Search results for: Deep Neural Network
5591 Mediation Role of Teachers’ Surface Acting and Deep Acting on the Relationship between Calling Orientation and Work Engagement
Authors: Yohannes Bisa Biramo
Abstract:
This study examined the meditational role of surface acting and deep acting on the relationship between calling orientation and work engagement of teachers in secondary schools of Wolaita Zone, Wolaita, Ethiopia. A predictive non-experimental correlational design was performed among 300 secondary school teachers. Stratified random sampling followed by a systematic random sampling technique was used as the basis for selecting samples from the target population. To analyze the data, Structural Equation Modeling (SEM) was used to test the association between the independent variables and the dependent variables. Furthermore, the goodness of fit of the study variables was tested using SEM to see and explain the path influence of the independent variable on the dependent variable. Confirmatory factor analysis (CFA) was conducted to test the validity of the scales in the study and to assess the measurement model fit indices. The analysis result revealed that calling was significantly and positively correlated with surface acting, deep acting and work engagement. Similarly, surface acting was significantly and positively correlated with deep acting and work engagement. And also, deep acting was significantly and positively correlated with work engagement. With respect to mediation analysis, the result revealed that surface acting mediated the relationship between calling and work engagement and also deep acting mediated the relationship between calling and work engagement. Besides, by using the model of the present study, the school leaders and practitioners can identify a core area to be considered in recruiting and letting teachers teach, in giving induction training for newly employed teachers and in performance appraisal.Keywords: calling, surface acting, deep acting, work engagement, mediation, teachers
Procedia PDF Downloads 835590 Benchmarking Machine Learning Approaches for Forecasting Hotel Revenue
Authors: Rachel Y. Zhang, Christopher K. Anderson
Abstract:
A critical aspect of revenue management is a firm’s ability to predict demand as a function of price. Historically hotels have used simple time series models (regression and/or pick-up based models) owing to the complexities of trying to build casual models of demands. Machine learning approaches are slowly attracting attention owing to their flexibility in modeling relationships. This study provides an overview of approaches to forecasting hospitality demand – focusing on the opportunities created by machine learning approaches, including K-Nearest-Neighbors, Support vector machine, Regression Tree, and Artificial Neural Network algorithms. The out-of-sample performances of above approaches to forecasting hotel demand are illustrated by using a proprietary sample of the market level (24 properties) transactional data for Las Vegas NV. Causal predictive models can be built and evaluated owing to the availability of market level (versus firm level) data. This research also compares and contrast model accuracy of firm-level models (i.e. predictive models for hotel A only using hotel A’s data) to models using market level data (prices, review scores, location, chain scale, etc… for all hotels within the market). The prospected models will be valuable for hotel revenue prediction given the basic characters of a hotel property or can be applied in performance evaluation for an existed hotel. The findings will unveil the features that play key roles in a hotel’s revenue performance, which would have considerable potential usefulness in both revenue prediction and evaluation.Keywords: hotel revenue, k-nearest-neighbors, machine learning, neural network, prediction model, regression tree, support vector machine
Procedia PDF Downloads 1325589 Optimization of Pressure in Deep Drawing Process
Authors: Ajay Kumar Choubey, Geeta Agnihotri, C. Sasikumar, Rashmi Dwivedi
Abstract:
Deep-drawing operations are performed widely in industrial applications. It is very important for efficiency to achieve parts with no or minimum defects. Deep drawn parts are used in high performance, high strength and high reliability applications where tension, stress, load and human safety are critical considerations. Wrinkling is a kind of defect caused by stresses in the flange part of the blank during metal forming operations. To avoid wrinkling appropriate blank-holder pressure/force or drawbead can be applied. Now-a-day computer simulation plays a vital role in the field of manufacturing process. So computer simulation of manufacturing has much advantage over previous conventional process i.e. mass production, good quality of product, fast working etc. In this study, a two dimensional elasto-plastic Finite Element (F.E.) model for Mild Steel material blank has been developed to study the behavior of the flange wrinkling and deep drawing parameters under different Blank-Holder Pressure (B.H.P.). For this, commercially available Finite Element software ANSYS 14 has been used in this study. Simulation results are critically studied and salient conclusions have been drawn.Keywords: ANSYS, deep drawing, BHP, finite element simulation, wrinkling
Procedia PDF Downloads 4495588 Cellular Mobile Telecommunication GSM Radio Base Station Network Planning
Authors: Saeed Alzahrani, Yaser Miaji
Abstract:
The project involves the design and simulation of a Mobile Cellular Telecommunication Network using the software tool CelPlanner. The design is mainly concerned with Global System for Mobile Communications . The design and simulation of the network is done for a small part of the area allocated for us in the terrain area of Shreveport city .The project is concerned with designing a network that is cost effective and which also efficiently meets the required Grade of Service (GOS) AND Quality of Service (QOS).The expected outcome of this project is the design of a network that gives a good coverage for the area allocated to us with minimum co-channel interference and adjacent channel interference. The Handover and Traffic Handling Capacity should also be taken into consideration and should be good for the given area . The Traffic Handling Capacity of the network in a way decides whether the designed network is good or bad . The design also takes into consideration the topographical and morphological information.Keywords: mobile communication, GSM, radio base station, network planning
Procedia PDF Downloads 4385587 Neuro-Connectivity Analysis Using Abide Data in Autism Study
Authors: Dulal Bhaumik, Fei Jie, Runa Bhaumik, Bikas Sinha
Abstract:
Human brain is an amazingly complex network. Aberrant activities in this network can lead to various neurological disorders such as multiple sclerosis, Parkinson’s disease, Alzheimer’s disease and autism. fMRI has emerged as an important tool to delineate the neural networks affected by such diseases, particularly autism. In this paper, we propose mixed-effects models together with an appropriate procedure for controlling false discoveries to detect disrupted connectivities in whole brain studies. Results are illustrated with a large data set known as Autism Brain Imaging Data Exchange or ABIDE which includes 361 subjects from 8 medical centers. We believe that our findings have addressed adequately the small sample inference problem, and thus are more reliable for therapeutic target for intervention. In addition, our result can be used for early detection of subjects who are at high risk of developing neurological disorders.Keywords: ABIDE, autism spectrum disorder, fMRI, mixed-effects model
Procedia PDF Downloads 2895586 Design and Realization of Computer Network Security Perception Control System
Authors: El Miloudi Djelloul
Abstract:
Based on analysis on applications by perception control technology in computer network security status and security protection measures, from the angles of network physical environment and network software system environmental security, this paper provides network security system perception control solution using Internet of Things (IOT), telecom and other perception technologies. Security Perception Control System is in the computer network environment, utilizing Radio Frequency Identification (RFID) of IOT and telecom integration technology to carry out integration design for systems. In the network physical security environment, RFID temperature, humidity, gas and perception technologies are used to do surveillance on environmental data, dynamic perception technology is used for network system security environment, user-defined security parameters, security log are used for quick data analysis, extends control on I/O interface, by development of API and AT command, Computer Network Security Perception Control based on Internet and GSM/GPRS is achieved, which enables users to carry out interactive perception and control for network security environment by WEB, E-MAIL as well as PDA, mobile phone short message and Internet. In the system testing, through middle ware server, security information data perception in real time with deviation of 3-5% was achieved; it proves the feasibility of Computer Network Security Perception Control System.Keywords: computer network, perception control system security strategy, Radio Frequency Identification (RFID)
Procedia PDF Downloads 4465585 Speech Emotion Recognition with Bi-GRU and Self-Attention based Feature Representation
Authors: Bubai Maji, Monorama Swain
Abstract:
Speech is considered an essential and most natural medium for the interaction between machines and humans. However, extracting effective features for speech emotion recognition (SER) is remains challenging. The present studies show that the temporal information captured but high-level temporal-feature learning is yet to be investigated. In this paper, we present an efficient novel method using the Self-attention (SA) mechanism in a combination of Convolutional Neural Network (CNN) and Bi-directional Gated Recurrent Unit (Bi-GRU) network to learn high-level temporal-feature. In order to further enhance the representation of the high-level temporal-feature, we integrate a Bi-GRU output with learnable weights features by SA, and improve the performance. We evaluate our proposed method on our created SITB-OSED and IEMOCAP databases. We report that the experimental results of our proposed method achieve state-of-the-art performance on both databases.Keywords: Bi-GRU, 1D-CNNs, self-attention, speech emotion recognition
Procedia PDF Downloads 1135584 Virtual Routing Function Allocation Method for Minimizing Total Network Power Consumption
Authors: Kenichiro Hida, Shin-Ichi Kuribayashi
Abstract:
In a conventional network, most network devices, such as routers, are dedicated devices that do not have much variation in capacity. In recent years, a new concept of network functions virtualisation (NFV) has come into use. The intention is to implement a variety of network functions with software on general-purpose servers and this allows the network operator to select their capacities and locations without any constraints. This paper focuses on the allocation of NFV-based routing functions which are one of critical network functions, and presents the virtual routing function allocation algorithm that minimizes the total power consumption. In addition, this study presents the useful allocation policy of virtual routing functions, based on an evaluation with a ladder-shaped network model. This policy takes the ratio of the power consumption of a routing function to that of a circuit and traffic distribution between areas into consideration. Furthermore, the present paper shows that there are cases where the use of NFV-based routing functions makes it possible to reduce the total power consumption dramatically, in comparison to a conventional network, in which it is not economically viable to distribute small-capacity routing functions.Keywords: NFV, resource allocation, virtual routing function, minimum power consumption
Procedia PDF Downloads 3415583 Applying Renowned Energy Simulation Engines to Neural Control System of Double Skin Façade
Authors: Zdravko Eškinja, Lovre Miljanić, Ognjen Kuljača
Abstract:
This paper is an overview of simulation tools used to model specific thermal dynamics that occurs while controlling double skin façade. Research has been conducted on simplified construction with single zone where one side is glazed. Heat flow and temperature responses are simulated in three different simulation tools: IDA-ICE, EnergyPlus and HAMBASE. The excitation of observed system, used in all simulations, was a temperature step of exterior environment. Air infiltration, insulation and other disturbances are excluded from this research. Although such isolated behaviour is not possible in reality, experiments are carried out to gain novel information about heat flow transients which are not observable under regular conditions. Results revealed new possibilities for adapting the parameters of the neural network regulator. Along numerical simulations, the same set-up has been also tested in a real-time experiment with a 1:18 scaled model and thermal chamber. The comparison analysis brings out interesting conclusion about simulation accuracy in this particular case.Keywords: double skin façade, experimental tests, heat control, heat flow, simulated tests, simulation tools
Procedia PDF Downloads 2315582 An Investigation into Computer Vision Methods to Identify Material Other Than Grapes in Harvested Wine Grape Loads
Authors: Riaan Kleyn
Abstract:
Mass wine production companies across the globe are provided with grapes from winegrowers that predominantly utilize mechanical harvesting machines to harvest wine grapes. Mechanical harvesting accelerates the rate at which grapes are harvested, allowing grapes to be delivered faster to meet the demands of wine cellars. The disadvantage of the mechanical harvesting method is the inclusion of material-other-than-grapes (MOG) in the harvested wine grape loads arriving at the cellar which degrades the quality of wine that can be produced. Currently, wine cellars do not have a method to determine the amount of MOG present within wine grape loads. This paper seeks to find an optimal computer vision method capable of detecting the amount of MOG within a wine grape load. A MOG detection method will encourage winegrowers to deliver MOG-free wine grape loads to avoid penalties which will indirectly enhance the quality of the wine to be produced. Traditional image segmentation methods were compared to deep learning segmentation methods based on images of wine grape loads that were captured at a wine cellar. The Mask R-CNN model with a ResNet-50 convolutional neural network backbone emerged as the optimal method for this study to determine the amount of MOG in an image of a wine grape load. Furthermore, a statistical analysis was conducted to determine how the MOG on the surface of a grape load relates to the mass of MOG within the corresponding grape load.Keywords: computer vision, wine grapes, machine learning, machine harvested grapes
Procedia PDF Downloads 945581 Using Neural Networks for Click Prediction of Sponsored Search
Authors: Afroze Ibrahim Baqapuri, Ilya Trofimov
Abstract:
Sponsored search is a multi-billion dollar industry and makes up a major source of revenue for search engines (SE). Click-through-rate (CTR) estimation plays a crucial role for ads selection, and greatly affects the SE revenue, advertiser traffic and user experience. We propose a novel architecture of solving CTR prediction problem by combining artificial neural networks (ANN) with decision trees. First, we compare ANN with respect to other popular machine learning models being used for this task. Then we go on to combine ANN with MatrixNet (proprietary implementation of boosted trees) and evaluate the performance of the system as a whole. The results show that our approach provides a significant improvement over existing models.Keywords: neural networks, sponsored search, web advertisement, click prediction, click-through rate
Procedia PDF Downloads 5725580 In vitro Regeneration of Neural Cells Using Human Umbilical Cord Derived Mesenchymal Stem Cells
Authors: Urvi Panwar, Kanchan Mishra, Kanjaksha Ghosh, ShankerLal Kothari
Abstract:
Background: Day-by-day the increasing prevalence of neurodegenerative diseases have become a global issue to manage them by medical sciences. The adult neural stem cells are rare and require an invasive and painful procedure to obtain it from central nervous system. Mesenchymal stem cell (MSCs) therapies have shown remarkable application in treatment of various cell injuries and cell loss. MSCs can be derived from various sources like adult tissues, human bone marrow, umbilical cord blood and cord tissue. MSCs have similar proliferation and differentiation capability, but the human umbilical cord-derived mesenchymal stem cells (hUCMSCs) are proved to be more beneficial with respect to cell procurement, differentiation to other cells, preservation, and transplantation. Material and method: Human umbilical cord is easily obtainable and non-controversial comparative to bone marrow and other adult tissues. The umbilical cord can be collected after delivery of baby, and its tissue can be cultured using explant culture method. Cell culture medium such as DMEMF12+10% FBS and DMEMF12+Neural growth factors (bFGF, human noggin, B27) with antibiotics (Streptomycin/Gentamycin) were used to culture and differentiate mesenchymal stem cells into neural cells, respectively. The characterisations of MSCs were done with Flow Cytometer for surface markers CD90, CD73 and CD105 and colony forming unit assay. The differentiated various neural cells will be characterised by fluorescence markers for neurons, astrocytes, and oligodendrocytes; quantitative PCR for genes Nestin and NeuroD1 and Western blotting technique for gap43 protein. Result and discussion: The high quality and number of MSCs were isolated from human umbilical cord via explant culture method. The obtained MSCs were differentiated into neural cells like neurons, astrocytes and oligodendrocytes. The differentiated neural cells can be used to treat neural injuries and neural cell loss by delivering cells by non-invasive administration via cerebrospinal fluid (CSF) or blood. Moreover, the MSCs can also be directly delivered to different injured sites where they differentiate into neural cells. Therefore, human umbilical cord is demonstrated to be an inexpensive and easily available source for MSCs. Moreover, the hUCMSCs can be a potential source for neural cell therapies and neural cell regeneration for neural cell injuries and neural cell loss. This new way of research will be helpful to treat and manage neural cell damages and neurodegenerative diseases like Alzheimer and Parkinson. Still the study has a long way to go but it is a promising approach for many neural disorders for which at present no satisfactory management is available.Keywords: bone marrow, cell therapy, explant culture method, flow cytometer, human umbilical cord, mesenchymal stem cells, neurodegenerative diseases, neuroprotective, regeneration
Procedia PDF Downloads 2025579 A Survey of Attacks and Security Requirements in Wireless Sensor Networks
Authors: Vishnu Pratap Singh Kirar
Abstract:
Wireless sensor network (WSN) is a network of many interconnected networked systems, they equipped with energy resources and they are used to detect other physical characteristics. On WSN, there are many researches are performed in past decades. WSN applicable in many security systems govern by military and in many civilian related applications. Thus, the security of WSN gets attention of researchers and gives an opportunity for many future aspects. Still, there are many other issues are related to deployment and overall coverage, scalability, size, energy efficiency, quality of service (QoS), computational power and many more. In this paper we discus about various applications and security related issue and requirements of WSN.Keywords: wireless sensor network (WSN), wireless network attacks, wireless network security, security requirements
Procedia PDF Downloads 4915578 The Using of Liquefied Petroleum Gas (LPG) on a Low Heat Loss Si Engine
Authors: Hanbey Hazar, Hakan Gul
Abstract:
In this study, Thermal Barrier Coating (TBC) application is performed in order to reduce the engine emissions. Piston, exhaust, and intake valves of a single-cylinder four-cycle gasoline engine were coated with chromium carbide (Cr3C2) at a thickness of 300 µm by using the Plasma Spray coating method which is a TBC method. Gasoline engine was converted into an LPG system. The study was conducted in 4 stages. In the first stage, the piston, exhaust, and intake valves of the gasoline engine were coated with Cr3C2. In the second stage, gasoline engine was converted into the LPG system and the emission values in this engine were recorded. In the third stage, the experiments were repeated under the same conditions with a standard (uncoated) engine and the results were recorded. In the fourth stage, data obtained from both engines were loaded on Artificial Neural Networks (ANN) and estimated values were produced for every revolution. Thus, mathematical modeling of coated and uncoated engines was performed by using ANN. While there was a slight increase in exhaust gas temperature (EGT) of LPG engine due to TBC, carbon monoxide (CO) values decreased.Keywords: LPG fuel, thermal barrier coating, artificial neural network, mathematical modelling
Procedia PDF Downloads 4255577 Pilot-free Image Transmission System of Joint Source Channel Based on Multi-Level Semantic Information
Authors: Linyu Wang, Liguo Qiao, Jianhong Xiang, Hao Xu
Abstract:
In semantic communication, the existing joint Source Channel coding (JSCC) wireless communication system without pilot has unstable transmission performance and can not effectively capture the global information and location information of images. In this paper, a pilot-free image transmission system of joint source channel based on multi-level semantic information (Multi-level JSCC) is proposed. The transmitter of the system is composed of two networks. The feature extraction network is used to extract the high-level semantic features of the image, compress the information transmitted by the image, and improve the bandwidth utilization. Feature retention network is used to preserve low-level semantic features and image details to improve communication quality. The receiver also is composed of two networks. The received high-level semantic features are fused with the low-level semantic features after feature enhancement network in the same dimension, and then the image dimension is restored through feature recovery network, and the image location information is effectively used for image reconstruction. This paper verifies that the proposed multi-level JSCC algorithm can effectively transmit and recover image information in both AWGN channel and Rayleigh fading channel, and the peak signal-to-noise ratio (PSNR) is improved by 1~2dB compared with other algorithms under the same simulation conditions.Keywords: deep learning, JSCC, pilot-free picture transmission, multilevel semantic information, robustness
Procedia PDF Downloads 1205576 Prediction of Vapor Liquid Equilibrium for Dilute Solutions of Components in Ionic Liquid by Neural Networks
Authors: S. Mousavian, A. Abedianpour, A. Khanmohammadi, S. Hematian, Gh. Eidi Veisi
Abstract:
Ionic liquids are finding a wide range of applications from reaction media to separations and materials processing. In these applications, Vapor–Liquid equilibrium (VLE) is the most important one. VLE for six systems at 353 K and activity coefficients at infinite dilution 〖(γ〗_i^∞) for various solutes (alkanes, alkenes, cycloalkanes, cycloalkenes, aromatics, alcohols, ketones, esters, ethers, and water) in the ionic liquids (1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide [EMIM][BTI], 1-hexyl-3-methyl imidazolium bis (trifluoromethylsulfonyl) imide [HMIM][BTI], 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [OMIM][BTI], and 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl) imide [BMPYR][BTI]) have been used to train neural networks in the temperature range from (303 to 333) K. Densities of the ionic liquids, Hildebrant constant of substances, and temperature were selected as input of neural networks. The networks with different hidden layers were examined. Networks with seven neurons in one hidden layer have minimum error and good agreement with experimental data.Keywords: ionic liquid, neural networks, VLE, dilute solution
Procedia PDF Downloads 3005575 Hydrogeochemical Characteristics of the Different Aquiferous Layers in Oban Basement Complex Area (SE Nigeria)
Authors: Azubuike Ekwere
Abstract:
The shallow and deep aquiferous horizons of the fractured and weathered crystalline basement Oban Massif of south-eastern Nigeria were studied during the dry and wet seasons. The criteria were ascertaining hydrochemistry relative to seasonal and spatial variations across the study area. Results indicate that concentrations of major cations and anions exhibit the order of abundance; Ca>Na>Mg>K and HCO3>SO4>Cl respectively, with minor variations across sampling seasons. Major elements Ca, Mg, Na and K were higher for the shallow aquifers than the deep aquifers across seasons. The major anions Cl, SO4, HCO3, and NO3 were higher for the deep aquifers compared to the shallow ones. Two water types were identified for both aquifer types: Ca-Mg-HCO3 and Ca-Na-Cl-SO4. Most of the parameters considered were within the international limits for drinking, domestic and irrigation purposes. Assessment by use of sodium absorption ratio (SAR), percent sodium (%Na) and the wilcox diagram reveals that the waters are suitable for irrigation purposes.Keywords: shallow aquifer, deep aquifer, seasonal variation, hydrochemistry, Oban massif, Nigeria
Procedia PDF Downloads 6625574 Restoring Sagging Neck with Minimal Scar Face Lifting
Authors: Alessandro Marano
Abstract:
The author describes the use of deep plane face lifting and platysmaplasty to treat sagging neck with minimal scars. Series of case study. The author uses a selective deep plane face lift with a minimal access scar that not extend behind the ear lobe, neck liposuction and platysmaplasty to restore the sagging neck; the scars are minimal and no require drainage post-op. The deep plane face lifting can achieve a good result restoring vertical vectors in aging and sagging face, neck district can be treated without cutting the skin behind the ear lobe combining the SMAS vertical suspension and platysmaplasty; surgery can be performed in local anesthesia with sedation in day surgery and fast recovery. Restoring neck sagging without extend scars behind ear lobe is possible in selected patients, procedure is fast, safe, no drainage required, patients are satisfied and healing time is fast and comfortable.Keywords: face lifting, aesthetic, face, neck, platysmaplasty, deep plane
Procedia PDF Downloads 1015573 Protection Plan of Medium Voltage Distribution Network in Tunisia
Abstract:
The distribution networks are often exposed to harmful incidents which can halt the electricity supply of the customer. In this context, we studied a real case of a critical zone of the Tunisian network which is currently characterized by the dysfunction of its plan of protection. In this paper, we were interested in the harmonization of the protection plan settings in order to ensure a perfect selectivity and a better continuity of service on the whole of the network.Keywords: distribution network Gabes-Tunisia, continuity of service, protection plan settings, selectivity
Procedia PDF Downloads 5105572 Large Neural Networks Learning From Scratch With Very Few Data and Without Explicit Regularization
Authors: Christoph Linse, Thomas Martinetz
Abstract:
Recent findings have shown that Neural Networks generalize also in over-parametrized regimes with zero training error. This is surprising, since it is completely against traditional machine learning wisdom. In our empirical study we fortify these findings in the domain of fine-grained image classification. We show that very large Convolutional Neural Networks with millions of weights do learn with only a handful of training samples and without image augmentation, explicit regularization or pretraining. We train the architectures ResNet018, ResNet101 and VGG19 on subsets of the difficult benchmark datasets Caltech101, CUB_200_2011, FGVCAircraft, Flowers102 and StanfordCars with 100 classes and more, perform a comprehensive comparative study and draw implications for the practical application of CNNs. Finally, we show that VGG19 with 140 million weights learns to distinguish airplanes and motorbikes with up to 95% accuracy using only 20 training samples per class.Keywords: convolutional neural networks, fine-grained image classification, generalization, image recognition, over-parameterized, small data sets
Procedia PDF Downloads 885571 Alteration Quartz-Kfeldspar-Apatite-Molybdenite at B Anomaly Prospection with Artificial Neural Network to Determining Molydenite Economic Deposits in Malala District, Western Sulawesi
Authors: Ahmad Lutfi, Nikolas Dhega
Abstract:
The Malala deposit in northwest Sulawesi is the only known porphyry molybdenum and the only source for rhenium, occurrence in Indonesia. The neural network method produces results that correspond very closely to those of the knowledge-based fuzzy logic method and weights of evidence method. This method required data of solid geology, regional faults, airborne magnetic, gamma-ray survey data and GIS data. This interpretation of the network output fits with the intuitive notion that a prospective area has characteristics that closely resemble areas known to contain mineral deposits. Contrasts with the weights of evidence and fuzzy logic methods, where, for a given grid location, each input-parameter value automatically results in an increase in the prospective estimated. Malala District indicated molybdenum anomalies in stream sediments from in excess of 15 km2 were obtained, including the Takudan Fault as most prominent structure with striking 40̊ to 60̊ over a distance of about 30 km and in most places weakly at anomaly B, developed over an area of 4 km2, with a ‘shell’ up to 50 m thick at the intrusive contact with minor mineralization occurring in the Tinombo Formation. Series of NW trending, steeply dipping fracture zones, named the East Zone has an estimated resource of 100 Mt at 0.14% MoS2 and minimum target of 150 Mt 0.25%. The Malala porphyries occur as stocks and dykes with predominantly granitic, with fluorine-poor class of molybdenum deposits and belongs to the plutonic sub-type. Unidirectional solidification textures consisting of subparallel, crenulated layers of quartz that area separated by layers of intrusive material textures. The deuteric nature of the molybdenum mineralization and the dominance of carbonate alteration.The nature of the Stage I with alteration barren quartz K‐feldspar; and Stage II with alteration quartz‐K‐feldspar‐apatite-molybdenite veins combined with the presence of disseminated molybdenite with primary biotite in the host intrusive.Keywords: molybdenite, Malala, porphyries, anomaly B
Procedia PDF Downloads 1535570 Machine Learning Techniques in Seismic Risk Assessment of Structures
Authors: Farid Khosravikia, Patricia Clayton
Abstract:
The main objective of this work is to evaluate the advantages and disadvantages of various machine learning techniques in two key steps of seismic hazard and risk assessment of different types of structures. The first step is the development of ground-motion models, which are used for forecasting ground-motion intensity measures (IM) given source characteristics, source-to-site distance, and local site condition for future events. IMs such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available. Second, it is investigated how machine learning techniques could be beneficial for developing probabilistic seismic demand models (PSDMs), which provide the relationship between the structural demand responses (e.g., component deformations, accelerations, internal forces, etc.) and the ground motion IMs. In the risk framework, such models are used to develop fragility curves estimating exceeding probability of damage for pre-defined limit states, and therefore, control the reliability of the predictions in the risk assessment. In this study, machine learning algorithms like artificial neural network, random forest, and support vector machine are adopted and trained on the demand parameters to derive PSDMs for them. It is observed that such models can provide more accurate estimates of prediction in relatively shorter about of time compared to conventional methods. Moreover, they can be used for sensitivity analysis of fragility curves with respect to many modeling parameters without necessarily requiring more intense numerical response-history analysis.Keywords: artificial neural network, machine learning, random forest, seismic risk analysis, seismic hazard analysis, support vector machine
Procedia PDF Downloads 1065569 Monitoring the Effect of Deep Frying and the Type of Food on the Quality of Oil
Authors: Omar Masaud Almrhag, Frage Lhadi Abookleesh
Abstract:
Different types of food like banana, potato and chicken affect the quality of oil during deep fat frying. The changes in the quality of oil were evaluated and compared. Four different types of edible oils, namely, corn oil, soybean, canola, and palm oil were used for deep fat frying at 180°C ± 5°C for 5 h/d for six consecutive days. A potato was sliced into 7-8 cm length wedges and chicken was cut into uniform pieces of 100 g each. The parameters used to assess the quality of oil were total polar compound (TPC), iodine value (IV), specific extinction E1% at 233 nm and 269 nm, fatty acid composition (FAC), free fatty acids (FFA), viscosity (cp) and changes in the thermal properties. Results showed that, TPC, IV, FAC, Viscosity (cp) and FFA composition changed significantly with time (P< 0.05) and type of food. Significant differences (P< 0.05) were noted for the used parameters during frying of the above mentioned three products.Keywords: frying potato, chicken, frying deterioration, quality of oil
Procedia PDF Downloads 4205568 Attention-based Adaptive Convolution with Progressive Learning in Speech Enhancement
Authors: Tian Lan, Yixiang Wang, Wenxin Tai, Yilan Lyu, Zufeng Wu
Abstract:
The monaural speech enhancement task in the time-frequencydomain has a myriad of approaches, with the stacked con-volutional neural network (CNN) demonstrating superiorability in feature extraction and selection. However, usingstacked single convolutions method limits feature represen-tation capability and generalization ability. In order to solvethe aforementioned problem, we propose an attention-basedadaptive convolutional network that integrates the multi-scale convolutional operations into a operation-specific blockvia input dependent attention to adapt to complex auditoryscenes. In addition, we introduce a two-stage progressivelearning method to enlarge the receptive field without a dra-matic increase in computation burden. We conduct a series ofexperiments based on the TIMIT corpus, and the experimen-tal results prove that our proposed model is better than thestate-of-art models on all metrics.Keywords: speech enhancement, adaptive convolu-tion, progressive learning, time-frequency domain
Procedia PDF Downloads 1225567 Quality and Quantity in the Strategic Network of Higher Education Institutions
Authors: Juha Kettunen
Abstract:
The study analyzes the quality and the size of the strategic network of higher education institutions and the concept of fitness for purpose in quality assurance. It also analyses the transaction costs of networking that have consequences on the number of members in the network. Empirical evidence is presented from the Consortium on Applied Research and Professional Education, which is a European strategic network of six higher education institutions. The results of the study support the argument that the number of members in the strategic network should be relatively small to provide high-quality results. The practical importance is that networking has been able to promote international research and development projects. The results of this study are important for those who want to design and improve international networks in higher education.Keywords: higher education, network, research and development, strategic management
Procedia PDF Downloads 3485566 Energy Efficient Firefly Algorithm in Wireless Sensor Network
Authors: Wafa’ Alsharafat, Khalid Batiha, Alaa Kassab
Abstract:
Wireless sensor network (WSN) is comprised of a huge number of small and cheap devices known as sensor nodes. Usually, these sensor nodes are massively and deployed randomly as in Ad-hoc over hostile and harsh environment to sense, collect and transmit data to the needed locations (i.e., base station). One of the main advantages of WSN is that the ability to work in unattended and scattered environments regardless the presence of humans such as remote active volcanoes environments or earthquakes. In WSN expanding network, lifetime is a major concern. Clustering technique is more important to maximize network lifetime. Nature-inspired algorithms are developed and optimized to find optimized solutions for various optimization problems. We proposed Energy Efficient Firefly Algorithm to improve network lifetime as long as possible.Keywords: wireless network, SN, Firefly, energy efficiency
Procedia PDF Downloads 3895565 Turbulent Channel Flow Synthesis using Generative Adversarial Networks
Authors: John M. Lyne, K. Andrea Scott
Abstract:
In fluid dynamics, direct numerical simulations (DNS) of turbulent flows require large amounts of nodes to appropriately resolve all scales of energy transfer. Due to the size of these databases, sharing these datasets amongst the academic community is a challenge. Recent work has been done to investigate the use of super-resolution to enable database sharing, where a low-resolution flow field is super-resolved to high resolutions using a neural network. Recently, Generative Adversarial Networks (GAN) have grown in popularity with impressive results in the generation of faces, landscapes, and more. This work investigates the generation of unique high-resolution channel flow velocity fields from a low-dimensional latent space using a GAN. The training objective of the GAN is to generate samples in which the distribution of the generated samplesis ideally indistinguishable from the distribution of the training data. In this study, the network is trained using samples drawn from a statistically stationary channel flow at a Reynolds number of 560. Results show that the turbulent statistics and energy spectra of the generated flow fields are within reasonable agreement with those of the DNS data, demonstrating that GANscan produce the intricate multi-scale phenomena of turbulence.Keywords: computational fluid dynamics, channel flow, turbulence, generative adversarial network
Procedia PDF Downloads 2065564 How to Modernise the European Competition Network (ECN)
Authors: Dorota Galeza
Abstract:
This paper argues that networks, such as the ECN and the American network, are affected by certain small events which are inherent to path dependence and preclude the full evolution towards efficiency. It is advocated that the American network is superior to the ECN in many respects due to its greater flexibility and longer history. This stems in particular from the creation of the American network, which was based on a small number of cases. Such a structure encourages further changes and modifications which are not necessarily radical. The ECN, by contrast, was established by legislative action, which explains its rigid structure and resistance to change. This paper is an attempt to transpose the superiority of the American network on to the ECN. It looks at concepts such as judicial cooperation, harmonisation of procedure, peer review and regulatory impact assessments (RIAs), and dispute resolution procedures.Keywords: antitrust, competition, networks, path dependence
Procedia PDF Downloads 3155563 Graph Based Traffic Analysis and Delay Prediction Using a Custom Built Dataset
Authors: Gabriele Borg, Alexei Debono, Charlie Abela
Abstract:
There on a constant rise in the availability of high volumes of data gathered from multiple sources, resulting in an abundance of unprocessed information that can be used to monitor patterns and trends in user behaviour. Similarly, year after year, Malta is also constantly experiencing ongoing population growth and an increase in mobilization demand. This research takes advantage of data which is continuously being sourced and converting it into useful information related to the traffic problem on the Maltese roads. The scope of this paper is to provide a methodology to create a custom dataset (MalTra - Malta Traffic) compiled from multiple participants from various locations across the island to identify the most common routes taken to expose the main areas of activity. This use of big data is seen being used in various technologies and is referred to as ITSs (Intelligent Transportation Systems), which has been concluded that there is significant potential in utilising such sources of data on a nationwide scale. Furthermore, a series of traffic prediction graph neural network models are conducted to compare MalTra to large-scale traffic datasets.Keywords: graph neural networks, traffic management, big data, mobile data patterns
Procedia PDF Downloads 1305562 A Mobile Application for Analyzing and Forecasting Crime Using Autoregressive Integrated Moving Average with Artificial Neural Network
Authors: Gajaanuja Megalathan, Banuka Athuraliya
Abstract:
Crime is one of our society's most intimidating and threatening challenges. With the majority of the population residing in cities, many experts and data provided by local authorities suggest a rapid increase in the number of crimes committed in these cities in recent years. There has been an increasing graph in the crime rates. People living in Sri Lanka have the right to know the exact crime rates and the crime rates in the future of the place they are living in. Due to the current economic crisis, crime rates have spiked. There have been so many thefts and murders recorded within the last 6-10 months. Although there are many sources to find out, there is no solid way of searching and finding out the safety of the place. Due to all these reasons, there is a need for the public to feel safe when they are introduced to new places. Through this research, the author aims to develop a mobile application that will be a solution to this problem. It is mainly targeted at tourists, and people who recently relocated will gain advantage of this application. Moreover, the Arima Model combined with ANN is to be used to predict crime rates. From the past researchers' works, it is evidently clear that they haven’t used the Arima model combined with Artificial Neural Networks to forecast crimes.Keywords: arima model, ANN, crime prediction, data analysis
Procedia PDF Downloads 131