Search results for: Sub-fractional Brownian motion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1333

Search results for: Sub-fractional Brownian motion

163 DNA Nano Wires: A Charge Transfer Approach

Authors: S. Behnia, S. Fathizadeh, A. Akhshani

Abstract:

In the recent decades, DNA has increasingly interested in the potential technological applications that not directly related to the coding for functional proteins that is the expressed in form of genetic information. One of the most interesting applications of DNA is related to the construction of nanostructures of high complexity, design of functional nanostructures in nanoelectronical devices, nanosensors and nanocercuits. In this field, DNA is of fundamental interest to the development of DNA-based molecular technologies, as it possesses ideal structural and molecular recognition properties for use in self-assembling nanodevices with a definite molecular architecture. Also, the robust, one-dimensional flexible structure of DNA can be used to design electronic devices, serving as a wire, transistor switch, or rectifier depending on its electronic properties. In order to understand the mechanism of the charge transport along DNA sequences, numerous studies have been carried out. In this regard, conductivity properties of DNA molecule could be investigated in a simple, but chemically specific approach that is intimately related to the Su-Schrieffer-Heeger (SSH) model. In SSH model, the non-diagonal matrix element dependence on intersite displacements is considered. In this approach, the coupling between the charge and lattice deformation is along the helix. This model is a tight-binding linear nanoscale chain established to describe conductivity phenomena in doped polyethylene. It is based on the assumption of a classical harmonic interaction between sites, which is linearly coupled to a tight-binding Hamiltonian. In this work, the Hamiltonian and corresponding motion equations are nonlinear and have high sensitivity to initial conditions. Then, we have tried to move toward the nonlinear dynamics and phase space analysis. Nonlinear dynamics and chaos theory, regardless of any approximation, could open new horizons to understand the conductivity mechanism in DNA. For a detailed study, we have tried to study the current flowing in DNA and investigated the characteristic I-V diagram. As a result, It is shown that there are the (quasi-) ohmic areas in I-V diagram. On the other hand, the regions with a negative differential resistance (NDR) are detectable in diagram.

Keywords: DNA conductivity, Landauer resistance, negative di erential resistance, Chaos theory, mean Lyapunov exponent

Procedia PDF Downloads 426
162 The Effectiveness of Kinesio Taping in Enhancing Early Post-Operative Outcomes Inpatients after Total Knee Replacement or Anterior Cruciate Ligament Reconstruction

Authors: B. A. Alwahaby

Abstract:

Background: The number of Total Knee Replacement (TKR) and Anterior Cruciate Ligament Reconstruction (ACLR) performed every year is increasing. The main aim of physiotherapy early recovery rehabilitation after these surgeries is to control pain and edema and regain Range of Motion (ROM) and physical activity. All of these outcomes need to be managed by safe and effective modalities. Kinesiotaping (KT) is an elastic non-invasive therapeutic tape that has become recognised in different physiotherapy situation as injury prevention, rehabilitation, and performance enhancement and been used with different conditions. However, there is still clinical doubt regarding the effectiveness of KT due to inconclusive supporting evidence. The aim of this systematic review is to collate all the available evidence on the effectiveness of KT in the early rehabilitation of ACLR and TKR patients and analyse whether the use of KT combined with standard rehabilitation would facilitate recovery of postoperative outcome than standard rehabilitation alone. Methodology: A systematic review was conducted. Medline, EMBASE, Scopus, AMED PEDro, CINAHL, and Web of Science databases were searched. Each study was assessed for inclusion and methodological quality appraisal was undertaken by two reviewers using the JBI critical appraisal tools. The studies were then synthesised qualitatively due to heterogeneity between studies. Results: Five moderate to low quality RCTs were located. All five studies demonstrated statistically significant improvements in pain, swelling, ROM, and functional outcomes (p < 0.05). Between group comparison, KT combined with standardised rehabilitation were shown to be significantly more effective than standardised rehabilitation alone for pain and swelling (p < 0.05). However, there were inconstant findings for ROM, and no statistically significant differences reported between groups for functional outcomes (p > 0.05). Conclusion: Research in the area is generally low quality; however, there is consistent evidence to support the use of KT combined with standardised post-operative rehabilitation for reducing pain and swelling. There is also some evidence that KT may be effective in combination with standardised rehabilitation to regain knee extension ROM faster than standardised rehabilitation alone, but further primary research is required to confirm this.

Keywords: anterior cruciate ligament reconstruction, ACLR, kinesio taping, KT, postoperative, total knee replacement, TKR

Procedia PDF Downloads 124
161 Discontinuous Spacetime with Vacuum Holes as Explanation for Gravitation, Quantum Mechanics and Teleportation

Authors: Constantin Z. Leshan

Abstract:

Hole Vacuum theory is based on discontinuous spacetime that contains vacuum holes. Vacuum holes can explain gravitation, some laws of quantum mechanics and allow teleportation of matter. All massive bodies emit a flux of holes which curve the spacetime; if we increase the concentration of holes, it leads to length contraction and time dilation because the holes do not have the properties of extension and duration. In the limited case when space consists of holes only, the distance between every two points is equal to zero and time stops - outside of the Universe, the extension and duration properties do not exist. For this reason, the vacuum hole is the only particle in physics capable of describing gravitation using its own properties only. All microscopic particles must 'jump' continually and 'vibrate' due to the appearance of holes (impassable microscopic 'walls' in space), and it is the cause of the quantum behavior. Vacuum holes can explain the entanglement, non-locality, wave properties of matter, tunneling, uncertainty principle and so on. Particles do not have trajectories because spacetime is discontinuous and has impassable microscopic 'walls' due to the simple mechanical motion is impossible at small scale distances; it is impossible to 'trace' a straight line in the discontinuous spacetime because it contains the impassable holes. Spacetime 'boils' continually due to the appearance of the vacuum holes. For teleportation to be possible, we must send a body outside of the Universe by enveloping it with a closed surface consisting of vacuum holes. Since a material body cannot exist outside of the Universe, it reappears instantaneously in a random point of the Universe. Since a body disappears in one volume and reappears in another random volume without traversing the physical space between them, such a transportation method can be called teleportation (or Hole Teleportation). It is shown that Hole Teleportation does not violate causality and special relativity due to its random nature and other properties. Although Hole Teleportation has a random nature, it can be used for colonization of extrasolar planets by the help of the method called 'random jumps': after a large number of random teleportation jumps, there is a probability that the spaceship may appear near a habitable planet. We can create vacuum holes experimentally using the method proposed by Descartes: we must remove a body from the vessel without permitting another body to occupy this volume.

Keywords: border of the Universe, causality violation, perfect isolation, quantum jumps

Procedia PDF Downloads 427
160 Aerodynamic Interaction between Two Speed Skaters Measured in a Closed Wind Tunnel

Authors: Ola Elfmark, Lars M. Bardal, Luca Oggiano, H˚avard Myklebust

Abstract:

Team pursuit is a relatively new event in international long track speed skating. For a single speed skater the aerodynamic drag will account for up to 80% of the braking force, thus reducing the drag can greatly improve the performance. In a team pursuit the interactions between athletes in near proximity will also be essential, but is not well studied. In this study, systematic measurements of the aerodynamic drag, body posture and relative positioning of speed skaters have been performed in the low speed wind tunnel at the Norwegian University of Science and Technology, in order to investigate the aerodynamic interaction between two speed skaters. Drag measurements of static speed skaters drafting, leading, side-by-side, and dynamic drag measurements in a synchronized and unsynchronized movement at different distances, were performed. The projected frontal area was measured for all postures and movements and a blockage correction was performed, as the blockage ratio ranged from 5-15% in the different setups. The static drag measurements where performed on two test subjects in two different postures, a low posture and a high posture, and two different distances between the test subjects 1.5T and 3T where T being the length of the torso (T=0.63m). A drag reduction was observed for all distances and configurations, from 39% to 11.4%, for the drafting test subject. The drag of the leading test subject was only influenced at -1.5T, with the biggest drag reduction of 5.6%. An increase in drag was seen for all side-by-side measurements, the biggest increase was observed to be 25.7%, at the closest distance between the test subjects, and the lowest at 2.7% with ∼ 0.7 m between the test subjects. A clear aerodynamic interaction between the test subjects and their postures was observed for most measurements during static measurements, with results corresponding well to recent studies. For the dynamic measurements, the leading test subject had a drag reduction of 3% even at -3T. The drafting showed a drag reduction of 15% when being in a synchronized (sync) motion with the leading test subject at 4.5T. The maximal drag reduction for both the leading and the drafting test subject were observed when being as close as possible in sync, with a drag reduction of 8.5% and 25.7% respectively. This study emphasize the importance of keeping a synchronized movement by showing that the maximal gain for the leading and drafting dropped to 3.2% and 3.3% respectively when the skaters are in opposite phase. Individual differences in technique also appear to influence the drag of the other test subject.

Keywords: aerodynamic interaction, drag force, frontal area, speed skating

Procedia PDF Downloads 132
159 Fatigue Analysis of Spread Mooring Line

Authors: Chanhoe Kang, Changhyun Lee, Seock-Hee Jun, Yeong-Tae Oh

Abstract:

Offshore floating structure under the various environmental conditions maintains a fixed position by mooring system. Environmental conditions, vessel motions and mooring loads are applied to mooring lines as the dynamic tension. Because global responses of mooring system in deep water are specified as wave frequency and low frequency response, they should be calculated from the time-domain analysis due to non-linear dynamic characteristics. To take into account all mooring loads, environmental conditions, added mass and damping terms at each time step, a lot of computation time and capacities are required. Thus, under the premise that reliable fatigue damage could be derived through reasonable analysis method, it is necessary to reduce the analysis cases through the sensitivity studies and appropriate assumptions. In this paper, effects in fatigue are studied for spread mooring system connected with oil FPSO which is positioned in deep water of West Africa offshore. The target FPSO with two Mbbls storage has 16 spread mooring lines (4 bundles x 4 lines). The various sensitivity studies are performed for environmental loads, type of responses, vessel offsets, mooring position, loading conditions and riser behavior. Each parameter applied to the sensitivity studies is investigated from the effects of fatigue damage through fatigue analysis. Based on the sensitivity studies, the following results are presented: Wave loads are more dominant in terms of fatigue than other environment conditions. Wave frequency response causes the higher fatigue damage than low frequency response. The larger vessel offset increases the mean tension and so it results in the increased fatigue damage. The external line of each bundle shows the highest fatigue damage by the governed vessel pitch motion due to swell wave conditions. Among three kinds of loading conditions, ballast condition has the highest fatigue damage due to higher tension. The riser damping occurred by riser behavior tends to reduce the fatigue damage. The various analysis results obtained from these sensitivity studies can be used for a simplified fatigue analysis of spread mooring line as the reference.

Keywords: mooring system, fatigue analysis, time domain, non-linear dynamic characteristics

Procedia PDF Downloads 334
158 Interior Architecture in the Anthropocene: Engaging the Subnature through the Intensification of Body-Surface Interaction

Authors: Verarisa Ujung

Abstract:

The Anthropocene – as scientists define as a new geological epoch where human intervention has the dominant influence on the geological, atmospheric, and ecological processes challenges the contemporary discourse in architecture and interior. The dominant influence characterises the incapability to distinguish the notion of nature, subnature, human and non-human. Consequently, living in the Anthropocene demands sensitivity and responsiveness to heighten our sense of the rhythm of transformation and recognition of our environment as a product of natural, social and historical processes. The notion of subnature is particularly emphasised in this paper to investigate the poetic sense of living with subnature. It could be associated with the critical tool for exploring the aesthetic and programmatic implications of subnature on interiority. The ephemeral immaterial attached to subnature promotes the sense of atmospheric delineation of interiority, the very inner significance of body-surface interaction, which central to interior architecture discourse. This would then reflect human’s activities; examine the transformative change, the architectural motion and the traces that left between moments. In this way, engaging the notion of subnature enable us to better understand the critical subject on interiority and might provide an in-depth study on interior architecture. Incorporating the exploration on the form, materiality, and pattern of subnature, this research seeks to grasp the inner significance of micro to macro approaches so that the future of interior might be compelled to depend more on the investigation and development of responsive environment. To reflect upon the form, materiality and intensity of subnature that specifically characterized by the natural, social and historical processes, this research examines a volcanic land, White Island/Whakaari, New Zealand as the chosen site of investigation. Emitting various forms and intensities of subnatures - smokes, mud, sulphur gas, this volcanic land also open to the new inhabitation within the sulphur factory ruins that reflects human’s past occupation. In this way, temporal and natural selected manifestations of materiality, artefact, and performance can be traced out and might reveal the meaningful relations among space, inhabitation, and well-being of inhabitants in the Anthropocene.

Keywords: anthropocene, body, intensification, intensity, interior architecture, subnature, surface

Procedia PDF Downloads 176
157 Methylphenidate and Placebo Effect on Brain Activity and Basketball Free Throw: A Randomized Controlled Trial

Authors: Mohammad Khazaei, Reza Rostami, Hasan Gharayagh Zandi, Rouhollah Basatnia, Mahbubeh Ghayour Najafabadi

Abstract:

Objective: Methylphenidate has been demonstrated to enhance attention and cognitive processes, and placebo treatments have also been found to improve attention and cognitive processes. Additionally, methylphenidate may have positive effects on motion perception and sports performance. Nevertheless, additional research is needed to fully comprehend the neural mechanisms underlying the effects of methylphenidate and placebo on cognitive and motor functions. Methods: In this randomized controlled trial, 18 young semi-professional basketball players aged 18-23 years were randomly and equally assigned to either a Ritalin or Placebo group. The participants performed 20 consecutive free throws; their scores were recorded on a 0-3 scale. The participants’ brain activity was recorded using electroencephalography (EEG) for 5 minutes seated with their eyes closed. The Ritalin group received a 10 mg dose of methylphenidate, while the Placebo group received a 10mg dose of placebo. The EEG was obtained 90 minutes after the drug was administere Results: There was no significant difference in the absolute power of brain waves between the pre-test and post-tests in the Placebo group. However, in the Ritalin group, a significant difference in the absolute power of brain waves was observed in the Theta band (5-6 Hz) and Beta band (21-30 Hz) between pre- and post-tests in Fp2, F8, and Fp1. In these areas, the absolute power of Beta waves was higher during the post-test than during the pre-test. The Placebo group showed a more significant difference in free throw scores than the Ritalin group. Conclusions: In conclusion, these results suggest that Ritalin effect on brain activity in areas associated with attention and cognitive processes, as well as improve basketball free throws. However, there was no significant placebo effect on brain activity performance, but it significantly affected the improvement of free throws. Further research is needed to fully understand the effects of methylphenidate and placebo on cognitive and motor functions.

Keywords: methylphenidate, placebo effect, electroencephalography, basketball free throw

Procedia PDF Downloads 80
156 Assessing Project Performance through Work Sampling and Earned Value Analysis

Authors: Shobha Ramalingam

Abstract:

The majority of the infrastructure projects are affected by time overrun, resulting in project delays and subsequently cost overruns. Time overrun may vary from a few months to as high as five or more years, placing the project viability at risk. One of the probable reasons noted in the literature for this outcome in projects is due to poor productivity. Researchers contend that productivity in construction has only marginally increased over the years. While studies in the literature have extensively focused on time and cost parameters in projects, there are limited studies that integrate time and cost with productivity to assess project performance. To this end, a study was conducted to understand the project delay factors concerning cost, time and productivity. A case-study approach was adopted to collect rich data from a nuclear power plant project site for two months through observation, interviews and document review. The data were analyzed using three different approaches for a comprehensive understanding. Foremost, a root-cause analysis was performed on the data using Ishikawa’s fish-bone diagram technique to identify the various factors impacting the delay concerning time. Based on it, a questionnaire was designed and circulated to concerned executives, including project engineers and contractors to determine the frequency of occurrence of the delay, which was then compiled and presented to the management for a possible solution to mitigate. Second, a productivity analysis was performed on select activities, including rebar bending and concreting through a time-motion study to analyze product performance. Third, data on cost of construction for three years allowed analyzing the cost performance using earned value management technique. All three techniques allowed to systematically and comprehensively identify the key factors that deter project performance and productivity loss in the construction of the nuclear power plant project. The findings showed that improper planning and coordination between multiple trades, concurrent operations, improper workforce and material management, fatigue due to overtime were some of the key factors that led to delays and poor productivity. The findings are expected to act as a stepping stone for further research and have implications for practitioners.

Keywords: earned value analysis, time performance, project costs, project delays, construction productivity

Procedia PDF Downloads 97
155 Preliminary Report on the Assessment of the Impact of the Kinesiology Taping Application versus Placebo Taping on the Knee Joint Position Sense

Authors: Anna Hadamus, Patryk Wasowski, Anna Mosiolek, Zbigniew Wronski, Sebastian Wojtowicz, Dariusz Bialoszewski

Abstract:

Introduction: Kinesiology Taping is a very popular physiotherapy method, often used for healthy people, especially athletes, in order to stimulate the muscles and improve their performance. The aim of this study was to determine the effect of the muscle application of Kinesiology Taping on the joint position sense in active motion. Material and Methods: The study involved 50 healthy people - 30 men and 20 women, mean age was 23.2 years (range 18-30 years). The exclusion criteria were injuries and operations of the knee, which could affect the test results. The participants were divided randomly into two equal groups. The first group consisted of individuals with the applied Kinesiology Taping muscle application (KT group), whereas in the rest of the individuals placebo application from red adhesive tape was used (placebo group). Both applications were to enhance the effects of quadriceps muscle activity. Joint position sense (JPS) was evaluated in this study. Error of Active Reproduction of the Joint Position (EARJP) of the knee was measured in 45° flexion. The test was performed prior to applying the patch, with the applied application, then 24 hours after wearing, and after removing the tape. The interval between trials was not less than 30 minutes. Statistical analysis was performed using Statistica 12.0. We calculated distribution characteristics, Wilcoxon test, Friedman‘s ANOVA and Mann-Whitney U test. Results. In the KT group and the placebo group average test score of JPS before applying application KT were 3.48° and 5.16° respectively, after its application it was 4.84° and 4.88°, then after 24 hours of experiment JPS was 5.12° and 4.96°, and after application removal we measured 3.84° and 5.12° respectively. Differences over time in any of the groups were not statistically significant. There were also no significant differences between the groups. Conclusions: 1. Applying Kinesiology Taping to quadriceps muscle had no significant effect on the knee joint proprioception. Its use in order to improve sensorimitor skills seems therefore to be unreasonable. 2. No differences between applications of KT and placebo indicates that the clinical effect of stretch tape is minimal or absent. 3. The results are the basis for the continuation of prospective, randomized trials of numerous study groups.

Keywords: joint position sense, kinesiology taping, kinesiotaping, knee

Procedia PDF Downloads 340
154 Electrostatic Solitary Waves in Degenerate Relativistic Quantum Plasmas

Authors: Sharmin Sultana, Reinhard Schlickeiser

Abstract:

A degenerate relativistic quantum plasma (DRQP) system (containing relativistically degenerate electrons, degenerate/non-degenerate light nuclei, and non-degenerate heavy nuclei) is considered to investigate the propagation characteristics of electrostatic solitary waves (in the ionic scale length) theoretically and numerically. The ion-acoustic solitons are found to be associated with the modified ion-acoustic waves (MIAWs) in which inertia (restoring force) is provided by mass density of the light or heavy nuclei (degenerate pressure of the cold electrons). A mechanical-motion analog (Sagdeev-type) pseudo-potential approach is adopted to study the properties of large amplitude solitary waves. The basic properties of the large amplitude MIAWs and their existence domain in terms of soliton speed (Mach number) are examined. On the other hand, a multi-scale perturbation approach, leading to an evolution equation for the envelope dynamics, is adopted to derive the cubic nonlinear Schrödinger equation (NLSE). The criteria for the occurrence of modulational instability (MI) of the MIAWs are analyzed via the nonlinear dispersion relation of the NLSE. The possibility for the formation of highly energetic localized modes (e.g. peregrine solitons, rogue waves, etc.) is predicted in such DRQP medium. Peregrine solitons or rogue waves with amplitudes of several times of the background are observed to form in DRQP. The basic features of these modulated waves (e.g. envelope solitons, peregrine solitons, and rogue waves), which are found to form in DRQP, and their MI criteria (on the basis of different intrinsic plasma parameters), are investigated. It is emphasized that our results should be useful in understanding the propagation characteristics of localized disturbances and the modulation dynamics of envelope solitons, and their instability criteria in astrophysical DRQP system (e.g. white dwarfs, neutron stars, etc., where matters under extreme conditions are assumed to exist) and also in ultra-high density experimental plasmas.

Keywords: degenerate plasma, envelope solitons, modified ion-acoustic waves, modulational instability, rogue waves

Procedia PDF Downloads 203
153 Construction of a Dynamic Model of Cerebral Blood Circulation for Future Integrated Control of Brain State

Authors: Tomohiko Utsuki

Abstract:

Currently, brain resuscitation becomes increasingly important due to revising various clinical guidelines pertinent to emergency care. In brain resuscitation, the control of brain temperature (BT), intracranial pressure (ICP), and cerebral blood flow (CBF) is required for stabilizing physiological state of brain, and is described as the essential treatment points in many guidelines of disorder and/or disease such as brain injury, stroke, and encephalopathy. Thus, an integrated control system of BT, ICP, and CBF will greatly contribute to alleviating the burden on medical staff and improving treatment effect in brain resuscitation. In order to develop such a control system, models related to BT, ICP, and CBF are required for control simulation, because trial and error experiments using patients are not ethically allowed. A static model of cerebral blood circulation from intracranial arteries and vertebral artery to jugular veins has already constructed and verified. However, it is impossible to represent the pooling of blood in blood vessels, which is one cause of cerebral hypertension in this model. And, it is also impossible to represent the pulsing motion of blood vessels caused by blood pressure change which can have an affect on the change of cerebral tissue pressure. Thus, a dynamic model of cerebral blood circulation is constructed in consideration of the elasticity of the blood vessel and the inertia of the blood vessel wall. The constructed dynamic model was numerically analyzed using the normal data, in which each arterial blood flow in cerebral blood circulation, the distribution of blood pressure in the Circle of Willis, and the change of blood pressure along blood flow were calculated for verifying against physiological knowledge. As the result, because each calculated numerical value falling within the generally known normal range, this model has no problem in representing at least the normal physiological state of the brain. It is the next task to verify the accuracy of the present model in the case of disease or disorder. Currently, the construction of a migration model of extracellular fluid and a model of heat transfer in cerebral tissue are in progress for making them parts of an integrated model of brain physiological state, which is necessary for developing an future integrated control system of BT, ICP and CBF. The present model is applicable to constructing the integrated model representing at least the normal condition of brain physiological state by uniting with such models.

Keywords: dynamic model, cerebral blood circulation, brain resuscitation, automatic control

Procedia PDF Downloads 154
152 Costume Portrayal In K. Asif’s Mughal E Azam

Authors: Anketa Kumar, Rajantheran Al Muniandy, Rishabh Kumar

Abstract:

For centuries, Indian costumes are admired for their great aesthetics, functional and narrative qualities. The purpose of the current study is to investigate the role of costumes as visual narratives in Hindi Cinema as Filmmaking is simply one of the most recent manifestations of the human desire to tell stories in which costume acts as a tool to be read as an Intertext by the viewers watching the films. The problem that promoted this study arose when clothes become an interesting topic when examined within the social structures in which they are worn. It is this visual image of dress worn by the character that is investigated in this research through Hindi Cinema of the 1960s, which was a reflection of the society in the realistic form. This research intends to integrate the application of Roland Barthes Semiotic theory in analyzing main movie characters in the National Award-Winning Hindi movie Mughal e Azam (1960). The research helps in filling the gap between the singular level of interpretation and another level that offers a solution towards bridging the gap in viewers' manifold interpretation of a particular movie product. This study focuses on how visual appearance communicates for building up of perception and can relate to notions of realism, defining cultural identity and status in the society. The research methodology is subjected analytical technique that employs in this research is qualitative and descriptive in nature with the use of the Freeze frame technique. The portrayal of costumes is explained with Barthes' principles of Semiotics. The freeze-frame technique stops the motion of the film on a single frame and allows the chosen image to be read as a still photograph. The finding during this research into costume portrayal in the movie was that freezing the frame in midst of running the films attracted attention towards intricate costume details, leading to record the nuanced observations of this minutiae during the movie. Given that during the application of interpretation while watching K Asif’s Mughal e Azam focused on certain aspects of costumes of the king. On the same idea, further research can be employed to strengthen the relation between costumes and visual narration.

Keywords: character portrayal, costumes, Indian cinema, semiotics, visual significance

Procedia PDF Downloads 187
151 The Enhancement of Target Localization Using Ship-Borne Electro-Optical Stabilized Platform

Authors: Jaehoon Ha, Byungmo Kang, Kilho Hong, Jungsoo Park

Abstract:

Electro-optical (EO) stabilized platforms have been widely used for surveillance and reconnaissance on various types of vehicles, from surface ships to unmanned air vehicles (UAVs). EO stabilized platforms usually consist of an assembly of structure, bearings, and motors called gimbals in which a gyroscope is installed. EO elements such as a CCD camera and IR camera, are mounted to a gimbal, which has a range of motion in elevation and azimuth and can designate and track a target. In addition, a laser range finder (LRF) can be added to the gimbal in order to acquire the precise slant range from the platform to the target. Recently, a versatile functionality of target localization is needed in order to cooperate with the weapon systems that are mounted on the same platform. The target information, such as its location or velocity, needed to be more accurate. The accuracy of the target information depends on diverse component errors and alignment errors of each component. Specially, the type of moving platform can affect the accuracy of the target information. In the case of flying platforms, or UAVs, the target location error can be increased with altitude so it is important to measure altitude as precisely as possible. In the case of surface ships, target location error can be increased with obliqueness of the elevation angle of the gimbal since the altitude of the EO stabilized platform is supposed to be relatively low. The farther the slant ranges from the surface ship to the target, the more extreme the obliqueness of the elevation angle. This can hamper the precise acquisition of the target information. So far, there have been many studies on EO stabilized platforms of flying vehicles. However, few researchers have focused on ship-borne EO stabilized platforms of the surface ship. In this paper, we deal with a target localization method when an EO stabilized platform is located on the mast of a surface ship. Especially, we need to overcome the limitation caused by the obliqueness of the elevation angle of the gimbal. We introduce a well-known approach for target localization using Unscented Kalman Filter (UKF) and present the problem definition showing the above-mentioned limitation. Finally, we want to show the effectiveness of the approach that will be demonstrated through computer simulations.

Keywords: target localization, ship-borne electro-optical stabilized platform, unscented kalman filter

Procedia PDF Downloads 521
150 Analysis of the Operating Load of Gas Bearings in the Gas Generator of the Turbine Engine during a Deceleration to Dash Maneuver

Authors: Zbigniew Czyz, Pawel Magryta, Mateusz Paszko

Abstract:

The paper discusses the status of loads acting on the drive unit of the unmanned helicopter during deceleration to dash maneuver. Special attention was given for the loads of bearings in the gas generator turbine engine, in which will be equipped a helicopter. The analysis was based on the speed changes as a function of time for manned flight of helicopter PZL W3-Falcon. The dependence of speed change during the flight was approximated by the least squares method and then determined for its changes in acceleration. This enabled us to specify the forces acting on the bearing of the gas generator in static and dynamic conditions. Deceleration to dash maneuvers occurs in steady flight at a speed of 222 km/h by horizontal braking and acceleration. When the speed reaches 92 km/h, it dynamically changes an inclination of the helicopter to the maximum acceleration and power to almost maximum and holds it until it reaches its initial speed. This type of maneuvers are used due to ineffective shots at significant cruising speeds. It is, therefore, important to reduce speed to the optimum as soon as possible and after giving a shot to return to the initial speed (cruising). In deceleration to dash maneuvers, we have to deal with the force of gravity of the rotor assembly, gas aerodynamics forces and the forces caused by axial acceleration during this maneuver. While we can assume that the working components of the gas generator are designed so that axial gas forces they create could balance the aerodynamic effects, the remaining ones operate with a value that results from the motion profile of the aircraft. Based on the analysis, we can make a compilation of the results. For this maneuver, the force of gravity (referring to statistical calculations) respectively equals for bearing A = 5.638 N and bearing B = 1.631 N. As overload coefficient k in this direction is 1, this force results solely from the weight of the rotor assembly. For this maneuver, the acceleration in the longitudinal direction achieved value a_max = 4.36 m/s2. Overload coefficient k is, therefore, 0.44. When we multiply overload coefficient k by the weight of all gas generator components that act on the axial bearing, the force caused by axial acceleration during deceleration to dash maneuver equals only 3.15 N. The results of the calculations are compared with other maneuvers such as acceleration and deceleration and jump up and jump down maneuvers. This work has been financed by the Polish Ministry of Science and Higher Education.

Keywords: gas bearings, helicopters, helicopter maneuvers, turbine engines

Procedia PDF Downloads 340
149 Climate Change Adaptation Strategy Recommended for the Conservation of Biodiversity in Western Ghats, India

Authors: Mukesh Lal Das, Muthukumar Muthuchamy

Abstract:

Climate change Adaptation strategy (AS) is a scientific approach to dealing with the impacts of climate change (CC). Efforts are being made to contain the global emission of greenhouse gas within threshold limits, thereby limiting the rise of global temperature to an optimal level. Global Climate change is a spontaneous process; therefore, reversing the damage would take decades. The climate change adaptation strategy recommended by various stakeholders could be a key to resilience for biodiversity. The Indian Government has constituted the panel to synthesize the climate change action report at the federal and state levels. This review scavenged the published literature on the Western Ghats hotspots. And highlight the adaptation strategy recommended by diverse scientific actors to conserve biodiversity. It also reviews the grey literature adopted by state and federal governments and its effectiveness in mitigating the impacts on biodiversity. We have narrowed the scope of interest to the state action report by 6 Indian states such as Gujarat, Maharashtra, Goa, Karnataka, Kerala and Tamil Nadu, which host Western Ghats global biodiversity hotspot. Western Ghats(WGs) act as the water tower to the peninsular part of India, and its extensive watershed caters to the water demand of the Industry sector, Agriculture and urban community. Conservation of WGs is the key to the prosperity of Peninsular India. The global scientific community suggested more than 600+ Climate change adaptation strategies for the policymakers, stakeholders, and other state actors to take proactive actions. The preliminary analysis of the federal and the state action plan on climate change in the wake of CC indicate inadequacy in motion as per recommended scientific adaptation strategies. Tamil Nadu and Kerala state constitute nine effective adaptation strategies out of the 40+ recommended for Western Ghats conservation. And other four states' adaptation strategies are deficient, confusing and vague. Western Ghats' resilience capacity will soon or might have reached its threshold, and the frequency of severe drought and flash floods might upsurge manifold in the decades to come. The lack of a clear roadmap to climate change adaptation strategies in the federal and state action stirred us to identify the gap and address it by offering a holistic approach to WGs biodiversity conservation.

Keywords: adaptation strategy, biodiversity conservation, climate change, resilience, Western Ghats

Procedia PDF Downloads 106
148 Limbic Involvement in Visual Processing

Authors: Deborah Zelinsky

Abstract:

The retina filters millions of incoming signals into a smaller amount of exiting optic nerve fibers that travel to different portions of the brain. Most of the signals are for eyesight (called "image-forming" signals). However, there are other faster signals that travel "elsewhere" and are not directly involved with eyesight (called "non-image-forming" signals). This article centers on the neurons of the optic nerve connecting to parts of the limbic system. Eye care providers are currently looking at parvocellular and magnocellular processing pathways without realizing that those are part of an enormous "galaxy" of all the body systems. Lenses are modifying both non-image and image-forming pathways, taking A.M. Skeffington's seminal work one step further. Almost 100 years ago, he described the Where am I (orientation), Where is It (localization), and What is It (identification) pathways. Now, among others, there is a How am I (animation) and a Who am I (inclination, motivation, imagination) pathway. Classic eye testing considers pupils and often assesses posture and motion awareness, but classical prescriptions often overlook limbic involvement in visual processing. The limbic system is composed of the hippocampus, amygdala, hypothalamus, and anterior nuclei of the thalamus. The optic nerve's limbic connections arise from the intrinsically photosensitive retinal ganglion cells (ipRGC) through the "retinohypothalamic tract" (RHT). There are two main hypothalamic nuclei with direct photic inputs. These are the suprachiasmatic nucleus and the paraventricular nucleus. Other hypothalamic nuclei connected with retinal function, including mood regulation, appetite, and glucose regulation, are the supraoptic nucleus and the arcuate nucleus. The retino-hypothalamic tract is often overlooked when we prescribe eyeglasses. Each person is different, but the lenses we choose are influencing this fast processing, which affects each patient's aiming and focusing abilities. These signals arise from the ipRGC cells that were only discovered 20+ years ago and do not address the campana retinal interneurons that were only discovered 2 years ago. As eyecare providers, we are unknowingly altering such factors as lymph flow, glucose metabolism, appetite, and sleep cycles in our patients. It is important to know what we are prescribing as the visual processing evaluations expand past the 20/20 central eyesight.

Keywords: neuromodulation, retinal processing, retinohypothalamic tract, limbic system, visual processing

Procedia PDF Downloads 90
147 Interaction between Trapezoidal Hill and Subsurface Cavity under SH Wave Incidence

Authors: Yuanrui Xu, Zailin Yang, Yunqiu Song, Guanxixi Jiang

Abstract:

It is an important subject of seismology on the influence of local topography on ground motion during earthquake. In mountainous areas with complex terrain, the construction of the tunnel is often the most effective transportation scheme. In these projects, the local terrain can be simplified into hills with different shapes, and the underground tunnel structure can be regarded as a subsurface cavity. The presence of the subsurface cavity affects the strength of the rock mass and changes the deformation and failure characteristics. Moreover, the scattering of the elastic waves by underground structures usually interacts with local terrains, which leads to a significant influence on the surface displacement of the terrains. Therefore, it is of great practical significance to study the surface displacement of local terrains with underground tunnels in earthquake engineering and seismology. In this work, the region is divided into three regions by the method of region matching. By using the fractional Bessel function and Hankel function, the complex function method, and the wave function expansion method, the wavefield expression of SH waves is introduced. With the help of a constitutive relation between the displacement and the stress components, the hoop stress and radial stress is obtained subsequently. Then, utilizing the continuous condition at different region boundaries, the undetermined coefficients in wave fields are solved by the Fourier series expansion and truncation of the finite term. Finally, the validity of the method is verified, and the surface displacement amplitude is calculated. The surface displacement amplitude curve is discussed in the numerical results. The results show that different parameters, such as radius and buried depth of the tunnel, wave number, and incident angle of the SH wave, have a significant influence on the amplitude of surface displacement. For the underground tunnel, the increase of buried depth will make the response of surface displacement amplitude increases at first and then decreases. However, the increase of radius leads the response of surface displacement amplitude to appear an opposite phenomenon. The increase of SH wave number can enlarge the amplitude of surface displacement, and the change of incident angle can obviously affect the amplitude fluctuation.

Keywords: method of region matching, scattering of SH wave, subsurface cavity, trapezoidal hill

Procedia PDF Downloads 135
146 Time and Energy Saving Kitchen Layout

Authors: Poonam Magu, Kumud Khanna, Premavathy Seetharaman

Abstract:

The two important resources of any worker performing any type of work at any workplace are time and energy. These are important inputs of the worker and need to be utilised in the best possible manner. The kitchen is an important workplace where the homemaker performs many essential activities. Its layout should be so designed that optimum use of her resources can be achieved.Ideally, the shape of the kitchen, as determined by the physical space enclosed by the four walls, can be square, rectangular or irregular. But it is the shape of the arrangement of counter that one normally refers to while talking of the layout of the kitchen. The arrangement can be along a single wall, along two opposite walls, L shape, U shape or even island. A study was conducted in 50 kitchens belonging to middle income group families. These were DDA built kitchens located in North, South, East and West Delhi.The study was conducted in three phases. In the first phase, 510 non working homemakers were interviewed. The data related to personal characteristics of the homemakers was collected. Additional information was also collected regarding the kitchens-the size, shape , etc. The homemakers were also questioned about various aspects related to meal preparation-people performing the task, number of items cooked, areas used for meal preparation , etc. In the second phase, a suitable technique was designed for conducting time and motion study in the kitchen while the meal was being prepared. This technique was called Path Process Chart. The final phase was carried out in 50 kitchens. The criterion for selection was that all items for a meal should be cooked at the same time. All the meals were cooked by the homemakers in their own kitchens. The meal preparation was studied using the Path Process Chart technique. The data collected was analysed and conclusions drawn. It was found that of all the shapes, it was the kitchen with L shape arrangement in which, on an average a homemaker spent minimum time on meal preparation and also travelled the minimum distance. Thus, the average distance travelled in a L shaped layout was 131.1 mts as compared to 181.2 mts in an U shaped layout. Similarly, 48 minutes was the average time spent on meal preparation in L shaped layout as compared to 53 minutes in U shaped layout. Thus, the L shaped layout was more time and energy saving layout as compared to U shaped.

Keywords: kitchen layout, meal preparation, path process chart technique, workplace

Procedia PDF Downloads 207
145 GPU-Based Back-Projection of Synthetic Aperture Radar (SAR) Data onto 3D Reference Voxels

Authors: Joshua Buli, David Pietrowski, Samuel Britton

Abstract:

Processing SAR data usually requires constraints in extent in the Fourier domain as well as approximations and interpolations onto a planar surface to form an exploitable image. This results in a potential loss of data requires several interpolative techniques, and restricts visualization to two-dimensional plane imagery. The data can be interpolated into a ground plane projection, with or without terrain as a component, all to better view SAR data in an image domain comparable to what a human would view, to ease interpretation. An alternate but computationally heavy method to make use of more of the data is the basis of this research. Pre-processing of the SAR data is completed first (matched-filtering, motion compensation, etc.), the data is then range compressed, and lastly, the contribution from each pulse is determined for each specific point in space by searching the time history data for the reflectivity values for each pulse summed over the entire collection. This results in a per-3D-point reflectivity using the entire collection domain. New advances in GPU processing have finally allowed this rapid projection of acquired SAR data onto any desired reference surface (called backprojection). Mathematically, the computations are fast and easy to implement, despite limitations in SAR phase history data size and 3D-point cloud size. Backprojection processing algorithms are embarrassingly parallel since each 3D point in the scene has the same reflectivity calculation applied for all pulses, independent of all other 3D points and pulse data under consideration. Therefore, given the simplicity of the single backprojection calculation, the work can be spread across thousands of GPU threads allowing for accurate reflectivity representation of a scene. Furthermore, because reflectivity values are associated with individual three-dimensional points, a plane is no longer the sole permissible mapping base; a digital elevation model or even a cloud of points (collected from any sensor capable of measuring ground topography) can be used as a basis for the backprojection technique. This technique minimizes any interpolations and modifications of the raw data, maintaining maximum data integrity. This innovative processing will allow for SAR data to be rapidly brought into a common reference frame for immediate exploitation and data fusion with other three-dimensional data and representations.

Keywords: backprojection, data fusion, exploitation, three-dimensional, visualization

Procedia PDF Downloads 86
144 Mechanism of Action of New Sustainable Flame Retardant Additives in Polyamide 6,6

Authors: I. Belyamani, M. K. Hassan, J. U. Otaigbe, W. R. Fielding, K. A. Mauritz, J. S. Wiggins, W. L. Jarrett

Abstract:

We have investigated the flame-retardant efficiency of special new phosphate glass (P-glass) compositions having different glass transition temperatures (Tg) on the processing conditions of polyamide 6,6 (PA6,6) and the final hybrid flame retardancy (FR). We have showed that the low Tg P glass composition (i.e., ILT 1) is a promising flame retardant for PA6,6 at a concentration of up to 15 wt. % compared to intermediate (IIT 3) and high (IHT 1) Tg P glasses. Cone calorimetry data showed that the ILT 1 decreased both the peak heat release rate and the total heat amount released from the PA6,6/ILT 1 hybrids, resulting in an efficient formation of a glassy char layer. These intriguing findings prompted to address several questions concerning the mechanism of action of the different P glasses studied. The general mechanism of action of phosphorous based FR additives occurs during the combustion stage by enhancing the morphology of the char and the thermal shielding effect. However, the present work shows that P glass based FR additives act during melt processing of PA6,6/P glass hybrids. Dynamic mechanical analysis (DMA) revealed that the Tg of PA6,6/ILT 1 was significantly shifted to a lower Tg (~65 oC) and another transition appeared at high temperature (~ 166 oC), thus indicating a strong interaction between PA6,6 and ILT 1. This was supported by a drop in the melting point and crystallinity of the PA6,6/ILT 1 hybrid material as detected by differential scanning calorimetry (DSC). The dielectric spectroscopic investigation of the networks’ molecular level structural variations (i.e. hybrids chain motion, Tg and sub-Tg relaxations) agreed very well with the DMA and DSC findings; it was found that the three different P glass compositions did not show any effect on the PA6,6 sub-Tg relaxations (related to the NH2 and OH chain end groups motions). Nevertheless, contrary to IIT 3 and IHT 1 based hybrids, the PA6,6/ILT 1 hybrid material showed an evidence of splitting the PA6,6 Tg relaxations into two peaks. Finally, the CPMAS 31P-NMR data confirmed the miscibility between ILT 1 and PA6,6 at the molecular level, as a much larger enhancement in cross-polarization for the PA6,6/15%ILT 1 hybrids was observed. It can be concluded that compounding low Tg P-glass (i.e. ILT 1) with PA6,6 facilitates hydrolytic chain scission of the PA6,6 macromolecules through a potential chemical interaction between phosphate and the alpha-Carbon of the amide bonds of the PA6,6, leading to better flame retardant properties.

Keywords: broadband dielectric spectroscopy, composites, flame retardant, polyamide, phosphate glass, sustainable

Procedia PDF Downloads 239
143 Implementation of Chlorine Monitoring and Supply System for Drinking Water Tanks

Authors: Ugur Fidan, Naim Karasekreter

Abstract:

Healthy and clean water should not contain disease-causing micro-organisms and toxic chemicals and must contain the necessary minerals in a balanced manner. Today, water resources have a limited and strategic importance, necessitating the management of water reserves. Water tanks meet the water needs of people and should be regularly chlorinated to prevent waterborne diseases. For this purpose, automatic chlorination systems placed in water tanks for killing bacteria. However, the regular operation of automatic chlorination systems depends on refilling the chlorine tank when it is empty. For this reason, there is a need for a stock control system, in which chlorine levels are regularly monitored and supplied. It has become imperative to take urgent measures against epidemics caused by the fact that most of our country is not aware of the end of chlorine. The aim of this work is to rehabilitate existing water tanks and to provide a method for a modern water storage system in which chlorination is digitally monitored by turning the newly established water tanks into a closed system. A sensor network structure using GSM/GPRS communication infrastructure has been developed in the study. The system consists of two basic units: hardware and software. The hardware includes a chlorine level sensor, an RFID interlock system for authorized personnel entry into water tank, a motion sensor for animals and other elements, and a camera system to ensure process safety. It transmits the data from the hardware sensors to the host server software via the TCP/IP protocol. The main server software processes the incoming data through the security algorithm and informs the relevant unit responsible (Security forces, Chlorine supply unit, Public health, Local Administrator) by e-mail and SMS. Since the software is developed base on the web, authorized personnel are also able to monitor drinking water tank and report data on the internet. When the findings and user feedback obtained as a result of the study are evaluated, it is shown that closed drinking water tanks are built with GRP type material, and continuous monitoring in digital environment is vital for sustainable health water supply for people.

Keywords: wireless sensor networks (WSN), monitoring, chlorine, water tank, security

Procedia PDF Downloads 161
142 Roboweeder: A Robotic Weeds Killer Using Electromagnetic Waves

Authors: Yahoel Van Essen, Gordon Ho, Brett Russell, Hans-Georg Worms, Xiao Lin Long, Edward David Cooper, Avner Bachar

Abstract:

Weeds reduce farm and forest productivity, invade crops, smother pastures and some can harm livestock. Farmers need to spend a significant amount of money to control weeds by means of biological, chemical, cultural, and physical methods. To solve the global agricultural labor shortage and remove poisonous chemicals, a fully autonomous, eco-friendly, and sustainable weeding technology is developed. This takes the form of a weeding robot, ‘Roboweeder’. Roboweeder includes a four-wheel-drive self-driving vehicle, a 4-DOF robotic arm which is mounted on top of the vehicle, an electromagnetic wave generator (magnetron) which is mounted on the “wrist” of the robotic arm, 48V battery packs, and a control/communication system. Cameras are mounted on the front and two sides of the vehicle. Using image processing and recognition, distinguish types of weeds are detected before being eliminated. The electromagnetic wave technology is applied to heat the individual weeds and clusters dielectrically causing them to wilt and die. The 4-DOF robotic arm was modeled mathematically based on its structure/mechanics, each joint’s load, brushless DC motor and worm gear’ characteristics, forward kinematics, and inverse kinematics. The Proportional-Integral-Differential control algorithm is used to control the robotic arm’s motion to ensure the waveguide aperture pointing to the detected weeds. GPS and machine vision are used to traverse the farm and avoid obstacles without the need of supervision. A Roboweeder prototype has been built. Multiple test trials show that Roboweeder is able to detect, point, and kill the pre-defined weeds successfully although further improvements are needed, such as reducing the “weeds killing” time and developing a new waveguide with a smaller waveguide aperture to avoid killing crops surrounded. This technology changes the tedious, time consuming and expensive weeding processes, and allows farmers to grow more, go organic, and eliminate operational headaches. A patent of this technology is pending.

Keywords: autonomous navigation, machine vision, precision heating, sustainable and eco-friendly

Procedia PDF Downloads 256
141 Simulation of Optimum Sculling Angle for Adaptive Rowing

Authors: Pornthep Rachnavy

Abstract:

The purpose of this paper is twofold. First, we believe that there are a significant relationship between sculling angle and sculling style among adaptive rowing. Second, we introduce a methodology used for adaptive rowing, namely simulation, to identify effectiveness of adaptive rowing. For our study we simulate the arms only single scull of adaptive rowing. The method for rowing fastest under the 1000 meter was investigated by study sculling angle using the simulation modeling. A simulation model of a rowing system was developed using the Matlab software package base on equations of motion consist of many variation for moving the boat such as oars length, blade velocity and sculling style. The boat speed, power and energy consumption on the system were compute. This simulation modeling can predict the force acting on the boat. The optimum sculling angle was performing by computer simulation for compute the solution. Input to the model are sculling style of each rower and sculling angle. Outputs of the model are boat velocity at 1000 meter. The present study suggests that the optimum sculling angle exist depends on sculling styles. The optimum angle for blade entry and release with respect to the perpendicular through the pin of the first style is -57.00 and 22.0 degree. The optimum angle for blade entry and release with respect to the perpendicular through the pin of the second style is -57.00 and 22.0 degree. The optimum angle for blade entry and release with respect to the perpendicular through the pin of the third style is -51.57 and 28.65 degree. The optimum angle for blade entry and release with respect to the perpendicular through the pin of the fourth style is -45.84 and 34.38 degree. A theoretical simulation for rowing has been developed and presented. The results suggest that it may be advantageous for the rowers to select the sculling angles proper to sculling styles. The optimum sculling angles of the rower depends on the sculling styles made by each rower. The investigated of this paper can be concludes in three directions: 1;. There is the optimum sculling angle in arms only single scull of adaptive rowing. 2. The optimum sculling angles depend on the sculling styles. 3. Computer simulation of rowing can identify opportunities for improving rowing performance by utilizing the kinematic description of rowing. The freedom to explore alternatives in speed, thrust and timing with the computer simulation will provide the coach with a tool for systematic assessments of rowing technique In addition, the ability to use the computer to examine the very complex movements during rowing will help both the rower and the coach to conceptualize the components of movements that may have been previously unclear or even undefined.

Keywords: simulation, sculling, adaptive, rowing

Procedia PDF Downloads 465
140 Oral Supplementation of Sweet Orange Extract “Citrus Sinensis” as Substitute for Synthetic Vitamin C on Transported Pullets in Humid Tropics

Authors: Mathew O. Ayoola, Foluke Aderemi, Tunde E. Lawal, Opeyemi Oladejo, Micheal A. Abiola

Abstract:

Food animals reared for meat require transportation during their life cycle. The transportation procedures could initiate stressors capable of disrupting the physiological homeostasis. Such stressors associated with transportation may include; loading and unloading, crowding, environmental temperature, fear, vehicle motion/vibration, feed / water deprivation, and length of travel. This may cause oxidative stress and damage to excess free radicals or reactive oxygen species (ROS). In recent years, the application of natural products as a substitute for synthetic electrolytes and tranquilizers as anti-stress agents during the transportation is yet under investigation. Sweet orange, a predominant fruit in humid tropics, has been reported to have a good content of vitamin C (Ascorbic acid). Vitamin C, which is an active ingredient in orange juice, plays a major role in the biosynthesis of Corticosterone, a hormone that enhances energy supply during transportation and heat stress. Ninety-six, 15weeks, Isa brown pullets were allotted to four (4) oral treatments; sterile water (T1), synthetic vit C (T2), 30ml orange/liter of water (T3), 50ml orange/1 liter (T4). Physiological parameters; body temperature (BTC), rectal temperature (RTC), respiratory rate (RR), and panting rate (PR) were measured pre and post-transportation. The birds were transported with a specialized vehicle for a distance of 50km at a speed of 60 km/hr. The average environmental THI and within the vehicle was 81.8 and 74.6, respectively, and the average wind speed was 11km/hr. Treatments and periods had a significant (p>0.05) effect on all the physiological parameters investigated. Birds on T1 are significantly (p<0.05) different as compared to T2, T3, and T4. Values recorded post-transportation are significantly (p<0.05) higher as compared to pre-transportation for all parameters. In conclusion, this study showed that transportation as a stressor can affect the physiological homeostasis of pullets. Oral supplementation of electrolytes or tranquilizers is essential as an anti-stress during transportation. The application of the organic product in form of sweet orange could serve as a suitable alternative for the synthetic vitamin C.

Keywords: physiological, pullets, sweet orange, transportation stress, and vitamin C

Procedia PDF Downloads 120
139 Identification and Management of Septic Arthritis of the Untouched Glenohumeral Joint

Authors: Sumit Kanwar, Manisha Chand, Gregory Gilot

Abstract:

Background: Septic arthritis of the shoulder has infrequently been discussed. Focus on infection of the untouched shoulder has not heretofore been described. We present four patients with glenohumeral septic arthritis. Methods: Case 1: A 59 year old male with left shoulder pain in the anterior, posterior and superior aspects. Case 2: A 60 year old male with fever, chills, and generalized muscle aches. Case 3: A 70 year old male with right shoulder pain about the anterior and posterior aspects. Case 4: A 55 year old male with global right shoulder pain, swelling, and limited ROM. Results: In case 1, the left shoulder was affected. Physical examination, swelling was notable, there was global tenderness with a painful range of motion (ROM). The lab values indicated an erythrocyte sedimentation rate (ESR) of 96, and a C-reactive protein (CRP) of 304.30. Imaging studies were performed and MRI indicated a high suspicion for an abscess with osteomyelitis of the humeral head. Our second case’s left arm was affected. He had swelling, global tenderness and painful ROM. His ESR was 38, CRP was 14.9. X-ray showed severe arthritis. Case 3 differed with the right arm being affected. Again, global tenderness and painful ROM was observed. His ESR was 94, and CRP was 10.6. X-ray displayed an eroded glenoid space. Our fourth case’s right shoulder was affected. He had global tenderness and painful, limited ROM. ESR was 108 and CRP was 2.4. X-ray was non-significant. Discussion: Monoarticular septic arthritis of the virgin glenohumeral joint is seldom diagnosed in clinical practice. Common denominators include elevated ESR, painful, limited ROM, and involvement of the dominant arm. The male population is more frequently affected with an average age of 57. Septic arthritis is managed with incision and drainage or needle aspiration of synovial fluid supplemented with 3-6 weeks of intravenous antibiotics. Due to better irrigation and joint visualization, arthroscopy is preferred. Open surgical drainage may be indicated if the above methods fail. Conclusion: If a middle-aged male presents with vague anterior or posterior shoulder pain, elevated inflammatory markers and a low grade fever, an x-ray should be performed. If this displays degenerative joint disease, the complete further workup with advanced imaging, such as an MRI, CT scan, or an ultrasound. If these imaging modalities display anterior space joint effusion with soft tissue involvement, we can suspect septic arthritis of the untouched glenohumeral joint and surgery is indicated.

Keywords: glenohumeral joint, identification, infection, septic arthritis, shoulder

Procedia PDF Downloads 423
138 Analytical and Numerical Study of Formation of Sporadic E Layer with Taking into Account Horizontal and Vertical In-Homogeneity of the Horizontal Wind

Authors: Giorgi Dalakishvili, Goderdzi G. Didebulidze, Maya Todua

Abstract:

The possibility of sporadic E (Es) layer formation in the mid-latitude nighttime lower thermosphere by horizontal homogeneous and inhomogeneous (vertically and horizontally changing) winds is investigated in 3D by analytical and numerical solutions of continuity equation for dominant heavy metallic ions Fe+. The theory of influence of wind velocity direction, value, and its shear on formation of sporadic E is developed in case of presence the effect of horizontally changing wind (the effect of horizontal convergence). In this case, the horizontal wind with horizontal shear, characterized by compressibility and/or vortices, can provide an additional influence on heavy metallic ions Fe+ horizontal convergence and Es layers density, which can be formed by their vertical convergence caused as by wind direction and values and by its horizontal shear as well. The horizontal wind value and direction have significant influence on ion vertical drift velocity and its minimal negative values of divergence necessary for development of ion vertical convergence into sporadic E type layer. The horizontal wind horizontal shear, in addition to its vertical shear, also influences the ion drift velocity value and its vertical changes and correspondingly on formation of sporadic E layer and its density. The atmospheric gravity waves (AGWs), with relatively smaller horizontal wave length than planetary waves and tidal motion, can significantly influence location of ion vertical drift velocity nodes (where Es layers formation expectable) and its vertical and horizontal shear providing ion vertical convergence into thin layer. Horizontal shear can cause additional influence in the Es layers density than in the case of only wind value and vertical shear only. In this case, depending on wind direction and value in the height region of the lower thermosphere about 90-150 km occurs heavy metallic ions (Fe+) vertical convergence into thin sporadic E type layer. The horizontal wind horizontal shear also can influence on ions horizontal convergence and density and location Es layers. The AGWs modulate the horizontal wind direction and values and causes ion additional horizontal convergence, while the vertical changes (shear) causes additional vertical convergence than in the case without vertical shear. Influence of horizontal shear on sporadic E density and the importance of vertical compressibility of the lower thermosphere, which also can be influenced by AGWs, is demonstrated numerically. For the given wavelength and background wind, the predictability of formation Es layers and its possible location regions are shown. Acknowledgements: This study was funded by Georgian Shota Rustaveli National Science Foundation Grant no. FR17-357.

Keywords: in-homogeneous, sporadic E, thermosphere, wind

Procedia PDF Downloads 158
137 Cooperation of Unmanned Vehicles for Accomplishing Missions

Authors: Ahmet Ozcan, Onder Alparslan, Anil Sezgin, Omer Cetin

Abstract:

The use of unmanned systems for different purposes has become very popular over the past decade. Expectations from these systems have also shown an incredible increase in this parallel. But meeting the demands of the tasks are often not possible with the usage of a single unmanned vehicle in a mission, so it is necessary to use multiple autonomous vehicles with different abilities together in coordination. Therefore the usage of the same type of vehicles together as a swarm is helped especially to satisfy the time constraints of the missions effectively. In other words, it allows sharing the workload by the various numbers of homogenous platforms together. Besides, it is possible to say there are many kinds of problems that require the usage of the different capabilities of the heterogeneous platforms together cooperatively to achieve successful results. In this case, cooperative working brings additional problems beyond the homogeneous clusters. In the scenario presented as an example problem, it is expected that an autonomous ground vehicle, which is lack of its position information, manage to perform point-to-point navigation without losing its way in a previously unknown labyrinth. Furthermore, the ground vehicle is equipped with very limited sensors such as ultrasonic sensors that can detect obstacles. It is very hard to plan or complete the mission for the ground vehicle by self without lost its way in the unknown labyrinth. Thus, in order to assist the ground vehicle, the autonomous air drone is also used to solve the problem cooperatively. The autonomous drone also has limited sensors like downward looking camera and IMU, and it also lacks computing its global position. In this context, it is aimed to solve the problem effectively without taking additional support or input from the outside, just benefiting capabilities of two autonomous vehicles. To manage the point-to-point navigation in a previously unknown labyrinth, the platforms have to work together coordinated. In this paper, cooperative work of heterogeneous unmanned systems is handled in an applied sample scenario, and it is mentioned that how to work together with an autonomous ground vehicle and the autonomous flying platform together in a harmony to take advantage of different platform-specific capabilities. The difficulties of using heterogeneous multiple autonomous platforms in a mission are put forward, and the successful solutions are defined and implemented against the problems like spatially distributed tasks planning, simultaneous coordinated motion, effective communication, and sensor fusion.

Keywords: unmanned systems, heterogeneous autonomous vehicles, coordination, task planning

Procedia PDF Downloads 129
136 A One-Dimensional Model for Contraction in Burn Wounds: A Sensitivity Analysis and a Feasibility Study

Authors: Ginger Egberts, Fred Vermolen, Paul van Zuijlen

Abstract:

One of the common complications in post-burn scars is contractions. Depending on the extent of contraction and the wound dimensions, the contracture can cause a limited range-of-motion of joints. A one-dimensional morphoelastic continuum hypothesis-based model describing post-burn scar contractions is considered. The beauty of the one-dimensional model is the speed; hence it quickly yields new results and, therefore, insight. This model describes the movement of the skin and the development of the strain present. Besides these mechanical components, the model also contains chemical components that play a major role in the wound healing process. These components are fibroblasts, myofibroblasts, the so-called signaling molecules, and collagen. The dermal layer is modeled as an isotropic morphoelastic solid, and pulling forces are generated by myofibroblasts. The solution to the model equations is approximated by the finite-element method using linear basis functions. One of the major challenges in biomechanical modeling is the estimation of parameter values. Therefore, this study provides a comprehensive description of skin mechanical parameter values and a sensitivity analysis. Further, since skin mechanical properties change with aging, it is important that the model is feasible for predicting the development of contraction in burn patients of different ages, and hence this study provides a feasibility study. The variability in the solutions is caused by varying the values for some parameters simultaneously over the domain of computation, for which the results of the sensitivity analysis are used. The sensitivity analysis shows that the most sensitive parameters are the equilibrium concentration of collagen, the apoptosis rate of fibroblasts and myofibroblasts, and the secretion rate of signaling molecules. This suggests that most of the variability in the evolution of contraction in burns in patients of different ages might be caused mostly by the decreasing equilibrium of collagen concentration. As expected, the feasibility study shows this model can be used to show distinct extents of contractions in burns in patients of different ages. Nevertheless, contraction formation in children differs from contraction formation in adults because of the growth. This factor has not been incorporated in the model yet, and therefore the feasibility results for children differ from what is seen in the clinic.

Keywords: biomechanics, burns, feasibility, fibroblasts, morphoelasticity, sensitivity analysis, skin mechanics, wound contraction

Procedia PDF Downloads 160
135 Casusation and Criminal Responsibility

Authors: László Schmidt

Abstract:

“Post hoc ergo propter hoc” means after it, therefore because of it. In other words: If event Y followed event X, then event Y must have been caused by event X. The question of causation has long been a central theme in philosophical thought, and many different theories have been put forward. However, causality is an essentially contested concept (ECC), as it has no universally accepted definition and is used differently in everyday, scientific, and legal thinking. In the field of law, the question of causality arises mainly in the context of establishing legal liability: in criminal law and in the rules of civil law on liability for damages arising either from breach of contract or from tort. In the study some philosophical theories of causality will be presented and how these theories correlate with legal causality. It’s quite interesting when philosophical abstractions meet the pragmatic demands of jurisprudence. In Hungarian criminal judicial practice the principle of equivalence of conditions is the generally accepted and applicable standard of causation, where all necessary conditions are considered equivalent and thus a cause. The idea is that without the trigger, the subsequent outcome would not have occurred; all the conditions that led to the subsequent outcome are equivalent. In the case where the trigger that led to the result is accompanied by an additional intervening cause, including an accidental one, independent of the perpetrator, the causal link is not broken, but at most the causal link becomes looser. The importance of the intervening causes in the outcome should be given due weight in the imposition of the sentence. According to court practice if the conduct of the offender sets in motion the causal process which led to the result, it does not exclude his criminal liability and does not interrupt the causal process if other factors, such as the victim's illness, may have contributed to it. The concausa does not break the chain of causation, i.e. the existence of a causal link establish the criminal liability of the offender. Courts also adjudicates that if an act is a cause of the result if the act cannot be omitted without the result being omitted. This essentially assumes a hypothetical elimination procedure, i.e. the act must be omitted in thought and then examined to see whether the result would still occur or whether it would be omitted. On the substantive side, the essential condition for establishing the offence is that the result must be demonstrably connected with the activity committed. The provision on the assessment of the facts beyond reasonable doubt must also apply to the causal link: that is to say, the uncertainty of the causal link between the conduct and the result of the offence precludes the perpetrator from being held liable for the result. Sometimes, however, the courts do not specify in the reasons for their judgments what standard of causation they apply, i.e. on what basis they establish the existence of (legal) causation.

Keywords: causation, Hungarian criminal law, responsibility, philosophy of law

Procedia PDF Downloads 42
134 Maneuvering Modelling of a One-Degree-of-Freedom Articulated Vehicle: Modeling and Experimental Verification

Authors: Mauricio E. Cruz, Ilse Cervantes, Manuel J. Fabela

Abstract:

The evaluation of the maneuverability of road vehicles is generally carried out through the use of specialized computer programs due to the advantages they offer compared to the experimental method. These programs are based on purely geometric considerations of the characteristics of the vehicles, such as main dimensions, the location of the axles, and points of articulation, without considering parameters such as weight distribution and magnitude, tire properties, etc. In this paper, we address the problem of maneuverability in a semi-trailer truck to navigate urban streets, maneuvering yards, and parking lots, using the Ackerman principle to propose a kinematic model that, through geometric considerations, it is possible to determine the space necessary to maneuver safely. The model was experimentally validated by conducting maneuverability tests with an articulated vehicle. The measurements were made through a GPS that allows us to know the position, trajectory, and speed of the vehicle, an inertial motion unit (IMU) that allows measuring the accelerations and angular speeds in the semi-trailer, and an instrumented steering wheel that allows measuring the angle of rotation of the flywheel, the angular velocity and the torque applied to the flywheel. To obtain the steering angle of the tires, a parameterization of the complete travel of the steering wheel and its equivalent in the tires was carried out. For the tests, 3 different angles were selected, and 3 turns were made for each angle in both directions of rotation (left and right turn). The results showed that the proposed kinematic model achieved 95% accuracy for speeds below 5 km / h. The experiments revealed that that tighter maneuvers increased significantly the space required and that the vehicle maneuverability was limited by the size of the semi-trailer. The maneuverability was also tested as a function of the vehicle load and 3 different load levels we used: light, medium, and heavy. It was found that the internal turning radii also increased with the load, probably due to the changes in the tires' adhesion to the pavement since heavier loads had larger contact wheel-road surfaces. The load was found as an important factor affecting the precision of the model (up to 30%), and therefore I should be considered. The model obtained is expected to be used to improve maneuverability through a robust control system.

Keywords: articuled vehicle, experimental validation, kinematic model, maneuverability, semi-trailer truck

Procedia PDF Downloads 117