufficient funding available to provide the long-term assistance that is required. As a consequence, recovery rates are poor. The relatively unexplored solution is to develop therapies that can be harnessed in the home and are formulated from technologies that already exist in everyday life. This would empower individuals to take control of their own improvement and provide choice in terms of when and where they feel best able to undertake their own healing. This research seeks to identify how effective post-stroke, rehabilitation therapy can be applied to upper limb mobility, within the physical context of a home rather than a hospital. This is being achieved through the design and construction of an automation scheme, based on iterative learning control and the Riener muscle model, that has the ability to adapt to the user and react to their level of fatigue and provide tangible physical recovery. It utilizes a SMART Phone and laptop to construct an iterative learning control (ILC) system, that monitors upper arm movement in three dimensions, as a series of exercises are undertaken. The equipment generates functional electrical stimulation to assist in muscle activation and thus improve directional accuracy. In addition, it monitors speed, accuracy, areas of motion weakness and similar parameters to create a performance index that can be compared over time and extrapolated to establish an independent and objective assessment scheme, plus an approximate estimation of predicted final outcome. To further extend its assessment capabilities, nerve conduction velocity readings are taken by the software, between the shoulder and hand muscles. This is utilized to measure the speed of response of neuron signal transfer along the arm and over time, an online indication of regeneration levels can be obtained. This will prove whether or not sufficient training intensity is being achieved even before perceivable movement dexterity is observed. The device also provides the option to connect to other users, via the internet, so that the patient can avoid feelings of isolation and can undertake movement exercises together with others in a similar position. This should create benefits not only for the encouragement of rehabilitation participation, but also an emotional support network potential. It is intended that this approach will extend the availability of stroke recovery options, enable ease of access at a low cost, reduce susceptibility to depression and through these endeavors, enhance the overall recovery success rate.Keywords: home-based therapy, iterative learning control, Riener muscle model, SMART phone, stroke rehabilitation
Procedia PDF Downloads 264158 Fully Eulerian Finite Element Methodology for the Numerical Modeling of the Dynamics of Heart Valves
Authors: Aymen Laadhari
Abstract:
During the last decade, an increasing number of contributions have been made in the fields of scientific computing and numerical methodologies applied to the study of the hemodynamics in the heart. In contrast, the numerical aspects concerning the interaction of pulsatile blood flow with highly deformable thin leaflets have been much less explored. This coupled problem remains extremely challenging and numerical difficulties include e.g. the resolution of full Fluid-Structure Interaction problem with large deformations of extremely thin leaflets, substantial mesh deformations, high transvalvular pressure discontinuities, contact between leaflets. Although the Lagrangian description of the structural motion and strain measures is naturally used, many numerical complexities can arise when studying large deformations of thin structures. Eulerian approaches represent a promising alternative to readily model large deformations and handle contact issues. We present a fully Eulerian finite element methodology tailored for the simulation of pulsatile blood flow in the aorta and sinus of Valsalva interacting with highly deformable thin leaflets. Our method enables to use a fluid solver on a fixed mesh, whilst being able to easily model the mechanical properties of the valve. We introduce a semi-implicit time integration scheme based on a consistent NewtonRaphson linearization. A variant of the classical Newton method is introduced and guarantees a third-order convergence. High-fidelity computational geometries are built and simulations are performed under physiological conditions. We address in detail the main features of the proposed method, and we report several experiments with the aim of illustrating its accuracy and efficiency.Keywords: eulerian, level set, newton, valve
Procedia PDF Downloads 277157 Optimizing Energy Efficiency: Leveraging Big Data Analytics and AWS Services for Buildings and Industries
Authors: Gaurav Kumar Sinha
Abstract:
In an era marked by increasing concerns about energy sustainability, this research endeavors to address the pressing challenge of energy consumption in buildings and industries. This study delves into the transformative potential of AWS services in optimizing energy efficiency. The research is founded on the recognition that effective management of energy consumption is imperative for both environmental conservation and economic viability. Buildings and industries account for a substantial portion of global energy use, making it crucial to develop advanced techniques for analysis and reduction. This study sets out to explore the integration of AWS services with big data analytics to provide innovative solutions for energy consumption analysis. Leveraging AWS's cloud computing capabilities, scalable infrastructure, and data analytics tools, the research aims to develop efficient methods for collecting, processing, and analyzing energy data from diverse sources. The core focus is on creating predictive models and real-time monitoring systems that enable proactive energy management. By harnessing AWS's machine learning and data analytics capabilities, the research seeks to identify patterns, anomalies, and optimization opportunities within energy consumption data. Furthermore, this study aims to propose actionable recommendations for reducing energy consumption in buildings and industries. By combining AWS services with metrics-driven insights, the research strives to facilitate the implementation of energy-efficient practices, ultimately leading to reduced carbon emissions and cost savings. The integration of AWS services not only enhances the analytical capabilities but also offers scalable solutions that can be customized for different building and industrial contexts. The research also recognizes the potential for AWS-powered solutions to promote sustainable practices and support environmental stewardship.Keywords: energy consumption analysis, big data analytics, AWS services, energy efficiency
Procedia PDF Downloads 63156 Thermal Characterisation of Multi-Coated Lightweight Brake Rotors for Passenger Cars
Authors: Ankit Khurana
Abstract:
The sufficient heat storage capacity or ability to dissipate heat is the most decisive parameter to have an effective and efficient functioning of Friction-based Brake Disc systems. The primary aim of the research was to analyse the effect of multiple coatings on lightweight disk rotors surface which not only alleviates the mass of vehicle & also, augments heat transfer. This research is projected to aid the automobile fraternity with an enunciated view over the thermal aspects in a braking system. The results of the project indicate that with the advent of modern coating technologies a brake system’s thermal curtailments can be removed and together with forced convection, heat transfer processes can see a drastic improvement leading to increased lifetime of the brake rotor. Other advantages of modifying the surface of a lightweight rotor substrate will be to reduce the overall weight of the vehicle, decrease the risk of thermal brake failure (brake fade and fluid vaporization), longer component life, as well as lower noise and vibration characteristics. A mathematical model was constructed in MATLAB which encompassing the various thermal characteristics of the proposed coatings and substrate materials required to approximate the heat flux values in a free and forced convection environment; resembling to a real-time braking phenomenon which could easily be modelled into a full cum scaled version of the alloy brake rotor part in ABAQUS. The finite element of a brake rotor was modelled in a constrained environment such that the nodal temperature between the contact surfaces of the coatings and substrate (Wrought Aluminum alloy) resemble an amalgamated solid brake rotor element. The initial results obtained were for a Plasma Electrolytic Oxidized (PEO) substrate wherein the Aluminum alloy gets a hard ceramic oxide layer grown on its transitional phase. The rotor was modelled and then evaluated in real-time for a constant ‘g’ braking event (based upon the mathematical heat flux input and convective surroundings), which reflected the necessity to deposit a conducting coat (sacrificial) above the PEO layer in order to inhibit thermal degradation of the barrier coating prematurely. Taguchi study was then used to bring out certain critical factors which may influence the maximum operating temperature of a multi-coated brake disc by simulating brake tests: a) an Alpine descent lasting 50 seconds; b) an Autobahn stop lasting 3.53 seconds; c) a Six–high speed repeated stop in accordance to FMVSS 135 lasting 46.25 seconds. Thermal Barrier coating thickness and Vane heat transfer coefficient were the two most influential factors and owing to their design and manufacturing constraints a final optimized model was obtained which survived the 6-high speed stop test as per the FMVSS -135 specifications. The simulation data highlighted the merits for preferring Wrought Aluminum alloy 7068 over Grey Cast Iron and Aluminum Metal Matrix Composite in coherence with the multiple coating depositions.Keywords: lightweight brakes, surface modification, simulated braking, PEO, aluminum
Procedia PDF Downloads 407155 Application of Aerogeomagnetic and Ground Magnetic Surveys for Deep-Seated Kimberlite Pipes in Central India
Authors: Utkarsh Tripathi, Bikalp C. Mandal, Ravi Kumar Umrao, Sirsha Das, M. K. Bhowmic, Joyesh Bagchi, Hemant Kumar
Abstract:
The Central India Diamond Province (CIDP) is known for the occurrences of primary and secondary sources for diamonds from the Vindhyan platformal sediments, which host several kimberlites, with one operating mine. The known kimberlites are Neo-Proterozoic in age and intrude into the Kaimur Group of rocks. Based on the interpretation of areo-geomagnetic data, three potential zones were demarcated in parts of Chitrakoot and Banda districts, Uttar Pradesh, and Satna district, Madhya Pradesh, India. To validate the aero-geomagnetic interpretation, ground magnetic coupled with a gravity survey was conducted to validate the anomaly and explore the possibility of some pipes concealed beneath the Vindhyan sedimentary cover. Geologically the area exposes the milky white to buff-colored arkosic and arenitic sandstone belonging to the Dhandraul Formation of the Kaimur Group, which are undeformed and unmetamorphosed providing almost transparent media for geophysical exploration. There is neither surface nor any geophysical indication of intersections of linear structures, but the joint patterns depict three principal joints along NNE-SSW, ENE-WSW, and NW-SE directions with vertical to sub-vertical dips. Aeromagnetic data interpretation brings out three promising zones with the bi-polar magnetic anomaly (69-602nT) that represent potential kimberlite intrusive concealed below at an approximate depth of 150-170m. The ground magnetic survey has brought out the above-mentioned anomalies in zone-I, which is congruent with the available aero-geophysical data. The magnetic anomaly map shows a total variation of 741 nT over the area. Two very high magnetic zones (H1 and H2) have been observed with around 500 nT and 400 nT magnitudes, respectively. Anomaly zone H1 is located in the west-central part of the area, south of Madulihai village, while anomaly zone H2 is located 2km apart in the north-eastern direction. The Euler 3D solution map indicates the possible existence of the ultramafic body in both the magnetic highs (H1 and H2). The H2 high shows the shallow depth, and H1 shows a deeper depth solution. In the reduced-to-pole (RTP) method, the bipolar anomaly disappears and indicates the existence of one causative source for both anomalies, which is, in all probabilities, an ultramafic suite of rock. The H1 magnetic high represents the main body, which persists up to depths of ~500m, as depicted through the upward continuation derivative map. Radially Averaged Power Spectrum (RAPS) shows the thickness of loose sediments up to 25m with a cumulative depth of 154m for sandstone overlying the ultramafic body. The average depth range of the shallower body (H2) is 60.5-86 meters, as estimated through the Peters half slope method. Magnetic (TF) anomaly with BA contour also shows high BA value around the high zones of magnetic anomaly (H1 and H2), which suggests that the causative body is with higher density and susceptibility for the surrounding host rock. The ground magnetic survey coupled with the gravity confirms a potential target for further exploration as the findings are co-relatable with the presence of the known diamondiferous kimberlites in this region, which post-date the rocks of the Kaimur Group.Keywords: Kaimur, kimberlite, Euler 3D solution, magnetic
Procedia PDF Downloads 73154 Products in Early Development Phases: Ecological Classification and Evaluation Using an Interval Arithmetic Based Calculation Approach
Authors: Helen L. Hein, Joachim Schwarte
Abstract:
As a pillar of sustainable development, ecology has become an important milestone in research community, especially due to global challenges like climate change. The ecological performance of products can be scientifically conducted with life cycle assessments. In the construction sector, significant amounts of CO2 emissions are assigned to the energy used for building heating purposes. Therefore, sustainable construction materials for insulating purposes are substantial, whereby aerogels have been explored intensively in the last years due to their low thermal conductivity. Therefore, the WALL-ACE project aims to develop an aerogel-based thermal insulating plaster that would achieve minor thermal conductivities. But as in the early stage of development phases, a lot of information is still missing or not yet accessible, the ecological performance of innovative products bases increasingly on uncertain data that can lead to significant deviations in the results. To be able to predict realistically how meaningful the results are and how viable the developed products may be with regard to their corresponding respective market, these deviations however have to be considered. Therefore, a classification method is presented in this study, which may allow comparing the ecological performance of modern products with already established and competitive materials. In order to achieve this, an alternative calculation method was used that allows computing with lower and upper bounds to consider all possible values without precise data. The life cycle analysis of the considered products was conducted with an interval arithmetic based calculation method. The results lead to the conclusion that the interval solutions describing the possible environmental impacts are so wide that the result usability is limited. Nevertheless, a further optimization in reducing environmental impacts of aerogels seems to be needed to become more competitive in the future.Keywords: aerogel-based, insulating material, early development phase, interval arithmetic
Procedia PDF Downloads 139153 The Politics of Identity and Retributive Genocidal Massacre against Chena Amhara under International Humanitarian Law
Authors: Gashaw Sisay Zenebe
Abstract:
Northern-Ethiopian conflict that broke out on 04 November 2020 between the central government and TPLF caused destruction beyond imagination in all aspects; millions of people have been killed, including civilians, mainly women, and children. Civilians have been indiscriminately attacked simply because of their ethnic or religious identity. Warrying parties committed serious crimes of international concern opposite to International Humanitarian Law (IHL). A House of People Representatives (HPR) declared that the terrorist Tigrean Defense Force (TDF), encompassing all segments of its people, waged war against North Gondar through human flooding. On Aug 30, 2021, after midnight, TDF launched a surprise attack against Chena People who had been drunk and deep slept due to the annual festivity. Unlike the lowlands, however, ENDF conjoined the local people to fight TDF in these Highland areas. This research examines identity politics and the consequential genocidal massacre of Chena, including its human and physical destructions that occurred as a result of the armed conflict. As such, the study could benefit international entities by helping them develop a better understanding of what happened in Chena and trigger interest in engaging in ensuring the accountability and enforcement of IHL in the future. Preserving fresh evidence will also serve as a starting point on the road to achieving justice either nationally or internationally. To study the Chena case evaluated against IHL rules, a combination of qualitative and doctrinal research methodology has been employed. The study basically follows a unique sampling case study which has used primary data tools such as observation, interview, key-informant interview, FGD, and battle-field notes. To supplement, however, secondary sources, including books, journal articles, domestic laws, international conventions, reports, and media broadcasts, were used to give meaning to what happened on the ground in light of international law. The study proved that the war was taking place to separate Tigray from Ethiopia. While undertaking military operations to achieve this goal, mass killings, genocidal acts, and war crimes were committed over Chena and approximate sites in the Dabat district of North Gondar. Thus, hundreds of people lost their lives to the brutalities of mass killings, hundreds of people were subjected to a forcible disappearance, and tens of thousands of people were forced into displacement. Furthermore, harsh beatings, forced labor, slavery, torture, rape, and gang rape have been reported, and generally, people are subjected to pass cruel, inhuman, and degrading treatment and punishment. Also, what is so unique is that animals were indiscriminately killed completely, making the environment unsafe for human survival because of pollution and bad smells and the consequent diseases such as Cholera, Flu, and Diarrhea. In addition to TDF, ENDF’s shelling has caused destruction to farmers’ houses & claimed lives. According to humanitarian principles, acts that can establish MACs and war crimes were perpetrated. Generally, the war in this direction has shown an absolute disrespect for international law norms.Keywords: genocide, war crimes, Tigray Defense Force, Chena, IHL
Procedia PDF Downloads 69152 Comparison of Feedforward Back Propagation and Self-Organizing Map for Prediction of Crop Water Stress Index of Rice
Authors: Aschalew Cherie Workneh, K. S. Hari Prasad, Chandra Shekhar Prasad Ojha
Abstract:
Due to the increase in water scarcity, the crop water stress index (CWSI) is receiving significant attention these days, especially in arid and semiarid regions, for quantifying water stress and effective irrigation scheduling. Nowadays, machine learning techniques such as neural networks are being widely used to determine CWSI. In the present study, the performance of two artificial neural networks, namely, Self-Organizing Maps (SOM) and Feed Forward-Back Propagation Artificial Neural Networks (FF-BP-ANN), are compared while determining the CWSI of rice crop. Irrigation field experiments with varying degrees of irrigation were conducted at the irrigation field laboratory of the Indian Institute of Technology, Roorkee, during the growing season of the rice crop. The CWSI of rice was computed empirically by measuring key meteorological variables (relative humidity, air temperature, wind speed, and canopy temperature) and crop parameters (crop height and root depth). The empirically computed CWSI was compared with SOM and FF-BP-ANN predicted CWSI. The upper and lower CWSI baselines are computed using multiple regression analysis. The regression analysis showed that the lower CWSI baseline for rice is a function of crop height (h), air vapor pressure deficit (AVPD), and wind speed (u), whereas the upper CWSI baseline is a function of crop height (h) and wind speed (u). The performance of SOM and FF-BP-ANN were compared by computing Nash-Sutcliffe efficiency (NSE), index of agreement (d), root mean squared error (RMSE), and coefficient of correlation (R²). It is found that FF-BP-ANN performs better than SOM while predicting the CWSI of rice crops.Keywords: artificial neural networks; crop water stress index; canopy temperature, prediction capability
Procedia PDF Downloads 116151 Mapping Iron Content in the Brain with Magnetic Resonance Imaging and Machine Learning
Authors: Gabrielle Robertson, Matthew Downs, Joseph Dagher
Abstract:
Iron deposition in the brain has been linked with a host of neurological disorders such as Alzheimer’s, Parkinson’s, and Multiple Sclerosis. While some treatment options exist, there are no objective measurement tools that allow for the monitoring of iron levels in the brain in vivo. An emerging Magnetic Resonance Imaging (MRI) method has been recently proposed to deduce iron concentration through quantitative measurement of magnetic susceptibility. This is a multi-step process that involves repeated modeling of physical processes via approximate numerical solutions. For example, the last two steps of this Quantitative Susceptibility Mapping (QSM) method involve I) mapping magnetic field into magnetic susceptibility and II) mapping magnetic susceptibility into iron concentration. Process I involves solving an ill-posed inverse problem by using regularization via injection of prior belief. The end result from Process II highly depends on the model used to describe the molecular content of each voxel (type of iron, water fraction, etc.) Due to these factors, the accuracy and repeatability of QSM have been an active area of research in the MRI and medical imaging community. This work aims to estimate iron concentration in the brain via a single step. A synthetic numerical model of the human head was created by automatically and manually segmenting the human head on a high-resolution grid (640x640x640, 0.4mm³) yielding detailed structures such as microvasculature and subcortical regions as well as bone, soft tissue, Cerebral Spinal Fluid, sinuses, arteries, and eyes. Each segmented region was then assigned tissue properties such as relaxation rates, proton density, electromagnetic tissue properties and iron concentration. These tissue property values were randomly selected from a Probability Distribution Function derived from a thorough literature review. In addition to having unique tissue property values, different synthetic head realizations also possess unique structural geometry created by morphing the boundary regions of different areas within normal physical constraints. This model of the human brain is then used to create synthetic MRI measurements. This is repeated thousands of times, for different head shapes, volume, tissue properties and noise realizations. Collectively, this constitutes a training-set that is similar to in vivo data, but larger than datasets available from clinical measurements. This 3D convolutional U-Net neural network architecture was used to train data-driven Deep Learning models to solve for iron concentrations from raw MRI measurements. The performance was then tested on both synthetic data not used in training as well as real in vivo data. Results showed that the model trained on synthetic MRI measurements is able to directly learn iron concentrations in areas of interest more effectively than other existing QSM reconstruction methods. For comparison, models trained on random geometric shapes (as proposed in the Deep QSM method) are less effective than models trained on realistic synthetic head models. Such an accurate method for the quantitative measurement of iron deposits in the brain would be of important value in clinical studies aiming to understand the role of iron in neurological disease.Keywords: magnetic resonance imaging, MRI, iron deposition, machine learning, quantitative susceptibility mapping
Procedia PDF Downloads 135150 Real-Time Big-Data Warehouse a Next-Generation Enterprise Data Warehouse and Analysis Framework
Authors: Abbas Raza Ali
Abstract:
Big Data technology is gradually becoming a dire need of large enterprises. These enterprises are generating massively large amount of off-line and streaming data in both structured and unstructured formats on daily basis. It is a challenging task to effectively extract useful insights from the large scale datasets, even though sometimes it becomes a technology constraint to manage transactional data history of more than a few months. This paper presents a framework to efficiently manage massively large and complex datasets. The framework has been tested on a communication service provider producing massively large complex streaming data in binary format. The communication industry is bound by the regulators to manage history of their subscribers’ call records where every action of a subscriber generates a record. Also, managing and analyzing transactional data allows service providers to better understand their customers’ behavior, for example, deep packet inspection requires transactional internet usage data to explain internet usage behaviour of the subscribers. However, current relational database systems limit service providers to only maintain history at semantic level which is aggregated at subscriber level. The framework addresses these challenges by leveraging Big Data technology which optimally manages and allows deep analysis of complex datasets. The framework has been applied to offload existing Intelligent Network Mediation and relational Data Warehouse of the service provider on Big Data. The service provider has 50+ million subscriber-base with yearly growth of 7-10%. The end-to-end process takes not more than 10 minutes which involves binary to ASCII decoding of call detail records, stitching of all the interrogations against a call (transformations) and aggregations of all the call records of a subscriber.Keywords: big data, communication service providers, enterprise data warehouse, stream computing, Telco IN Mediation
Procedia PDF Downloads 175149 Mediation Analysis of the Efficacy of the Nimotuzumab-Cisplatin-Radiation (NCR) Improve Overall Survival (OS): A HPV Negative Oropharyngeal Cancer Patient (HPVNOCP) Cohort
Authors: Akshay Patil
Abstract:
Objective: Mediation analysis identifies causal pathways by testing the relationships between the NCR, the OS, and an intermediate variable that mediates the relationship between the Nimotuzumab-cisplatin-radiation (NCR) and OS. Introduction: In randomized controlled trials, the primary interest is in the mechanisms by which an intervention exerts its effects on the outcomes. Clinicians are often interested in how the intervention works (or why it does not work) through hypothesized causal mechanisms. In this work, we highlight the value of understanding causal mechanisms in randomized trial by applying causal mediation analysis in a randomized trial in oncology. Methods: Data was obtained from a phase III randomized trial (Subgroup of HPVNOCP). NCR is reported to significantly improve the OS of patients locally advanced head and neck cancer patients undergoing definitive chemoradiation. Here, based on trial data, the mediating effect of NCR on patient overall survival was systematically quantified through progression-free survival(PFS), disease free survival (DFS), Loco-regional failure (LRF), and the disease control rate (DCR), Overall response rate (ORR). Effects of potential mediators on the HR for OS with NCR versus cisplatin-radiation (CR) were analyzed by Cox regression models. Statistical analyses were performed using R software Version 3.6.3 (The R Foundation for Statistical Computing) Results: Effects of potential mediator PFS was an association between NCR treatment and OS, with an indirect-effect (IE) 0.76(0.62 – 0.95), which mediated 60.69% of the treatment effect. Taking into account baseline confounders, the overall adjusted hazard ratio of death was 0.64 (95% CI: 0.43 – 0.96; P=0.03). The DFS was also a significant mediator and had an IE 0.77 (95% CI; 0.62-0.93), 58% mediated). Smaller mediation effects (maximum 27%) were observed for LRF with IE 0.88(0.74 – 1.06). Both DCR and ORR mediated 10% and 15%, respectively, of the effect of NCR vs. CR on the OS with IE 0.65 (95% CI; 0.81 – 1.08) and 0.94(95% CI; 0.79 – 1.04). Conclusion: Our findings suggest that PFS and DFS were the most important mediators of the OS with nimotuzumab to weekly cisplatin-radiation in HPVNOCP.Keywords: mediation analysis, cancer data, survival, NCR, HPV negative oropharyngeal
Procedia PDF Downloads 140148 Single Ion Transport with a Single-Layer Graphene Nanopore
Authors: Vishal V. R. Nandigana, Mohammad Heiranian, Narayana R. Aluru
Abstract:
Graphene material has found tremendous applications in water desalination, DNA sequencing and energy storage. Multiple nanopores are etched to create opening for water desalination and energy storage applications. The nanopores created are of the order of 3-5 nm allowing multiple ions to transport through the pore. In this paper, we present for the first time, molecular dynamics study of single ion transport, where only one ion passes through the graphene nanopore. The diameter of the graphene nanopore is of the same order as the hydration layers formed around each ion. Analogous to single electron transport resulting from ionic transport is observed for the first time. The current-voltage characteristics of such a device are similar to single electron transport in quantum dots. The current is blocked until a critical voltage, as the ions are trapped inside a hydration shell. The trapped ions have a high energy barrier compared to the applied input electrical voltage, preventing the ion to break free from the hydration shell. This region is called “Coulomb blockade region”. In this region, we observe zero transport of ions inside the nanopore. However, when the electrical voltage is beyond the critical voltage, the ion has sufficient energy to break free from the energy barrier created by the hydration shell to enter into the pore. Thus, the input voltage can control the transport of the ion inside the nanopore. The device therefore acts as a binary storage unit, storing 0 when no ion passes through the pore and storing 1 when a single ion passes through the pore. We therefore postulate that the device can be used for fluidic computing applications in chemistry and biology, mimicking a computer. Furthermore, the trapped ion stores a finite charge in the Coulomb blockade region; hence the device also acts a super capacitor.Keywords: graphene nanomembrane, single ion transport, Coulomb blockade, nanofluidics
Procedia PDF Downloads 320147 2016 Taiwan's 'Health and Physical Education Field of 12-Year Basic Education Curriculum Outline (Draft)' Reform and Its Implications
Authors: Hai Zeng, Yisheng Li, Jincheng Huang, Chenghui Huang, Ying Zhang
Abstract:
Children are strong; the country strong, the development of children Basketball is a strategic advantage. Common forms of basketball equipment has been difficult to meet the needs of young children teaching the game of basketball, basketball development for 3-6 years old children in the form of appropriate teaching aids is a breakthrough basketball game teaching children bottlenecks, improve teaching critical path pleasure, but also the development of early childhood basketball a necessary requirement. In this study, literature, questionnaires, focus group interviews, comparative analysis, for domestic and foreign use of 12 kinds of basketball teaching aids (cloud computing MINI basketball, adjustable basketball MINI, MINI basketball court, shooting assist paw print ball, dribble goggles, dribbling machine, machine cartoon shooting, rebounding machine, against the mat, elastic belt, ladder, fitness ball), from fun and improve early childhood shooting technique, dribbling technology, as well as offensive and defensive rebounding against technology conduct research on conversion technology. The results show that by using appropriate forms of teaching children basketball aids, can effectively improve children's fun basketball game, targeted to improve a technology, different types of aids from different perspectives enrich the connotation of children basketball game. Recommended for children of color psychology, cartoon and environmentally friendly material production aids, and increase research efforts basketball aids children, encourage children to sports teachers aids applications.Keywords: health and physical education field of curriculum outline, health fitness, sports and health curriculum reform, Taiwan, twelve years basic education
Procedia PDF Downloads 391146 Unraveling the Mysteries of the Anahata Nada to Achieve Supreme Consciousness
Authors: Shanti Swaroop Mokkapati
Abstract:
The unstruck sound, or the Anahata Nada, holds the key in elevating the consciousness levels of the practitioner. This has been well established by the great saints of the eastern tradition over the past few centuries. This paper intends to explore in-depth the common thread of the practice of Anahata Nada by the musical saints, examining the subtle mention in their compositions as well as demystifying their musical experiences that throw insights into elevated levels of consciousness. Mian Tansen, one of the greatest musicians in the North Indian Hindustani Classical Music tradition and who lived in the 15th century, is said to have brought rain through his singing of Raga Megh Malhar. The South Indian (Carnatic) Musical Saint Tyagaraja, who lived in the 18th Century, composed hundreds of musical pieces full of love for the Supreme Being. Many of these compositions unravel the secrets of Anahata Nada, the chakras in the human body that hold key to these practices, and the visions of elevated levels of consciousness that Saint Tyagaraja himself experienced through these practices. The spiritual practitioners of the Radhasoami Faith (Religion of Saints) in Dayalbagh, India, have adopted a practice called Surat Shabda Yoga (Meditational practices that unite the all-pervasive sound current with the spirit current and elevate levels of consciousness). The practitioners of this Yogic method submit that they have been able to hear mystic words including Om, Racing, Soham, Sat, and Radhasoami, along with instrumental sounds that accompany these mystic words in the form of a crescendo. These prolific experiences of elevated consciousness of musical saints are numerous, and this paper intends to explore more significant ones from many centuries in the past till the present day, where elevated consciousness levels of practitioners are being scientifically measured and analyzed using quantum computing.Keywords: Anahata Nada, Nada Yoga, Tyagaraja, Radhasoami
Procedia PDF Downloads 176145 Two-Dimensional Van-Der Waals Heterostructure for Highly Energy-Efficient Field-Free Deterministic Spin-Orbit Torque Switching at Room Temperature
Authors: Pradeep Raj Sharma, Bogeun Jang, Jongill Hong
Abstract:
Spin-orbit torque (SOT) is a novel and efficient approach for manipulating the magnetization of ferromagnetic materials (FMs), providing improved device performance, better compatibility, and ultra-fast switching with lower power consumption, compared to spin-transfer torque (STT). Among the various materials and structural designs, two-dimensional (2D) van-der Waals (vdW) layered materials and their heterostructures have been demonstrated as highly scalable and promising device architecture for SOT. In particular, a bilayer heterostructure consisting of fully 2D-vdW-FM, non-magnetic material (NM) offers an innovative platform for controlling the magnetization using SOT because of the advantages of being easy to scale and less energy to switch. Here, we report filed-free deterministic switching driven by SOT at room temperature in a bilayer consisting of perpendicularly magnetized 2D-vdW material Fe3GaTe2 (FGaT) and NM WTe2. Pulse current-induced magnetization switching with an ultra-low current density of about 6.5×105 A/cm², yielding a SOT efficiency close to double-digits at 300 K is reported. These values are two orders of magnitude higher than those observed in conventional heavy metal (HM) based SOT and exceed those reported with 2D-vdW layered materials. WTe2, a topological semimetal possessing strong SOC and high spin Hall angle can induce significant spin accumulation with negligible spin loss across the transparent 2D bilayer heterointerface. This promising device architecture enables highly compatible, energy-efficient non-volatile memory and lays the foundation for designing flexible, miniaturized spintronic devices that could facilitate quantum computing.Keywords: spintronics, spin-orbit torque, spin Hall effect, spin Hall angle, topological semimetal, perpendicular magnetic anisotropy
Procedia PDF Downloads 4144 Training for Digital Manufacturing: A Multilevel Teaching Model
Authors: Luís Rocha, Adam Gąska, Enrico Savio, Michael Marxer, Christoph Battaglia
Abstract:
The changes observed in the last years in the field of manufacturing and production engineering, popularly known as "Fourth Industry Revolution", utilizes the achievements in the different areas of computer sciences, introducing new solutions at almost every stage of the production process, just to mention such concepts as mass customization, cloud computing, knowledge-based engineering, virtual reality, rapid prototyping, or virtual models of measuring systems. To effectively speed up the production process and make it more flexible, it is necessary to tighten the bonds connecting individual stages of the production process and to raise the awareness and knowledge of employees of individual sectors about the nature and specificity of work in other stages. It is important to discover and develop a suitable education method adapted to the specificities of each stage of the production process, becoming an extremely crucial issue to exploit the potential of the fourth industrial revolution properly. Because of it, the project “Train4Dim” (T4D) intends to develop complex training material for digital manufacturing, including content for design, manufacturing, and quality control, with a focus on coordinate metrology and portable measuring systems. In this paper, the authors present an approach to using an active learning methodology for digital manufacturing. T4D main objective is to develop a multi-degree (apprenticeship up to master’s degree studies) and educational approach that can be adapted to different teaching levels. It’s also described the process of creating the underneath methodology. The paper will share the steps to achieve the aims of the project (training model for digital manufacturing): 1) surveying the stakeholders, 2) Defining the learning aims, 3) producing all contents and curriculum, 4) training for tutors, and 5) Pilot courses test and improvements.Keywords: learning, Industry 4.0, active learning, digital manufacturing
Procedia PDF Downloads 96143 Quasi-Photon Monte Carlo on Radiative Heat Transfer: An Importance Sampling and Learning Approach
Authors: Utkarsh A. Mishra, Ankit Bansal
Abstract:
At high temperature, radiative heat transfer is the dominant mode of heat transfer. It is governed by various phenomena such as photon emission, absorption, and scattering. The solution of the governing integrodifferential equation of radiative transfer is a complex process, more when the effect of participating medium and wavelength properties are taken into consideration. Although a generic formulation of such radiative transport problem can be modeled for a wide variety of problems with non-gray, non-diffusive surfaces, there is always a trade-off between simplicity and accuracy of the problem. Recently, solutions of complicated mathematical problems with statistical methods based on randomization of naturally occurring phenomena have gained significant importance. Photon bundles with discrete energy can be replicated with random numbers describing the emission, absorption, and scattering processes. Photon Monte Carlo (PMC) is a simple, yet powerful technique, to solve radiative transfer problems in complicated geometries with arbitrary participating medium. The method, on the one hand, increases the accuracy of estimation, and on the other hand, increases the computational cost. The participating media -generally a gas, such as CO₂, CO, and H₂O- present complex emission and absorption spectra. To model the emission/absorption accurately with random numbers requires a weighted sampling as different sections of the spectrum carries different importance. Importance sampling (IS) was implemented to sample random photon of arbitrary wavelength, and the sampled data provided unbiased training of MC estimators for better results. A better replacement to uniform random numbers is using deterministic, quasi-random sequences. Halton, Sobol, and Faure Low-Discrepancy Sequences are used in this study. They possess better space-filling performance than the uniform random number generator and gives rise to a low variance, stable Quasi-Monte Carlo (QMC) estimators with faster convergence. An optimal supervised learning scheme was further considered to reduce the computation costs of the PMC simulation. A one-dimensional plane-parallel slab problem with participating media was formulated. The history of some randomly sampled photon bundles is recorded to train an Artificial Neural Network (ANN), back-propagation model. The flux was calculated using the standard quasi PMC and was considered to be the training target. Results obtained with the proposed model for the one-dimensional problem are compared with the exact analytical and PMC model with the Line by Line (LBL) spectral model. The approximate variance obtained was around 3.14%. Results were analyzed with respect to time and the total flux in both cases. A significant reduction in variance as well a faster rate of convergence was observed in the case of the QMC method over the standard PMC method. However, the results obtained with the ANN method resulted in greater variance (around 25-28%) as compared to the other cases. There is a great scope of machine learning models to help in further reduction of computation cost once trained successfully. Multiple ways of selecting the input data as well as various architectures will be tried such that the concerned environment can be fully addressed to the ANN model. Better results can be achieved in this unexplored domain.Keywords: radiative heat transfer, Monte Carlo Method, pseudo-random numbers, low discrepancy sequences, artificial neural networks
Procedia PDF Downloads 223142 Machine Learning for Exoplanetary Habitability Assessment
Authors: King Kumire, Amos Kubeka
Abstract:
The synergy of machine learning and astronomical technology advancement is giving rise to the new space age, which is pronounced by better habitability assessments. To initiate this discussion, it should be recorded for definition purposes that the symbiotic relationship between astronomy and improved computing has been code-named the Cis-Astro gateway concept. The cosmological fate of this phrase has been unashamedly plagiarized from the cis-lunar gateway template and its associated LaGrange points which act as an orbital bridge to the moon from our planet Earth. However, for this study, the scientific audience is invited to bridge toward the discovery of new habitable planets. It is imperative to state that cosmic probes of this magnitude can be utilized as the starting nodes of the astrobiological search for galactic life. This research can also assist by acting as the navigation system for future space telescope launches through the delimitation of target exoplanets. The findings and the associated platforms can be harnessed as building blocks for the modeling of climate change on planet earth. The notion that if the human genus exhausts the resources of the planet earth or there is a bug of some sort that makes the earth inhabitable for humans explains the need to find an alternative planet to inhabit. The scientific community, through interdisciplinary discussions of the International Astronautical Federation so far has the common position that engineers can reduce space mission costs by constructing a stable cis-lunar orbit infrastructure for refilling and carrying out other associated in-orbit servicing activities. Similarly, the Cis-Astro gateway can be envisaged as a budget optimization technique that models extra-solar bodies and can facilitate the scoping of future mission rendezvous. It should be registered as well that this broad and voluminous catalog of exoplanets shall be narrowed along the way using machine learning filters. The gist of this topic revolves around the indirect economic rationale of establishing a habitability scoping platform.Keywords: machine-learning, habitability, exoplanets, supercomputing
Procedia PDF Downloads 88141 Machine Learning for Exoplanetary Habitability Assessment
Authors: King Kumire, Amos Kubeka
Abstract:
The synergy of machine learning and astronomical technology advancement is giving rise to the new space age, which is pronounced by better habitability assessments. To initiate this discussion, it should be recorded for definition purposes that the symbiotic relationship between astronomy and improved computing has been code-named the Cis-Astro gateway concept. The cosmological fate of this phrase has been unashamedly plagiarized from the cis-lunar gateway template and its associated LaGrange points which act as an orbital bridge to the moon from our planet Earth. However, for this study, the scientific audience is invited to bridge toward the discovery of new habitable planets. It is imperative to state that cosmic probes of this magnitude can be utilized as the starting nodes of the astrobiological search for galactic life. This research can also assist by acting as the navigation system for future space telescope launches through the delimitation of target exoplanets. The findings and the associated platforms can be harnessed as building blocks for the modeling of climate change on planet earth. The notion that if the human genus exhausts the resources of the planet earth or there is a bug of some sort that makes the earth inhabitable for humans explains the need to find an alternative planet to inhabit. The scientific community, through interdisciplinary discussions of the International Astronautical Federation so far, has the common position that engineers can reduce space mission costs by constructing a stable cis-lunar orbit infrastructure for refilling and carrying out other associated in-orbit servicing activities. Similarly, the Cis-Astro gateway can be envisaged as a budget optimization technique that models extra-solar bodies and can facilitate the scoping of future mission rendezvous. It should be registered as well that this broad and voluminous catalog of exoplanets shall be narrowed along the way using machine learning filters. The gist of this topic revolves around the indirect economic rationale of establishing a habitability scoping platform.Keywords: exoplanets, habitability, machine-learning, supercomputing
Procedia PDF Downloads 114140 Heart Rate Variability Analysis for Early Stage Prediction of Sudden Cardiac Death
Authors: Reeta Devi, Hitender Kumar Tyagi, Dinesh Kumar
Abstract:
In present scenario, cardiovascular problems are growing challenge for researchers and physiologists. As heart disease have no geographic, gender or socioeconomic specific reasons; detecting cardiac irregularities at early stage followed by quick and correct treatment is very important. Electrocardiogram is the finest tool for continuous monitoring of heart activity. Heart rate variability (HRV) is used to measure naturally occurring oscillations between consecutive cardiac cycles. Analysis of this variability is carried out using time domain, frequency domain and non-linear parameters. This paper presents HRV analysis of the online dataset for normal sinus rhythm (taken as healthy subject) and sudden cardiac death (SCD subject) using all three methods computing values for parameters like standard deviation of node to node intervals (SDNN), square root of mean of the sequences of difference between adjacent RR intervals (RMSSD), mean of R to R intervals (mean RR) in time domain, very low-frequency (VLF), low-frequency (LF), high frequency (HF) and ratio of low to high frequency (LF/HF ratio) in frequency domain and Poincare plot for non linear analysis. To differentiate HRV of healthy subject from subject died with SCD, k –nearest neighbor (k-NN) classifier has been used because of its high accuracy. Results show highly reduced values for all stated parameters for SCD subjects as compared to healthy ones. As the dataset used for SCD patients is recording of their ECG signal one hour prior to their death, it is therefore, verified with an accuracy of 95% that proposed algorithm can identify mortality risk of a patient one hour before its death. The identification of a patient’s mortality risk at such an early stage may prevent him/her meeting sudden death if in-time and right treatment is given by the doctor.Keywords: early stage prediction, heart rate variability, linear and non-linear analysis, sudden cardiac death
Procedia PDF Downloads 338139 Comparative Characteristics of Bacteriocins from Endemic Lactic Acid Bacteria
Authors: K. Karapetyan, F. Tkhruni, A. Aghajanyan, T. S. Balabekyan, L. Arstamyan
Abstract:
Introduction: Globalization of the food supply has created the conditions favorable for the emergence and spread of food-borne and especially dangerous pathogens (EDP) in developing countries. The fresh-cut fruit and vegetable industry is searching for alternatives to replace chemical treatments with biopreservative approaches that ensure the safety of the processed foods product. Antimicrobial compounds of lactic acid bacteria (LAB) possess bactericidal or bacteriostatic activity against intestinal pathogens, spoilage organisms and food-borne pathogens such as Listeria monocytogenes, Staphylococcus aureus and Salmonella. Endemic strains of LAB were isolated. The strains, showing broad spectrum of antimicrobial activity against food spoiling microorganisms, were selected. The genotyping by 16S rRNA sequencing, GS-PCR, RAPD PCR methods showed that they were presented by Lactobacillus rhamnosus109, L.plantarum 65, L.plantarum 66 and Enterococcus faecium 64 species. LAB are deposited in "Microbial Depository Center" (MDC) SPC "Armbiotechnology". Methods: LAB strains were isolated from different dairy products from rural households from the highland regions of Armenia. Serially diluted samples were spread on MRS (Merck, Germany) and hydrolyzed milk agar (1,2 % w/v). Single colonies from each LAB were individually inoculated in liquid MRS medium and incubated at 37oC for 24 hours. Culture broth with biomass was centrifuged at 10,000 g during 20 min for obtaining of cell free culture broth (CFC). The antimicrobial substances from CFC broth were purified by the combination of adsorption-desorption and ion-exchange chromatography methods. Separation of bacteriocins was performed using a HPLC method on "Avex ODS" C18 column. Mass analysis of peptides recorded on the device API 4000 in the electron ionization mode. The spot-on-lawn method on the test culture plated in the solid medium was applied. The antimicrobial activity is expressed in arbitrary units (AU/ml). Results. Purification of CFC broth of LAB allowed to obtain partially purified antimicrobial preparations which contains bacteriocins with broad spectrum of antimicrobial activity. Investigation of their main biochemical properties shown, that inhibitory activity of preparations is partially reduced after treatment with proteinase K, trypsin, pepsin, suggesting a proteinaceous nature of bacteriocin-like substances containing in CFC broth. Preparations preserved their activity after heat treatment (50-121 oC, 20 min) and were stable in the pH range 3–8. The results of SDS PAAG electrophoresis show that L.plantarum 66 and Ent.faecium 64 strains have one bacteriocin (BCN) with maximal antimicrobial activity with approximate molecular weight 2.0-3.0 kDa. From L.rhamnosus 109 two BCNs were obtained. Mass spectral analysis indicates that these bacteriocins have peptide bonds and molecular weight of BCN 1 and BCN 2 are approximately 1.5 kDa and 700 Da. Discussion: Thus, our experimental data shown, that isolated endemic strains of LAB are able to produce bacteriocins with high and different inhibitory activity against broad spectrum of microorganisms of different taxonomic group, such as Salmonella sp., Esherichia coli, Bacillus sp., L.monocytogenes, Proteus mirabilis, Staph. aureus, Ps. aeruginosa. Obtained results proved the perspectives for use of endemic strains in the preservation of foodstuffs. Acknowledgments: This work was realized with financial support of the Project Global Initiatives for Preliferation Prevention (GIPP) T2- 298, ISTC A-1866.Keywords: antimicrobial activity, bacteriocins, endemic strains, food safety
Procedia PDF Downloads 559138 Analysis of Maternal Death Surveillance and Response: Causes and Contributing Factors in Addis Ababa, Ethiopia, 2022
Authors: Sisay Tiroro Salato
Abstract:
Background: Ethiopia has been implementing the maternal death surveillance and response system to provide real-time actionable information, including causes of death and contributing factors. Analysis of maternal mortality surveillance data was conducted to identify the causes and underlying factors in Addis Ababa, Ethiopia. Methods: We carried out a retrospective surveillance data analysis of 324 maternal deaths reported in Addis Ababa, Ethiopia, from 2017 to 2021. The data were extracted from the national maternal death surveillance and response database, including information from case investigation, verbal autopsy, and facility extraction forms. The data were analyzed by computing frequency and presented in numbers, proportions, and ratios. Results: Of 324 maternal deaths, 92% died in the health facilities, 6.2% in transit, and 1.5% at home. The mean age at death was 28 years, ranging from 17 to 45. The maternal mortality ratio per 100,000 live births was 77for the five years, ranging from 126 in 2017 to 21 in 2021. The direct and indirect causes of death were responsible for 87% and 13%, respectively. The direct causes included obstetric haemorrhage, hypertensive disorders in pregnancy, puerperal sepsis, embolism, obstructed labour, and abortion. The third delay (delay in receiving care after reaching health facilities) accounted for 57% of deaths, while the first delay (delay in deciding to seek health care) and the second delay (delay in reaching health facilities) and accounted for 34% and 24%, respectively. Late arrival to the referral facility, delayed management after admission, andnon-recognition of danger signs were underlying factors. Conclusion: Over 86% of maternal deaths were attributed by avoidable direct causes. The majority of women do try to reach health services when an emergency occurs, but the third delays present a major problem. Improving the quality of care at the healthcare facility level will help to reduce maternal death.Keywords: maternal death, surveillance, delays, factors
Procedia PDF Downloads 110137 Advantages of Neural Network Based Air Data Estimation for Unmanned Aerial Vehicles
Authors: Angelo Lerro, Manuela Battipede, Piero Gili, Alberto Brandl
Abstract:
Redundancy requirements for UAV (Unmanned Aerial Vehicle) are hardly faced due to the generally restricted amount of available space and allowable weight for the aircraft systems, limiting their exploitation. Essential equipment as the Air Data, Attitude and Heading Reference Systems (ADAHRS) require several external probes to measure significant data as the Angle of Attack or the Sideslip Angle. Previous research focused on the analysis of a patented technology named Smart-ADAHRS (Smart Air Data, Attitude and Heading Reference System) as an alternative method to obtain reliable and accurate estimates of the aerodynamic angles. This solution is based on an innovative sensor fusion algorithm implementing soft computing techniques and it allows to obtain a simplified inertial and air data system reducing external devices. In fact, only one external source of dynamic and static pressures is needed. This paper focuses on the benefits which would be gained by the implementation of this system in UAV applications. A simplification of the entire ADAHRS architecture will bring to reduce the overall cost together with improved safety performance. Smart-ADAHRS has currently reached Technology Readiness Level (TRL) 6. Real flight tests took place on ultralight aircraft equipped with a suitable Flight Test Instrumentation (FTI). The output of the algorithm using the flight test measurements demonstrates the capability for this fusion algorithm to embed in a single device multiple physical and virtual sensors. Any source of dynamic and static pressure can be integrated with this system gaining a significant improvement in terms of versatility.Keywords: aerodynamic angles, air data system, flight test, neural network, unmanned aerial vehicle, virtual sensor
Procedia PDF Downloads 219136 Information Tree: Establishment of Lifestyle-Based IT Visual Model
Authors: Chiung-Hui Chen
Abstract:
Traditional service channel is losing its edge due to emerging service technology. To establish interaction with the clients, the service industry is using effective mechanism to give clients direct access to services with emerging technologies. Thus, as service science receives attention, special and unique consumption pattern evolves; henceforth, leading to new market mechanism and influencing attitudes toward life and consumption patterns. The market demand for customized services is thus valued due to the emphasis of personal value, and is gradually changing the demand and supply relationship in the traditional industry. In respect of interior design service, in the process of traditional interior design, a designer converts to a concrete form the concept generated from the ideas and needs dictated by a user (client), by using his/her professional knowledge and drawing tool. The final product is generated through iterations of communication and modification, which is a very time-consuming process. Although this process has been accelerated with the help of computer graphics software today, repeated discussions and confirmations with users are still required to complete the task. In consideration of what is addressed above a space user’s life model is analyzed with visualization technique to create an interaction system modeled after interior design knowledge. The space user document intuitively personal life experience in a model requirement chart, allowing a researcher to analyze interrelation between analysis documents, identify the logic and the substance of data conversion. The repeated data which is documented are then transformed into design information for reuse and sharing. A professional interior designer may sort out the correlation among user’s preference, life pattern and design specification, thus deciding the critical design elements in the process of service design.Keywords: information design, life model-based, aesthetic computing, communication
Procedia PDF Downloads 297135 Development of a Computer Aided Diagnosis Tool for Brain Tumor Extraction and Classification
Authors: Fathi Kallel, Abdulelah Alabd Uljabbar, Abdulrahman Aldukhail, Abdulaziz Alomran
Abstract:
The brain is an important organ in our body since it is responsible about the majority actions such as vision, memory, etc. However, different diseases such as Alzheimer and tumors could affect the brain and conduct to a partial or full disorder. Regular diagnosis are necessary as a preventive measure and could help doctors to early detect a possible trouble and therefore taking the appropriate treatment, especially in the case of brain tumors. Different imaging modalities are proposed for diagnosis of brain tumor. The powerful and most used modality is the Magnetic Resonance Imaging (MRI). MRI images are analyzed by doctor in order to locate eventual tumor in the brain and describe the appropriate and needed treatment. Diverse image processing methods are also proposed for helping doctors in identifying and analyzing the tumor. In fact, a large Computer Aided Diagnostic (CAD) tools including developed image processing algorithms are proposed and exploited by doctors as a second opinion to analyze and identify the brain tumors. In this paper, we proposed a new advanced CAD for brain tumor identification, classification and feature extraction. Our proposed CAD includes three main parts. Firstly, we load the brain MRI. Secondly, a robust technique for brain tumor extraction is proposed. This technique is based on both Discrete Wavelet Transform (DWT) and Principal Component Analysis (PCA). DWT is characterized by its multiresolution analytic property, that’s why it was applied on MRI images with different decomposition levels for feature extraction. Nevertheless, this technique suffers from a main drawback since it necessitates a huge storage and is computationally expensive. To decrease the dimensions of the feature vector and the computing time, PCA technique is considered. In the last stage, according to different extracted features, the brain tumor is classified into either benign or malignant tumor using Support Vector Machine (SVM) algorithm. A CAD tool for brain tumor detection and classification, including all above-mentioned stages, is designed and developed using MATLAB guide user interface.Keywords: MRI, brain tumor, CAD, feature extraction, DWT, PCA, classification, SVM
Procedia PDF Downloads 246134 Fusion of Finger Inner Knuckle Print and Hand Geometry Features to Enhance the Performance of Biometric Verification System
Authors: M. L. Anitha, K. A. Radhakrishna Rao
Abstract:
With the advent of modern computing technology, there is an increased demand for developing recognition systems that have the capability of verifying the identity of individuals. Recognition systems are required by several civilian and commercial applications for providing access to secured resources. Traditional recognition systems which are based on physical identities are not sufficiently reliable to satisfy the security requirements due to the use of several advances of forgery and identity impersonation methods. Recognizing individuals based on his/her unique physiological characteristics known as biometric traits is a reliable technique, since these traits are not transferable and they cannot be stolen or lost. Since the performance of biometric based recognition system depends on the particular trait that is utilized, the present work proposes a fusion approach which combines Inner knuckle print (IKP) trait of the middle, ring and index fingers with the geometrical features of hand. The hand image captured from a digital camera is preprocessed to find finger IKP as region of interest (ROI) and hand geometry features. Geometrical features are represented as the distances between different key points and IKP features are extracted by applying local binary pattern descriptor on the IKP ROI. The decision level AND fusion was adopted, which has shown improvement in performance of the combined scheme. The proposed approach is tested on the database collected at our institute. Proposed approach is of significance since both hand geometry and IKP features can be extracted from the palm region of the hand. The fusion of these features yields a false acceptance rate of 0.75%, false rejection rate of 0.86% for verification tests conducted, which is less when compared to the results obtained using individual traits. The results obtained confirm the usefulness of proposed approach and suitability of the selected features for developing biometric based recognition system based on features from palmar region of hand.Keywords: biometrics, hand geometry features, inner knuckle print, recognition
Procedia PDF Downloads 218133 E4D-MP: Time-Lapse Multiphysics Simulation and Joint Inversion Toolset for Large-Scale Subsurface Imaging
Authors: Zhuanfang Fred Zhang, Tim C. Johnson, Yilin Fang, Chris E. Strickland
Abstract:
A variety of geophysical techniques are available to image the opaque subsurface with little or no contact with the soil. It is common to conduct time-lapse surveys of different types for a given site for improved results of subsurface imaging. Regardless of the chosen survey methods, it is often a challenge to process the massive amount of survey data. The currently available software applications are generally based on the one-dimensional assumption for a desktop personal computer. Hence, they are usually incapable of imaging the three-dimensional (3D) processes/variables in the subsurface of reasonable spatial scales; the maximum amount of data that can be inverted simultaneously is often very small due to the capability limitation of personal computers. Presently, high-performance or integrating software that enables real-time integration of multi-process geophysical methods is needed. E4D-MP enables the integration and inversion of time-lapsed large-scale data surveys from geophysical methods. Using the supercomputing capability and parallel computation algorithm, E4D-MP is capable of processing data across vast spatiotemporal scales and in near real time. The main code and the modules of E4D-MP for inverting individual or combined data sets of time-lapse 3D electrical resistivity, spectral induced polarization, and gravity surveys have been developed and demonstrated for sub-surface imaging. E4D-MP provides capability of imaging the processes (e.g., liquid or gas flow, solute transport, cavity development) and subsurface properties (e.g., rock/soil density, conductivity) critical for successful control of environmental engineering related efforts such as environmental remediation, carbon sequestration, geothermal exploration, and mine land reclamation, among others.Keywords: gravity survey, high-performance computing, sub-surface monitoring, electrical resistivity tomography
Procedia PDF Downloads 155132 Robust Numerical Solution for Flow Problems
Authors: Gregor Kosec
Abstract:
Simple and robust numerical approach for solving flow problems is presented, where involved physical fields are represented through the local approximation functions, i.e., the considered field is approximated over a local support domain. The approximation functions are then used to evaluate the partial differential operators. The type of approximation, the size of support domain, and the type and number of basis function can be general. The solution procedure is formulated completely through local computational operations. Besides local numerical method also the pressure velocity is performed locally with retaining the correct temporal transient. The complete locality of the introduced numerical scheme has several beneficial effects. One of the most attractive is the simplicity since it could be understood as a generalized Finite Differences Method, however, much more powerful. Presented methodology offers many possibilities for treating challenging cases, e.g. nodal adaptivity to address regions with sharp discontinuities or p-adaptivity to treat obscure anomalies in physical field. The stability versus computation complexity and accuracy can be regulated by changing number of support nodes, etc. All these features can be controlled on the fly during the simulation. The presented methodology is relatively simple to understand and implement, which makes it potentially powerful tool for engineering simulations. Besides simplicity and straightforward implementation, there are many opportunities to fully exploit modern computer architectures through different parallel computing strategies. The performance of the method is presented on the lid driven cavity problem, backward facing step problem, de Vahl Davis natural convection test, extended also to low Prandtl fluid and Darcy porous flow. Results are presented in terms of velocity profiles, convergence plots, and stability analyses. Results of all cases are also compared against published data.Keywords: fluid flow, meshless, low Pr problem, natural convection
Procedia PDF Downloads 231131 Integrated On-Board Diagnostic-II and Direct Controller Area Network Access for Vehicle Monitoring System
Authors: Kavian Khosravinia, Mohd Khair Hassan, Ribhan Zafira Abdul Rahman, Syed Abdul Rahman Al-Haddad
Abstract:
The CAN (controller area network) bus is introduced as a multi-master, message broadcast system. The messages sent on the CAN are used to communicate state information, referred as a signal between different ECUs, which provides data consistency in every node of the system. OBD-II Dongles that are based on request and response method is the wide-spread solution for extracting sensor data from cars among researchers. Unfortunately, most of the past researches do not consider resolution and quantity of their input data extracted through OBD-II technology. The maximum feasible scan rate is only 9 queries per second which provide 8 data points per second with using ELM327 as well-known OBD-II dongle. This study aims to develop and design a programmable, and latency-sensitive vehicle data acquisition system that improves the modularity and flexibility to extract exact, trustworthy, and fresh car sensor data with higher frequency rates. Furthermore, the researcher must break apart, thoroughly inspect, and observe the internal network of the vehicle, which may cause severe damages to the expensive ECUs of the vehicle due to intrinsic vulnerabilities of the CAN bus during initial research. Desired sensors data were collected from various vehicles utilizing Raspberry Pi3 as computing and processing unit with using OBD (request-response) and direct CAN method at the same time. Two types of data were collected for this study. The first, CAN bus frame data that illustrates data collected for each line of hex data sent from an ECU and the second type is the OBD data that represents some limited data that is requested from ECU under standard condition. The proposed system is reconfigurable, human-readable and multi-task telematics device that can be fitted into any vehicle with minimum effort and minimum time lag in the data extraction process. The standard operational procedure experimental vehicle network test bench is developed and can be used for future vehicle network testing experiment.Keywords: CAN bus, OBD-II, vehicle data acquisition, connected cars, telemetry, Raspberry Pi3
Procedia PDF Downloads 198130 A Real Time Set Up for Retrieval of Emotional States from Human Neural Responses
Authors: Rashima Mahajan, Dipali Bansal, Shweta Singh
Abstract:
Real time non-invasive Brain Computer Interfaces have a significant progressive role in restoring or maintaining a quality life for medically challenged people. This manuscript provides a comprehensive review of emerging research in the field of cognitive/affective computing in context of human neural responses. The perspectives of different emotion assessment modalities like face expressions, speech, text, gestures, and human physiological responses have also been discussed. Focus has been paid to explore the ability of EEG (Electroencephalogram) signals to portray thoughts, feelings, and unspoken words. An automated workflow-based protocol to design an EEG-based real time Brain Computer Interface system for analysis and classification of human emotions elicited by external audio/visual stimuli has been proposed. The front end hardware includes a cost effective and portable Emotive EEG Neuroheadset unit, a personal computer and a set of external stimulators. Primary signal analysis and processing of real time acquired EEG shall be performed using MATLAB based advanced brain mapping toolbox EEGLab/BCILab. This shall be followed by the development of MATLAB based self-defined algorithm to capture and characterize temporal and spectral variations in EEG under emotional stimulations. The extracted hybrid feature set shall be used to classify emotional states using artificial intelligence tools like Artificial Neural Network. The final system would result in an inexpensive, portable and more intuitive Brain Computer Interface in real time scenario to control prosthetic devices by translating different brain states into operative control signals.Keywords: brain computer interface, electroencephalogram, EEGLab, BCILab, emotive, emotions, interval features, spectral features, artificial neural network, control applications
Procedia PDF Downloads 315