Search results for: Adult dataset
1288 Optimizing E-commerce Retention: A Detailed Study of Machine Learning Techniques for Churn Prediction
Authors: Saurabh Kumar
Abstract:
In the fiercely competitive landscape of e-commerce, understanding and mitigating customer churn has become paramount for sustainable business growth. This paper presents a thorough investigation into the application of machine learning techniques for churn prediction in e-commerce, aiming to provide actionable insights for businesses seeking to enhance customer retention strategies. We conduct a comparative study of various machine learning algorithms, including traditional statistical methods and ensemble techniques, leveraging a rich dataset sourced from Kaggle. Through rigorous evaluation, we assess the predictive performance, interpretability, and scalability of each method, elucidating their respective strengths and limitations in capturing the intricate dynamics of customer churn. We identified the XGBoost classifier to be the best performing. Our findings not only offer practical guidelines for selecting suitable modeling approaches but also contribute to the broader understanding of customer behavior in the e-commerce domain. Ultimately, this research equips businesses with the knowledge and tools necessary to proactively identify and address churn, thereby fostering long-term customer relationships and sustaining competitive advantage.Keywords: customer churn, e-commerce, machine learning techniques, predictive performance, sustainable business growth
Procedia PDF Downloads 291287 Estimating the Government Consumption and Investment Multipliers Using Local Projection Method on the US Data from 1966 to 2020
Authors: Mustofa Mahmud Al Mamun
Abstract:
Government spending, one of the major components of gross domestic product (GDP), is composed of government consumption, investment, and transfer payments. A change in government spending during recessionary periods can generate an increase in GDP greater than the increase in spending. This is called the "multiplier effect". Accurate estimation of government spending multiplier is important because fiscal policy has been used to stimulate a flagging economy. Many recent studies have focused on identifying parts of the economy that responds more to a stimulus under a variety of circumstances. This paper used the US dataset from 1966 to 2020 and local projection method assuming standard identification strategy to estimate the multipliers. The model includes important macroaggregates and controls for forecasted government spending, interest rate, consumer price index (CPI), export, import, and level of public debt. Investment multipliers are found to be positive and larger than the consumption multipliers. Consumption multipliers are either negative or not significantly different than zero. Results do not vary across the business cycle. However, the consumption multiplier estimated from pre-1980 data is positive.Keywords: business cycle, consumption multipliers, forecasted government spending, investment multipliers, local projection method, zero lower bound
Procedia PDF Downloads 2321286 Creating a Critical Digital Pedagogy Context: Challenges and Potential of Designing and Implementing a Blended Learning Intervention for Adult Refugees in Greece
Authors: Roula Kitsiou, Sofia Tsioli, Eleni Gana
Abstract:
The current sociopolitical realities (displacement, encampment, and resettlement) refugees experience in Greece are a quite complex issue. Their educational and social ‘integration’ is characterized by transition, insecurity, and constantly changing needs. Based on the current research data, technology and more specifically mobile phones are one of the most important resources for refugees, regardless of their levels of conventional literacy. The proposed paper discusses the challenges encountered during the design and implementation of the educational Action 16 ‘Language Education for Adult Refugees’. Action 16 is one of the 24 Actions of the Project PRESS (Provision of Refugee Education and Support Scheme), funded by the Hellenic Open University (2016-2017). Project PRESS had two main objectives: a) to address the educational and integration needs of refugees in transit, who currently reside in Greece, and b) implement research-based educational interventions in online and offline sites. In the present paper, the focus is on reflection and discussion about the challenges and the potential of integrating technology in language learning for a target-group with many specific needs, which have been recorded in field notes among other research tools (ethnographic data) used in the context of PRESS. Action 16, explores if and how technology enhanced language activities in real-time and place mediated through teachers, as well as an autonomous computer-mediated learning space (moodle platform and application) builds on and expands the linguistic, cultural and digital resources and repertoires of the students by creating collaborative face-to-face and digital learning spaces. A broader view on language as a dynamic puzzle of semiotic resources and processes based on the concept of translanguaging is adopted. Specifically, designing the blended learning environment we draw on the construct of translanguaging a) as a symbolic means to valorize students’ repertoires and practices, b) as a method to reach to specific applications of a target-language that the context brings forward (Greek useful to them), and c) as a means to expand refugees’ repertoires. This has led to the creation of a learning space where students' linguistic and cultural resources can find paths to expression. In this context, communication and learning are realized by mutually investing multiple aspects of the team members' identities as educational material designers, teachers, and students on the teaching and learning processes. Therefore, creativity, humour, code-switching, translation, transference etc. are all possible means that can be employed in order to promote multilingual communication and language learning towards raising intercultural awareness in a critical digital pedagogy context. The qualitative analysis includes critical reflection on the developed educational material, team-based reflexive discussions, teachers’ reports data, and photographs from the interventions. The endeavor to involve women and men with a refugee background into a blended learning experience was quite innovative especially for the Greek context. It reflects a pragmatist ethos of the choices made in order to respond to the here-and-now needs of the refugees, and finally it was a very challenging task that has led all actors involved into Action 16 to (re)negotiations of subjectivities and products in a creative and hopeful way.Keywords: blended learning, integration, language education, refugees
Procedia PDF Downloads 1281285 The Art and Science of Trauma-Informed Psychotherapy: Guidelines for Inter-Disciplinary Clinicians
Authors: Daphne Alroy-Thiberge
Abstract:
Trauma-impacted individuals present unique treatment challenges that include high reactivity, hyper-and hypo-arousal, poor adherence to therapy, as well as powerful transference and counter-transference experiences in therapy. This work provides an overview of the clinical tenets most often encountered in trauma-impacted individuals. Further, it provides readily applicable clinical techniques to optimize therapeutic rapport and facilitate accelerated positive mental health outcomes. Finally, integrated neuroscience and clinical evidence-based data are discussed to shed new light on crisis states in trauma-impacted individuals. This knowledge is utilized to provide effective and concrete interventions towards rapid and successful de-escalation of the impacted individual. A highly interactive, adult-learning-principles-based modality is utilized to provide an organic learning experience for participants. The information and techniques learned aim to increase clinical effectiveness, reduce staff injuries and burnout, and significantly enhance positive mental health outcomes and self-determination for the trauma-impacted individuals treated.Keywords: clinical competencies, crisis interventions, psychotherapy techniques, trauma informed care
Procedia PDF Downloads 1091284 A New 3D Shape Descriptor Based on Multi-Resolution and Multi-Block CS-LBP
Authors: Nihad Karim Chowdhury, Mohammad Sanaullah Chowdhury, Muhammed Jamshed Alam Patwary, Rubel Biswas
Abstract:
In content-based 3D shape retrieval system, achieving high search performance has become an important research problem. A challenging aspect of this problem is to find an effective shape descriptor which can discriminate similar shapes adequately. To address this problem, we propose a new shape descriptor for 3D shape models by combining multi-resolution with multi-block center-symmetric local binary pattern operator. Given an arbitrary 3D shape, we first apply pose normalization, and generate a set of multi-viewed 2D rendered images. Second, we apply Gaussian multi-resolution filter to generate several levels of images from each of 2D rendered image. Then, overlapped sub-images are computed for each image level of a multi-resolution image. Our unique multi-block CS-LBP comes next. It allows the center to be composed of m-by-n rectangular pixels, instead of a single pixel. This process is repeated for all the 2D rendered images, derived from both ‘depth-buffer’ and ‘silhouette’ rendering. Finally, we concatenate all the features vectors into one dimensional histogram as our proposed 3D shape descriptor. Through several experiments, we demonstrate that our proposed 3D shape descriptor outperform the previous methods by using a benchmark dataset.Keywords: 3D shape retrieval, 3D shape descriptor, CS-LBP, overlapped sub-images
Procedia PDF Downloads 4451283 CNS Cryptococcoma in an Immunocompetent Adult from a Low Resource Setting: A Case Report
Authors: Ssembatya Joseph Mary
Abstract:
Introduction: Cryptococcal infection in the Central Nervous System (CNS) is frequently seen in human immunodeficiency virus (HIV) patients and others with low immunity as an opportunistic fungal infection. However, CNS cryptococcal granuloma (cryptococcoma) in immunocompetent patients is rare. We present a case of CNS cryptococcoma in an immunocompetent patient and review the literature to illustrate the diagnosis and treatment of such lesions. Case presentation: A 62-year-old, HIV-negative, immunocompetent female patient with no known chronic illness presented with 5 months history of a progressive headache associated with on and off episodic generalized tonic-clonic convulsions. She had been to several hospitals before she was referred to our center with a diagnosis of a brain tumor. Before referral and despite a negative CSF analysis result, she had received treatment for bacterial meningitis with no success. At Mbarara Regional Referral Hospital (MRRH), she had surgery with an excision biopsy which showed features consistent with cryptococcosis on histology. The patient had a successful adjuvant treatment with antifungal drugs following surgery. Conclusion: The diagnosis of a parasitic CNS infection, particularly cryptococcal infection mimicking neoplastic lesions in an immunocompetent patient, was unusual. Surgical management of such lesions from different reports has a bad outcome and management remains totally conservative.Keywords: Cryptococcal meningitis, immunocompetent patient, Uganda, low resource setting
Procedia PDF Downloads 851282 Malaria and Environmental Sanitation
Authors: Soorya Vennila
Abstract:
A comprehensive study of malaria in 165 villages (hamlets) in Harur block, Dharmapuri district, has revealed the fact that there are distinct episodes of malaria due to An. culicifacies, the vector, causes persistent transmission in the revenue village called Vedakatamaduvu. A total of 300 household adult samples are randomly selected to study both quantitatively and qualitatively the vulnerability of malaria. On the basis of the response, the problem uncommon with groups was identified as the outdoor routine, particularly open defecation, with which the samples needed to be stratified into two major groups; users of toilets 21 and those who practice open defecation 279. Open defecation, as the habit-based vulnerability, is measured with the Pearson correlation coefficient to estimate the relationship between malaria and open defecation. It is also verified from the literature that plant fluids provide mosquitoes not only with energy but also with nutrition, to the extent that they can develop fertile eggs. In the endemic areas, the bushy Presopis Juliflora, which naturally serves as a feeding and resting spot for mosquitoes, serves as a cover to practice open defecation as well. Eventually, those who get resort to Presopis for open defecation have a higher chance of getting exposed to mosquito bites and being infected with malaria. The study concludes that the combination of bushy Prosopis Juliflora and open defecation leaves the place perpetually vulnerable to malaria.Keywords: Malaria, open defecation, endemic, presopis juliflora
Procedia PDF Downloads 1001281 Methaheuristic Bat Algorithm in Training of Feed-Forward Neural Network for Stock Price Prediction
Authors: Marjan Golmaryami, Marzieh Behzadi
Abstract:
Recent developments in stock exchange highlight the need for an efficient and accurate method that helps stockholders make better decision. Since stock markets have lots of fluctuations during the time and different effective parameters, it is difficult to make good decisions. The purpose of this study is to employ artificial neural network (ANN) which can deal with time series data and nonlinear relation among variables to forecast next day stock price. Unlike other evolutionary algorithms which were utilized in stock exchange prediction, we trained our proposed neural network with metaheuristic bat algorithm, with fast and powerful convergence and applied it in stock price prediction for the first time. In order to prove the performance of the proposed method, this research selected a 7 year dataset from Parsian Bank stocks and after imposing data preprocessing, used 3 types of ANN (back propagation-ANN, particle swarm optimization-ANN and bat-ANN) to predict the closed price of stocks. Afterwards, this study engaged MATLAB to simulate 3 types of ANN, with the scoring target of mean absolute percentage error (MAPE). The results may be adapted to other companies stocks too.Keywords: artificial neural network (ANN), bat algorithm, particle swarm optimization algorithm (PSO), stock exchange
Procedia PDF Downloads 5481280 Using Deep Learning Neural Networks and Candlestick Chart Representation to Predict Stock Market
Authors: Rosdyana Mangir Irawan Kusuma, Wei-Chun Kao, Ho-Thi Trang, Yu-Yen Ou, Kai-Lung Hua
Abstract:
Stock market prediction is still a challenging problem because there are many factors that affect the stock market price such as company news and performance, industry performance, investor sentiment, social media sentiment, and economic factors. This work explores the predictability in the stock market using deep convolutional network and candlestick charts. The outcome is utilized to design a decision support framework that can be used by traders to provide suggested indications of future stock price direction. We perform this work using various types of neural networks like convolutional neural network, residual network and visual geometry group network. From stock market historical data, we converted it to candlestick charts. Finally, these candlestick charts will be feed as input for training a convolutional neural network model. This convolutional neural network model will help us to analyze the patterns inside the candlestick chart and predict the future movements of the stock market. The effectiveness of our method is evaluated in stock market prediction with promising results; 92.2% and 92.1 % accuracy for Taiwan and Indonesian stock market dataset respectively.Keywords: candlestick chart, deep learning, neural network, stock market prediction
Procedia PDF Downloads 4481279 City versus Suburb: The Effects of Neighborhood on Place Attachment and Residential Satisfaction
Authors: Elif Aksel, Çagrı Imamoglu
Abstract:
This ongoing study aims to investigate the effects of neighborhood location on place attachment and residential satisfaction. Place attachment will be examined by comparing place of residence in different areas of the city. Furthermore, the relationship between neighborhood and residential satisfaction will be investigated in terms of physical and social aspects of the places influencing residential satisfaction. This study will be carried out in two different districts of Ankara which are Çankaya, located in the city center, and Sincan, a suburb. Two-hundred adult respondents will participate in this research; 100 men and 100 women aged between 18-65 years with different socio-economic status using snowball sampling. A place attachment scale and a questionnaire related with residential satisfaction, including open-ended questions and 7-point Likert type scale, will be used as instruments. Apart from these, demographic information of the participants such as gender, age, education, the length of residence will be collected. The findings of the study are expected to demonstrate that neighborhood is seen to be influential on place attachment by affecting the intensity of attachment. The level of place attachment is expected to be greater in areas far from the city compared to areas in the center of the city. Apart from this, the neighborhood is also effective in residential satisfaction. The residents living in these neighborhoods having strong physical and social opportunities will be expected to have higher residential satisfaction.Keywords: neighborhood, neighborhood satisfaction, place attachment, residential satisfaction
Procedia PDF Downloads 3171278 A New Social Vulnerability Index for Evaluating Social Vulnerability to Climate Change at the Local Scale
Authors: Cuong V Nguyen, Ralph Horne, John Fien, France Cheong
Abstract:
Social vulnerability to climate change is increasingly being acknowledged, and proposals to measure and manage it are emerging. Building upon this work, this paper proposes an approach to social vulnerability assessment using a new mechanism to aggregate and account for causal relationships among components of a Social Vulnerability Index (SVI). To operationalize this index, the authors propose a means to develop an appropriate primary dataset, through application of a specifically-designed household survey questionnaire. The data collection and analysis, including calibration and calculation of the SVI is demonstrated through application in case study city in central coastal Vietnam. The calculation of SVI at the fine-grained local neighbourhood scale provides high resolution in vulnerability assessment, and also obviates the need for secondary data, which may be unavailable or problematic, particularly at the local scale in developing countries. The SVI household survey is underpinned by the results of a Delphi survey, an in-depth interview and focus group discussions with local environmental professionals and community members. The research reveals inherent limitations of existing SVIs but also indicates the potential for their use in assessing social vulnerability and making decisions associated with responding to climate change at the local scale.Keywords: climate change, local scale, social vulnerability, social vulnerability index
Procedia PDF Downloads 4351277 The Role of College Teachers’ in Identifying Attention Deficit Hyperactivity Disorder in Students
Authors: Hargunjeet Shergill, Palwinder Singh
Abstract:
The present paper analyzes the lack of teachers' awareness and knowledge regarding the Attention Deficit Hyperactivity Disorder in the college students. Attention deficit hyperactivity disorder causes individuals to consistently display extreme inattention, impulsivity and in many cases hyperactivity as a result of the physiological differences of the brain. Teachers have a formative influence on their students and can play a key role in identifying and supporting students with Attention Deficit/Hyperactivity Disorder (ADHD). Despite the pervasiveness and salience of this disorder, educators at college continue to labor under a number of misconceptions about the nature of ADHD. In order to fulfill this important role, it is imperative for teachers to have explicit knowledge about this disorder. ADHD in college students remains the most under-recognized and undertreated mental health condition. The overall aim of this study is to investigate teachers’ knowledge and misconceptions of ADHD with a particular focus on recognition, assessment and management of ADHD in adult college students. It designed to assess the college teachers' knowledge, opinions, and experience related to the diagnosis of attention-deficit/hyperactivity disorder (ADHD) and by maintaining open lines of communication with the students and understanding some key elements that can affect students’ overall growth and ability. The discussion focuses on the value of the role of teachers and their relationship with each college student dealing with ADHD.Keywords: attention deficit hyperactivity disorder, development of ADHD, diagnostic criteria, role of teachers
Procedia PDF Downloads 2161276 An Approach for Pattern Recognition and Prediction of Information Diffusion Model on Twitter
Authors: Amartya Hatua, Trung Nguyen, Andrew Sung
Abstract:
In this paper, we study the information diffusion process on Twitter as a multivariate time series problem. Our model concerns three measures (volume, network influence, and sentiment of tweets) based on 10 features, and we collected 27 million tweets to build our information diffusion time series dataset for analysis. Then, different time series clustering techniques with Dynamic Time Warping (DTW) distance were used to identify different patterns of information diffusion. Finally, we built the information diffusion prediction models for new hashtags which comprise two phrases: The first phrase is recognizing the pattern using k-NN with DTW distance; the second phrase is building the forecasting model using the traditional Autoregressive Integrated Moving Average (ARIMA) model and the non-linear recurrent neural network of Long Short-Term Memory (LSTM). Preliminary results of performance evaluation between different forecasting models show that LSTM with clustering information notably outperforms other models. Therefore, our approach can be applied in real-world applications to analyze and predict the information diffusion characteristics of selected topics or memes (hashtags) in Twitter.Keywords: ARIMA, DTW, information diffusion, LSTM, RNN, time series clustering, time series forecasting, Twitter
Procedia PDF Downloads 3911275 A Conv-Long Short-term Memory Deep Learning Model for Traffic Flow Prediction
Authors: Ali Reza Sattarzadeh, Ronny J. Kutadinata, Pubudu N. Pathirana, Van Thanh Huynh
Abstract:
Traffic congestion has become a severe worldwide problem, affecting everyday life, fuel consumption, time, and air pollution. The primary causes of these issues are inadequate transportation infrastructure, poor traffic signal management, and rising population. Traffic flow forecasting is one of the essential and effective methods in urban congestion and traffic management, which has attracted the attention of researchers. With the development of technology, undeniable progress has been achieved in existing methods. However, there is a possibility of improvement in the extraction of temporal and spatial features to determine the importance of traffic flow sequences and extraction features. In the proposed model, we implement the convolutional neural network (CNN) and long short-term memory (LSTM) deep learning models for mining nonlinear correlations and their effectiveness in increasing the accuracy of traffic flow prediction in the real dataset. According to the experiments, the results indicate that implementing Conv-LSTM networks increases the productivity and accuracy of deep learning models for traffic flow prediction.Keywords: deep learning algorithms, intelligent transportation systems, spatiotemporal features, traffic flow prediction
Procedia PDF Downloads 1711274 Construction of QSAR Models to Predict Potency on a Series of substituted Imidazole Derivatives as Anti-fungal Agents
Authors: Sara El Mansouria Beghdadi
Abstract:
Quantitative structure–activity relationship (QSAR) modelling is one of the main computer tools used in medicinal chemistry. Over the past two decades, the incidence of fungal infections has increased due to the development of resistance. In this study, the QSAR was performed on a series of esters of 2-carboxamido-3-(1H-imidazole-1-yl) propanoic acid derivatives. These compounds have showed moderate and very good antifungal activity. The multiple linear regression (MLR) was used to generate the linear 2d-QSAR models. The dataset consists of 115 compounds with their antifungal activity (log MIC) against «Candida albicans» (ATCC SC5314). Descriptors were calculated, and different models were generated using Chemoffice, Avogadro, GaussView software. The selected model was validated. The study suggests that the increase in lipophilicity and the reduction in the electronic character of the substituent in R1, as well as the reduction in the steric hindrance of the substituent in R2 and its aromatic character, supporting the potentiation of the antifungal effect. The results of QSAR could help scientists to propose new compounds with higher antifungal activities intended for immunocompromised patients susceptible to multi-resistant nosocomial infections.Keywords: quantitative structure–activity relationship, imidazole, antifungal, candida albicans (ATCC SC5314)
Procedia PDF Downloads 841273 Simulation-Based Optimization of a Non-Uniform Piezoelectric Energy Harvester with Stack Boundary
Authors: Alireza Keshmiri, Shahriar Bagheri, Nan Wu
Abstract:
This research presents an analytical model for the development of an energy harvester with piezoelectric rings stacked at the boundary of the structure based on the Adomian decomposition method. The model is applied to geometrically non-uniform beams to derive the steady-state dynamic response of the structure subjected to base motion excitation and efficiently harvest the subsequent vibrational energy. The in-plane polarization of the piezoelectric rings is employed to enhance the electrical power output. A parametric study for the proposed energy harvester with various design parameters is done to prepare the dataset required for optimization. Finally, simulation-based optimization technique helps to find the optimum structural design with maximum efficiency. To solve the optimization problem, an artificial neural network is first trained to replace the simulation model, and then, a genetic algorithm is employed to find the optimized design variables. Higher geometrical non-uniformity and length of the beam lowers the structure natural frequency and generates a larger power output.Keywords: piezoelectricity, energy harvesting, simulation-based optimization, artificial neural network, genetic algorithm
Procedia PDF Downloads 1231272 A Comparative Study on Indian and Greek Cotton Fiber Properties Correlations
Authors: Md. Nakib Ul Hasan, Md. Ariful Islam, Md. Sumon Miah, Misbah Ul Hoque, Bulbul Ahmed
Abstract:
The variability of cotton fiber characteristics has always been influenced by origin, weather conditions, method of culturing, and harvesting. Spinners work tirelessly to ensure consistent yarn quality by using the different origins of fibers to maximizes the profit margin. Spinners often fail to select desired raw materials of various origins to achieve an appropriate mixing plan due to the lack of knowledge on the interrelationship among fiber properties. The purpose of this research is to investigate the correlations among dominating fiber properties such as micronaire, strength, breaking elongation, upper half mean length, length uniformity index, short fiber index, maturity, reflectance, and yellowness. For this purpose, fiber samples from 500 Indian cotton bales and 350 Greek cotton bales were collected and tested using the high volume instrument (HVI). The fiber properties dataset was then compiled and analyzed using python 3.7 to determine the correlations matrix. Results show that Indian cotton fiber have highest correlation between strength-mat = 0.84, followed by SFI-Unf =-0.83, and Neps-Unf = -0.72. Greek cotton fiber, in contrast, have highest correlation between SFI-Unf =-0.98, followed by SFI-Mat = 0.89, +b-Len = 0.84, and Str-Mat = 0.74. Overall, the Greek cotton fiber showed a higher correlational matrix than compared to that of Indian cotton fiber.Keywords: cotton fiber, fiber properties correlation, Greek cotton, HVI, Indian cotton, spinning
Procedia PDF Downloads 1631271 Cross Line of Causality in Childhood Stuttering between Psychology and Neurolinguistics: Systematic Literature Review and Meta-Analysis
Authors: Sadeq Al Yaari, Muhammad Alkhunayn, Ayman Al Yaari, Montaha Al Yaari, Aayah Al Yaari, Adham Al Yaari, Sajedah Al Yaari, Fatehi Eissa
Abstract:
Stuttering is a multidimensional disorder that is influenced by different factors. As a result of their un-understanding of the genuine reasons behind stuttering, psychiatrists and Speech and Language Pathologists/Therapists (SLP/Ts) are often unfamiliar with the psychoneurolinguistic characteristics, support needs, and the disability measurement impacting requested rehabilitation of the stuttering population. PubMed, PsycInfo, Web of Science, Scopus, and Google scholar searches, in addition to some unpublished literature, were conducted in this Systematic Literature Review and Meta-analysis (SLR and Meta-analysis) to identify whether stuttering is caused by psychological or neurological reasons. The study concluded that psychological, not neurolinguistic factors were identified as most significant for the causality of childhood stuttering. Stutterers have intact language skills, but impaired ability more to communicate with others than to form letters in the brain or to articulate them. The study recommends research in the future that sheds light on the adult stuttering population often left out of the focus of diagnosis and in need of further exploration vis-a-vis issues they encounter, as well as the possible ways to deal with them psychoneurolinguistically.Keywords: causality, childhood stuttering, psychology, neurolinguistics, systematic literature review, meta-analysis
Procedia PDF Downloads 511270 Improving Axial-Attention Network via Cross-Channel Weight Sharing
Authors: Nazmul Shahadat, Anthony S. Maida
Abstract:
In recent years, hypercomplex inspired neural networks improved deep CNN architectures due to their ability to share weights across input channels and thus improve cohesiveness of representations within the layers. The work described herein studies the effect of replacing existing layers in an Axial Attention ResNet with their quaternion variants that use cross-channel weight sharing to assess the effect on image classification. We expect the quaternion enhancements to produce improved feature maps with more interlinked representations. We experiment with the stem of the network, the bottleneck layer, and the fully connected backend by replacing them with quaternion versions. These modifications lead to novel architectures which yield improved accuracy performance on the ImageNet300k classification dataset. Our baseline networks for comparison were the original real-valued ResNet, the original quaternion-valued ResNet, and the Axial Attention ResNet. Since improvement was observed regardless of which part of the network was modified, there is a promise that this technique may be generally useful in improving classification accuracy for a large class of networks.Keywords: axial attention, representational networks, weight sharing, cross-channel correlations, quaternion-enhanced axial attention, deep networks
Procedia PDF Downloads 831269 Relationships among Parentification, Self-Differentiation, and Ambivalence over Emotional Expression for Children of Migratory Families
Authors: Wan-Chun Chang, Yi-Jung Lee
Abstract:
Due to cultural factors, expressing emotions may not be encouraged in collectivist cultures, which emphasize the needs of the group over the needs of the individual. This phenomenon is more prominent for children of migratory families. Due to the absence of one parent, children were often parentified by adults, which then impacted on their self-differentiation process. It made them more difficult to express their needs and emotions freely and openly. This study aimed to investigate the meditation effect of self-differentiation between parentification, and ambivalence over emotional expression for children of migratory families in Taiwan. Participants included 460 (326 females, 134 males) Taiwanese adults (age 18-25 years). The data were collected through questionnaires and analyzed using descriptive statistics and multiple regression analysis. The questionnaire included informed consent form, 'Filial Responsibility Scale-Adult', 'Chinese version of the Differentiation of Self Inventory', 'Ambivalence over Emotion Expressiveness Questionnaire', and the demographic sheet. Results indicated that self-differentiation mediated the relationship between parentified experience and ambivalence over emotional expression. In other words, parentified experience itself does not have the power to affect ambivalence over emotional expression. Only by affecting self-differentiation can it make an actual difference. The results were as expected and confirmed the hypothesis. Implications for clinical practice, research, and training were discussed.Keywords: ambivalence over emotional expression, children of migratory families, parentification, self-differentiation
Procedia PDF Downloads 1331268 A Distinct Method Based on Mamba-Unet for Brain Tumor Image Segmentation
Authors: Djallel Bouamama, Yasser R. Haddadi
Abstract:
Accurate brain tumor segmentation is crucial for diagnosis and treatment planning, yet it remains a challenging task due to the variability in tumor shapes and intensities. This paper introduces a distinct approach to brain tumor image segmentation by leveraging an advanced architecture known as Mamba-Unet. Building on the well-established U-Net framework, Mamba-Unet incorporates distinct design enhancements to improve segmentation performance. Our proposed method integrates a multi-scale attention mechanism and a hybrid loss function to effectively capture fine-grained details and contextual information in brain MRI scans. We demonstrate that Mamba-Unet significantly enhances segmentation accuracy compared to conventional U-Net models by utilizing a comprehensive dataset of annotated brain MRI scans. Quantitative evaluations reveal that Mamba-Unet surpasses traditional U-Net architectures and other contemporary segmentation models regarding Dice coefficient, sensitivity, and specificity. The improvements are attributed to the method's ability to manage class imbalance better and resolve complex tumor boundaries. This work advances the state-of-the-art in brain tumor segmentation and holds promise for improving clinical workflows and patient outcomes through more precise and reliable tumor detection.Keywords: brain tumor classification, image segmentation, CNN, U-NET
Procedia PDF Downloads 341267 mKDNAD: A Network Flow Anomaly Detection Method Based On Multi-teacher Knowledge Distillation
Abstract:
Anomaly detection models for network flow based on machine learning have poor detection performance under extremely unbalanced training data conditions and also have slow detection speed and large resource consumption when deploying on network edge devices. Embedding multi-teacher knowledge distillation (mKD) in anomaly detection can transfer knowledge from multiple teacher models to a single model. Inspired by this, we proposed a state-of-the-art model, mKDNAD, to improve detection performance. mKDNAD mine and integrate the knowledge of one-dimensional sequence and two-dimensional image implicit in network flow to improve the detection accuracy of small sample classes. The multi-teacher knowledge distillation method guides the train of the student model, thus speeding up the model's detection speed and reducing the number of model parameters. Experiments in the CICIDS2017 dataset verify the improvements of our method in the detection speed and the detection accuracy in dealing with the small sample classes.Keywords: network flow anomaly detection (NAD), multi-teacher knowledge distillation, machine learning, deep learning
Procedia PDF Downloads 1221266 Imp_hist-Si: Improved Hybrid Image Segmentation Technique for Satellite Imagery to Decrease the Segmentation Error Rate
Authors: Neetu Manocha
Abstract:
Image segmentation is a technique where a picture is parted into distinct parts having similar features which have a place with similar items. Various segmentation strategies have been proposed as of late by prominent analysts. But, after ultimate thorough research, the novelists have analyzed that generally, the old methods do not decrease the segmentation error rate. Then author finds the technique HIST-SI to decrease the segmentation error rates. In this technique, cluster-based and threshold-based segmentation techniques are merged together. After then, to improve the result of HIST-SI, the authors added the method of filtering and linking in this technique named Imp_HIST-SI to decrease the segmentation error rates. The goal of this research is to find a new technique to decrease the segmentation error rates and produce much better results than the HIST-SI technique. For testing the proposed technique, a dataset of Bhuvan – a National Geoportal developed and hosted by ISRO (Indian Space Research Organisation) is used. Experiments are conducted using Scikit-image & OpenCV tools of Python, and performance is evaluated and compared over various existing image segmentation techniques for several matrices, i.e., Mean Square Error (MSE) and Peak Signal Noise Ratio (PSNR).Keywords: satellite image, image segmentation, edge detection, error rate, MSE, PSNR, HIST-SI, linking, filtering, imp_HIST-SI
Procedia PDF Downloads 1411265 Contextual Paper on Green Finance: Analysis of the Green Bonds Market
Authors: Dina H. Gabr, Mona A. El Bannan
Abstract:
With growing worldwide concern for global warming, green finance has become the fuel that pushes the world to act in combating and mitigating climate change. Coupled with adopting the Paris Agreement and the United Nations Sustainable Development Goals, Green finance became a vital tool in creating a pathway to sustainable development, as it connects the financial world with environmental and societal benefits. This paper provides a comprehensive review of the concepts and definitions of green finance and the importance of 'green' impact investments today. The core challenge in combating climate change is reducing and controlling Greenhouse gas emissions; therefore, this study explores the solutions green finance provides putting emphasis on the use of renewable energy, which is necessary for enhancing the transition to the green economy. With increasing attention to the concept of green finance, multiple forms of green investments and financial tools have come to fruition; the most prominent are green bonds. The rise of green bonds, a debt market to finance climate solutions, provide a promising mechanism for sustainable finance. Following the review, this paper compiles a comprehensive green bond dataset, presenting a statistical study of the evolution of the green bonds market from its first appearance in 2006 until 2021.Keywords: climate change, GHG emissions, green bonds, green finance, sustainable finance
Procedia PDF Downloads 1201264 Analysing Techniques for Fusing Multimodal Data in Predictive Scenarios Using Convolutional Neural Networks
Authors: Philipp Ruf, Massiwa Chabbi, Christoph Reich, Djaffar Ould-Abdeslam
Abstract:
In recent years, convolutional neural networks (CNN) have demonstrated high performance in image analysis, but oftentimes, there is only structured data available regarding a specific problem. By interpreting structured data as images, CNNs can effectively learn and extract valuable insights from tabular data, leading to improved predictive accuracy and uncovering hidden patterns that may not be apparent in traditional structured data analysis. In applying a single neural network for analyzing multimodal data, e.g., both structured and unstructured information, significant advantages in terms of time complexity and energy efficiency can be achieved. Converting structured data into images and merging them with existing visual material offers a promising solution for applying CNN in multimodal datasets, as they often occur in a medical context. By employing suitable preprocessing techniques, structured data is transformed into image representations, where the respective features are expressed as different formations of colors and shapes. In an additional step, these representations are fused with existing images to incorporate both types of information. This final image is finally analyzed using a CNN.Keywords: CNN, image processing, tabular data, mixed dataset, data transformation, multimodal fusion
Procedia PDF Downloads 1231263 The Historical Perspectives of Peace Education as a Vehicle of Unity and Technological Developments in Nigeria
Authors: Oluwole Enoch Adeniran
Abstract:
Peace studies and conflict resolution; though a relatively new discipline had attracted scholars from far and near. It had enhanced a purposeful training of mind of young adult among other categories of learners. It provides a platform through which university under-graduates and post-graduates students are exposed to the rudiments of peace building, peacemaking and peace keeping towards a successful conflict resolution. The paper historicizes peace education as most desirable in any human society that desired development. It aims at educating children and young adults in the dynamics of peaceful conflicts resolution at home, in school and communities (states) throughout the world for a purposeful technological development. It also aims at exposing students to the nature of conflict and how to manage and resolve conflicts in order to promote national unity for meaningful development. The paper argues that, for a state to record any meaningful socio-economic, political and technological development; a conducive and peaceful atmosphere must be put in place. This theoretical paper emerged in the context of historical specificities of conflict resolution from a general conceptual framework. It then concludes with suggestions on the modes of conflict prevention, conflict management and conflict resolution for an ideal technologically advanced society.Keywords: history, education, peace, unity, technology and development
Procedia PDF Downloads 3631262 Trajectories of Physical Activity Intensity and Associated Factors in Men and Women from Elsa-Brasil
Authors: André Luis Messias Dos Santos Duque, Daniela Polessa Paula, Rosane Harter Griep
Abstract:
The intensity of physical activity (PA) over time is essential for health promotion. However, there are few studies that have analyzed the practice of different intensities of PA longitudinally. The objective was to identify PA intensity trajectories in men and women from a Brazilian multicentric cohort and their associated factors. Data from 10,367 participants (5,777 women and 4,590 men) aged 35 to 74 years from the baseline and two follow-up visits (2012-2014 and 2017-2019) of the Longitudinal Study of Adult Health (ELSA-Brasil) were analyzed. PA intensity (low, moderate, or high) was assessed using the leisure-time PA module of the International Physical Activity Questionnaire (IPAQ), and sociodemographic, behavioral, and clinical variables were included. Chi-square and T-student tests were used, considering a significant level of 5%. Four intensity trajectories were identified: low, moderate, high, and no pattern. Most participants (82.5% of women and 75.7% of men) had low PA intensity trajectories, and only 2% of women and 4.8% of men had high PA intensity trajectories. For both sexes, a significant difference (p<0.05) was found for age group, education level, income, smoking, type 2 diabetes, obesity, hypertriglyceridemia, and hypertension. Actions that promote the practice of high-intensity PA over time and consider sociodemographic, clinical, and behavioral factors are necessary.Keywords: lifestyle, longterm effects, physical activity, socioeconomic factors
Procedia PDF Downloads 161261 Identity Management in Virtual Worlds Based on Biometrics Watermarking
Authors: S. Bader, N. Essoukri Ben Amara
Abstract:
With the technological development and rise of virtual worlds, these spaces are becoming more and more attractive for cybercriminals, hidden behind avatars and fictitious identities. Since access to these spaces is not restricted or controlled, some impostors take advantage of gaining unauthorized access and practicing cyber criminality. This paper proposes an identity management approach for securing access to virtual worlds. The major purpose of the suggested solution is to install a strong security mechanism to protect virtual identities represented by avatars. Thus, only legitimate users, through their corresponding avatars, are allowed to access the platform resources. Access is controlled by integrating an authentication process based on biometrics. In the request process for registration, a user fingerprint is enrolled and then encrypted into a watermark utilizing a cancelable and non-invertible algorithm for its protection. After a user personalizes their representative character, the biometric mark is embedded into the avatar through a watermarking procedure. The authenticity of the avatar identity is verified when it requests authorization for access. We have evaluated the proposed approach on a dataset of avatars from various virtual worlds, and we have registered promising performance results in terms of authentication accuracy, acceptation and rejection rates.Keywords: identity management, security, biometrics authentication and authorization, avatar, virtual world
Procedia PDF Downloads 2651260 Ultrasonographic Evaluation of Tars and Metatars Region of Dromedary Camel
Authors: Aboozar Dehghan, S. Sharifi, A. Ardeshiri, F. Jafari, F. Samani
Abstract:
Ultrasonography is a safe, particular, available and easy to use method to evaluate soft tissues. Tendons play the main role to body locomotors system. Ultrasonography performed in tarsus and metatarsus region of rare limb of eight adult, Dromedary camels (camelus dromedaries) in both sex. Clinical examination and gate analysis was performed before slaughtering. From the tarsus to the 1st phalanx was divided to 4 equal region include 1a, 2a, 1b and 2b. Flexor surface was clipped and covered by enough ultrasonography gel. Ultrasonography was performed by linear phased array 8-12 Mhz transducer in transverse and longitudinal section and Superficial digital flexor tendon (SDFT), deep digital flexor tendon (DDFT) and suspensory ligament (SL) were imaged. Echogenicity and diameter of these structures were recorded. Size of tendons and SL measured after necropsy too. statistical analysis obtained that SDFT diameter larger than others in all described regions and mean of DDFT diameter larger than suspensory ligament. Echogenicity of SL more than SDFT and DDFT. No Significant relationship was seen between left and right rare limb structures size. Between sex and tendons and SL diameter, significant relationship not seen.Keywords: dromedary camel, tars and metatars, ultrasonography
Procedia PDF Downloads 5601259 Medical Image Augmentation Using Spatial Transformations for Convolutional Neural Network
Authors: Trupti Chavan, Ramachandra Guda, Kameshwar Rao
Abstract:
The lack of data is a pain problem in medical image analysis using a convolutional neural network (CNN). This work uses various spatial transformation techniques to address the medical image augmentation issue for knee detection and localization using an enhanced single shot detector (SSD) network. The spatial transforms like a negative, histogram equalization, power law, sharpening, averaging, gaussian blurring, etc. help to generate more samples, serve as pre-processing methods, and highlight the features of interest. The experimentation is done on the OpenKnee dataset which is a collection of knee images from the openly available online sources. The CNN called enhanced single shot detector (SSD) is utilized for the detection and localization of the knee joint from a given X-ray image. It is an enhanced version of the famous SSD network and is modified in such a way that it will reduce the number of prediction boxes at the output side. It consists of a classification network (VGGNET) and an auxiliary detection network. The performance is measured in mean average precision (mAP), and 99.96% mAP is achieved using the proposed enhanced SSD with spatial transformations. It is also seen that the localization boundary is comparatively more refined and closer to the ground truth in spatial augmentation and gives better detection and localization of knee joints.Keywords: data augmentation, enhanced SSD, knee detection and localization, medical image analysis, openKnee, Spatial transformations
Procedia PDF Downloads 154