Search results for: thick data transformation and analytics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26643

Search results for: thick data transformation and analytics

26553 An Automatic Model Transformation Methodology Based on Semantic and Syntactic Comparisons and the Granularity Issue Involved

Authors: Tiexin Wang, Sebastien Truptil, Frederick Benaben

Abstract:

Model transformation, as a pivotal aspect of Model-driven engineering, attracts more and more attentions both from researchers and practitioners. Many domains (enterprise engineering, software engineering, knowledge engineering, etc.) use model transformation principles and practices to serve to their domain specific problems; furthermore, model transformation could also be used to fulfill the gap between different domains: by sharing and exchanging knowledge. Since model transformation has been widely used, there comes new requirement on it: effectively and efficiently define the transformation process and reduce manual effort that involved in. This paper presents an automatic model transformation methodology based on semantic and syntactic comparisons, and focuses particularly on granularity issue that existed in transformation process. Comparing to the traditional model transformation methodologies, this methodology serves to a general purpose: cross-domain methodology. Semantic and syntactic checking measurements are combined into a refined transformation process, which solves the granularity issue. Moreover, semantic and syntactic comparisons are supported by software tool; manual effort is replaced in this way.

Keywords: automatic model transformation, granularity issue, model-driven engineering, semantic and syntactic comparisons

Procedia PDF Downloads 394
26552 Effects of Mechanical Test and Shape of Grain Boundary on Martensitic Transformation in Fe-Ni-C Steel

Authors: Mounir Gaci, Salim Meziani, Atmane Fouathia

Abstract:

The purpose of the present paper is to model the behavior of metal alloy, type TRIP steel (Transformation Induced Plasticity), during solid/solid phase transition. A two-dimensional micromechanical model is implemented in finite element software (ZEBULON) to simulate the martensitic transformation in Fe-Ni-C steel grain under mechanical tensile stress of 250 MPa. The effects of non-uniform grain boundary and the criterion of mechanical shear load on the transformation and on the TRIP value during martensitic transformation are studied. The suggested mechanical criterion is favourable to the influence of the shear phenomenon on the progression of the martensitic transformation (Magee’s mechanism). The obtained results are in satisfactory agreement with experimental ones and show the influence of the grain boundary shape and the chosen mechanical criterion (SMF) on the transformation parameters.

Keywords: martensitic transformation, non-uniform Grain Boundary, TRIP, shear Mechanical force (SMF)

Procedia PDF Downloads 258
26551 Data-Focused Digital Transformation for Smart Net-Zero Cities: A Systems Thinking Approach

Authors: Farzaneh Mohammadi Jouzdani, Vahid Javidroozi, Monica Mateo Garcia, Hanifa Shah

Abstract:

The emergence of developing smart net-zero cities in recent years has attracted significant attention and interest from worldwide communities and scholars as a potential solution to the critical requirement for urban sustainability. This research-in-progress paper aims to investigate the development of smart net-zero cities to propose a digital transformation roadmap for smart net-zero cities with a primary focus on data. Employing systems thinking as an underpinning theory, the study advocates for the necessity of utilising a holistic strategy for understanding the complex interdependencies and interrelationships that characterise urban systems. The proposed methodology will involve an in-depth investigation of current data-driven approaches in the smart net-zero city. This is followed by utilising predictive analysis methods to evaluate the holistic impact of the approaches on moving toward a Smart net-zero city. It is expected to achieve systemic intervention followed by a data-focused and systemic digital transformation roadmap for smart net-zero, contributing to a more holistic understanding of urban sustainability.

Keywords: smart city, net-zero city, digital transformation, systems thinking, data integration, data-driven approach

Procedia PDF Downloads 22
26550 Exclusive Value Adding by iCenter Analytics on Transient Condition

Authors: Zhu Weimin, Allegorico Carmine, Ruggiero Gionata

Abstract:

During decades of Baker Hughes (BH) iCenter experience, it is demonstrated that in addition to conventional insights on equipment steady operation conditions, insights on transient conditions can add significant and exclusive value for anomaly detection, downtime saving, and predictive maintenance. Our work shows examples from the BH iCenter experience to introduce the advantages and features of using transient condition analytics: (i) Operation under critical engine conditions: e.g., high level or high change rate of temperature, pressure, flow, vibration, etc., that would not be reachable in normal operation, (ii) Management of dedicated sub-systems or components, many of which are often bottlenecks for reliability and maintenance, (iii) Indirect detection of anomalies in the absence of instrumentation, (iv) Repetitive sequences: if data is properly processed, the engineering features of transients provide not only anomaly detection but also problem characterization and prognostic indicators for predictive maintenance, (v) Engine variables accounting for fatigue analysis. iCenter has been developing and deploying a series of analytics based on transient conditions. They are contributing to exclusive value adding in the following areas: (i) Reliability improvement, (ii) Startup reliability improvement, (iii) Predictive maintenance, (iv) Repair/overhaul cost down. Illustrative examples for each of the above areas are presented in our study, focusing on challenges and adopted techniques ranging from purely statistical approaches to the implementation of machine learning algorithms. The obtained results demonstrate how the value is obtained using transient condition analytics in the BH iCenter experience.

Keywords: analytics, diagnostics, monitoring, turbomachinery

Procedia PDF Downloads 72
26549 Evaluating the Total Costs of a Ransomware-Resilient Architecture for Healthcare Systems

Authors: Sreejith Gopinath, Aspen Olmsted

Abstract:

This paper is based on our previous work that proposed a risk-transference-based architecture for healthcare systems to store sensitive data outside the system boundary, rendering the system unattractive to would-be bad actors. This architecture also allows a compromised system to be abandoned and a new system instance spun up in place to ensure business continuity without paying a ransom or engaging with a bad actor. This paper delves into the details of various attacks we simulated against the prototype system. In the paper, we discuss at length the time and computational costs associated with storing and retrieving data in the prototype system, abandoning a compromised system, and setting up a new instance with existing data. Lastly, we simulate some analytical workloads over the data stored in our specialized data storage system and discuss the time and computational costs associated with running analytics over data in a specialized storage system outside the system boundary. In summary, this paper discusses the total costs of data storage, access, and analytics incurred with the proposed architecture.

Keywords: cybersecurity, healthcare, ransomware, resilience, risk transference

Procedia PDF Downloads 130
26548 Generating Innovations in Established Banks through Digital Transformation

Authors: Wisu Suntoyo, Dedy Sushandoyo

Abstract:

Innovation and digital transformation are essential for firms’ competitiveness in the digital age. The competition in Indonesia’s banking industry provides an intriguing case study for understanding how digital transformation can generate innovation in established companies. The empirical evidence of this study is mainly based on interviews and annual reports examining four established banks in their various states of digital transformation. The findings of this study reveal that banks’ digital transformations that lead to innovations differ in terms of the activities undertaken and the outcomes achieved depending on the state of advancement in which they are. Digital transformation is a complex and challenging process, and this study finds that with this strategy, established banks have shown capable of generating innovation. Banks can choose types of transformation activities that generate radical, architectural, modular, or even incremental innovations.

Keywords: digital transformation, innovations, banking industry, established banks

Procedia PDF Downloads 97
26547 Health Transformation Program and Effects on Health Expenditures

Authors: Zeynep Karacor, Rahime Hulya Ozturk

Abstract:

In recent years, the rise of population density and the problem of aging population took attention to the health expenditures. In Turkey, some regulations and infrastructure changes in health sector have occurred. These changes are called Health Transformation Program. The productivity of health services, patient satisfaction, quality of services are tried to be improved with this program. Some radical changes are applied in Turkish economy in this context. The aim of this paper is to present the effects of Health Transformation Program on health expenditures. In the first part of the paper, some information’s about health system and applications in Turkey are discussed. In the second part, the aims of Health Transformation Program are explained. And in the third part the effects of Health Transformation Program on health expenditures are examined.

Keywords: health transformation program, Turkey, health services, health expenditures

Procedia PDF Downloads 394
26546 Human-Centred Data Analysis Method for Future Design of Residential Spaces: Coliving Case Study

Authors: Alicia Regodon Puyalto, Alfonso Garcia-Santos

Abstract:

This article presents a method to analyze the use of indoor spaces based on data analytics obtained from inbuilt digital devices. The study uses the data generated by the in-place devices, such as smart locks, Wi-Fi routers, and electrical sensors, to gain additional insights on space occupancy, user behaviour, and comfort. Those devices, originally installed to facilitate remote operations, report data through the internet that the research uses to analyze information on human real-time use of spaces. Using an in-place Internet of Things (IoT) network enables a faster, more affordable, seamless, and scalable solution to analyze building interior spaces without incorporating external data collection systems such as sensors. The methodology is applied to a real case study of coliving, a residential building of 3000m², 7 floors, and 80 users in the centre of Madrid. The case study applies the method to classify IoT devices, assess, clean, and analyze collected data based on the analysis framework. The information is collected remotely, through the different platforms devices' platforms; the first step is to curate the data, understand what insights can be provided from each device according to the objectives of the study, this generates an analysis framework to be escalated for future building assessment even beyond the residential sector. The method will adjust the parameters to be analyzed tailored to the dataset available in the IoT of each building. The research demonstrates how human-centered data analytics can improve the future spatial design of indoor spaces.

Keywords: in-place devices, IoT, human-centred data-analytics, spatial design

Procedia PDF Downloads 196
26545 Estimation of Service Quality and Its Impact on Market Share Using Business Analytics

Authors: Haritha Saranga

Abstract:

Service quality has become an important driver of competition in manufacturing industries of late, as many products are being sold in conjunction with service offerings. With increase in computational power and data capture capabilities, it has become possible to analyze and estimate various aspects of service quality at the granular level and determine their impact on business performance. In the current study context, dealer level, model-wise warranty data from one of the top two-wheeler manufacturers in India is used to estimate service quality of individual dealers and its impact on warranty related costs and sales performance. We collected primary data on warranty costs, number of complaints, monthly sales, type of quality upgrades, etc. from the two-wheeler automaker. In addition, we gathered secondary data on various regions in India, such as petrol and diesel prices, geographic and climatic conditions of various regions where the dealers are located, to control for customer usage patterns. We analyze this primary and secondary data with the help of a variety of analytics tools such as Auto-Regressive Integrated Moving Average (ARIMA), Seasonal ARIMA and ARIMAX. Study results, after controlling for a variety of factors, such as size, age, region of the dealership, and customer usage pattern, show that service quality does influence sales of the products in a significant manner. A more nuanced analysis reveals the dynamics between product quality and service quality, and how their interaction affects sales performance in the Indian two-wheeler industry context. We also provide various managerial insights using descriptive analytics and build a model that can provide sales projections using a variety of forecasting techniques.

Keywords: service quality, product quality, automobile industry, business analytics, auto-regressive integrated moving average

Procedia PDF Downloads 118
26544 Frequency Transformation with Pascal Matrix Equations

Authors: Phuoc Si Nguyen

Abstract:

Frequency transformation with Pascal matrix equations is a method for transforming an electronic filter (analogue or digital) into another filter. The technique is based on frequency transformation in the s-domain, bilinear z-transform with pre-warping frequency, inverse bilinear transformation and a very useful application of the Pascal’s triangle that simplifies computing and enables calculation by hand when transforming from one filter to another. This paper will introduce two methods to transform a filter into a digital filter: frequency transformation from the s-domain into the z-domain; and frequency transformation in the z-domain. Further, two Pascal matrix equations are derived: an analogue to digital filter Pascal matrix equation and a digital to digital filter Pascal matrix equation. These are used to design a desired digital filter from a given filter.

Keywords: frequency transformation, bilinear z-transformation, pre-warping frequency, digital filters, analog filters, pascal’s triangle

Procedia PDF Downloads 549
26543 Predicting Emerging Agricultural Investment Opportunities: The Potential of Structural Evolution Index

Authors: Kwaku Damoah

Abstract:

The agricultural sector is characterized by continuous transformation, driven by factors such as demographic shifts, evolving consumer preferences, climate change, and migration trends. This dynamic environment presents complex challenges for key stakeholders including farmers, governments, and investors, who must navigate these changes to achieve optimal investment returns. To effectively predict market trends and uncover promising investment opportunities, a systematic, data-driven approach is essential. This paper introduces the Structural Evolution Index (SEI), a machine learning-based methodology. SEI is specifically designed to analyse long-term trends and forecast the potential of emerging agricultural products for investment. Versatile in application, it evaluates various agricultural metrics such as production, yield, trade, land use, and consumption, providing a comprehensive view of the evolution within agricultural markets. By harnessing data from the UN Food and Agricultural Organisation (FAOSTAT), this study demonstrates the SEI's capabilities through Comparative Exploratory Analysis and evaluation of international trade in agricultural products, focusing on Malaysia and Singapore. The SEI methodology reveals intricate patterns and transitions within the agricultural sector, enabling stakeholders to strategically identify and capitalize on emerging markets. This predictive framework is a powerful tool for decision-makers, offering crucial insights that help anticipate market shifts and align investments with anticipated returns.

Keywords: agricultural investment, algorithm, comparative exploratory analytics, machine learning, market trends, predictive analytics, structural evolution index

Procedia PDF Downloads 61
26542 Mutual Information Based Image Registration of Satellite Images Using PSO-GA Hybrid Algorithm

Authors: Dipti Patra, Guguloth Uma, Smita Pradhan

Abstract:

Registration is a fundamental task in image processing. It is used to transform different sets of data into one coordinate system, where data are acquired from different times, different viewing angles, and/or different sensors. The registration geometrically aligns two images (the reference and target images). Registration techniques are used in satellite images and it is important in order to be able to compare or integrate the data obtained from these different measurements. In this work, mutual information is considered as a similarity metric for registration of satellite images. The transformation is assumed to be a rigid transformation. An attempt has been made here to optimize the transformation function. The proposed image registration technique hybrid PSO-GA incorporates the notion of Particle Swarm Optimization and Genetic Algorithm and is used for finding the best optimum values of transformation parameters. The performance comparision obtained with the experiments on satellite images found that the proposed hybrid PSO-GA algorithm outperforms the other algorithms in terms of mutual information and registration accuracy.

Keywords: image registration, genetic algorithm, particle swarm optimization, hybrid PSO-GA algorithm and mutual information

Procedia PDF Downloads 406
26541 The Digital Desert in Global Business: Digital Analytics as an Oasis of Hope for Sub-Saharan Africa

Authors: David Amoah Oduro

Abstract:

In the ever-evolving terrain of international business, a profound revolution is underway, guided by the swift integration and advancement of disruptive technologies like digital analytics. In today's international business landscape, where competition is fierce, and decisions are data-driven, the essence of this paper lies in offering a tangible roadmap for practitioners. It is a guide that bridges the chasm between theory and actionable insights, helping businesses, investors, and entrepreneurs navigate the complexities of international expansion into sub-Saharan Africa. This practitioner paper distils essential insights, methodologies, and actionable recommendations for businesses seeking to leverage digital analytics in their pursuit of market entry and expansion across the African continent. What sets this paper apart is its unwavering focus on a region ripe with potential: sub-Saharan Africa. The adoption and adaptation of digital analytics are not mere luxuries but essential strategic tools for evaluating countries and entering markets within this dynamic region. With the spotlight firmly fixed on sub-Saharan Africa, the aim is to provide a compelling resource to guide practitioners in their quest to unearth the vast opportunities hidden within sub-Saharan Africa's digital desert. The paper illuminates the pivotal role of digital analytics in providing a data-driven foundation for market entry decisions. It highlights the ability to uncover market trends, consumer behavior, and competitive landscapes. By understanding Africa's incredible diversity, the paper underscores the importance of tailoring market entry strategies to account for unique cultural, economic, and regulatory factors. For practitioners, this paper offers a set of actionable recommendations, including the creation of cross-functional teams, the integration of local expertise, and the cultivation of long-term partnerships to ensure sustainable market entry success. It advocates for a commitment to continuous learning and flexibility in adapting strategies as the African market evolves. This paper represents an invaluable resource for businesses, investors, and entrepreneurs who are keen on unlocking the potential of digital analytics for informed market entry in Africa. It serves as a guiding light, equipping practitioners with the essential tools and insights needed to thrive in this dynamic and diverse continent. With these key insights, methodologies, and recommendations, this paper is a roadmap to prosperous and sustainable market entry in Africa. It is vital for anyone looking to harness the transformational potential of digital analytics to create prosperous and sustainable ventures in a region brimming with promise. In the ever-advancing digital age, this practitioner paper becomes a lodestar, guiding businesses and visionaries toward success amidst the unique challenges and rewards of sub-Saharan Africa's international business landscape.

Keywords: global analytics, digital analytics, sub-Saharan Africa, data analytics

Procedia PDF Downloads 72
26540 Exploration of RFID in Healthcare: A Data Mining Approach

Authors: Shilpa Balan

Abstract:

Radio Frequency Identification, also popularly known as RFID is used to automatically identify and track tags attached to items. This study focuses on the application of RFID in healthcare. The adoption of RFID in healthcare is a crucial technology to patient safety and inventory management. Data from RFID tags are used to identify the locations of patients and inventory in real time. Medical errors are thought to be a prominent cause of loss of life and injury. The major advantage of RFID application in healthcare industry is the reduction of medical errors. The healthcare industry has generated huge amounts of data. By discovering patterns and trends within the data, big data analytics can help improve patient care and lower healthcare costs. The number of increasing research publications leading to innovations in RFID applications shows the importance of this technology. This study explores the current state of research of RFID in healthcare using a text mining approach. No study has been performed yet on examining the current state of RFID research in healthcare using a data mining approach. In this study, related articles were collected on RFID from healthcare journal and news articles. Articles collected were from the year 2000 to 2015. Significant keywords on the topic of focus are identified and analyzed using open source data analytics software such as Rapid Miner. These analytical tools help extract pertinent information from massive volumes of data. It is seen that the main benefits of adopting RFID technology in healthcare include tracking medicines and equipment, upholding patient safety, and security improvement. The real-time tracking features of RFID allows for enhanced supply chain management. By productively using big data, healthcare organizations can gain significant benefits. Big data analytics in healthcare enables improved decisions by extracting insights from large volumes of data.

Keywords: RFID, data mining, data analysis, healthcare

Procedia PDF Downloads 232
26539 Production of Neutrons by High Intensity Picosecond Laser Interacting with Thick Solid Target at XingGuangIII

Authors: Xi Yuan, Xuebin Zhu, Bojun Li

Abstract:

This work describes the experiment to produce high-intensity pulsed neutron beams on XingGuangIII laser facility. The high-intensity laser is utilized to drive protons and deuterons, which hit a thick solid target to produce neutrons. The pulse duration of the laser used in the experiment is about 0.8 ps, and the laser energy is around 100 J. Protons and deuterons are accelerated from a 10-μm-thick deuterated polyethylene (CD₂) foil and diagnosed by a Thomson parabola ion-spectrometer. The energy spectrum of neutrons generated via ⁷Li(d,n) and ⁷Li(p,n) reaction when proton and deuteron beams hit a 5-mm-thick LiF target is measured by a scintillator-based time-of-flight spectrometer. Results from the neuron measurements show that the maximum neutron energy is about 12.5 MeV and the neutron yield is up to 2×10⁹/pulse. The high-intensity pulsed neutron beams demonstrated in this work can provide a valuable neutron source for material research, fast neutron induced fission research, and so on.

Keywords: picosecond laser driven, fast neutron, time-of-flight spectrometry, XinggungIII

Procedia PDF Downloads 163
26538 Digraph Generated by Idempotents in Certain Finite Semigroup of Mappings

Authors: Hassan Ibrahim, Moses Anayo Mbah

Abstract:

The idempotent generators in a finite full transformation and the digraph of full transformation semi group have been an interesting area of research in group theory. In this work, it characterized some idempotent elements in full transformation semigroup T_n by counting the strongly connected and disconnected digraphs, and also the weakly and unilaterally connected digraphs. The order for those digraphs was further obtained in T_n.

Keywords: digraphs, indempotent, semigroup, transformation

Procedia PDF Downloads 36
26537 A General Framework to Successfully Operate the Digital Transformation Process in the Post-COVID Era

Authors: Driss Kettani

Abstract:

In this paper, we shed light on “Digital Divide 2.0,” which we see as COVID-19’s Version of the Digital Divide! We believe that “Fighting” against Digital Divide 2.0 necessitates for a Country to be seriously advanced in the Global Digital Transformation that is, naturally, a complex, delicate, costly and long-term Process. We build an argument supporting our assumption and, from there, we present the foundations of a computational framework to guide and streamline Digital Transformation at all levels.

Keywords: digital divide 2.0, digital transformation, ICTs for development, computational outcomes assessment

Procedia PDF Downloads 176
26536 Anatomy Study of Seeds of Calligonium comosum in Vitro

Authors: Abobkar Saad, Qasmia Abdalla, Fatma Emhemed

Abstract:

Eighty-four of Calligonum comosum were cultured on Murashige and Skoog medium on every combination supplemented with different concentrations of IAA, BA, Zeatin, and GA3. When 84 seeds were inoculated on MS free hormones, different types of cells contain dense cytoplasm were observed ater 23 days and long thick wall cells arranged in layers. In case of using MS +BA(0.5mg/L), different types and shapes of parenchyma cells contain dense cytoplasm were detected after four weeks. In the case of using MS + BA(1mg/L) + GA3 (3mg/L), thick wall parenchyma cells contain dense cytoplasm after 19 days, but many layers of parenchyma cells contain dense cytoplasm after 28 days. When MS +kin(0.5mg/L) a thick cells wall as Sclereids were observed after 29 days. No any response were observed on Zeatin (0.5, 1 mg/L).

Keywords: anatomy, Calligonum comosum, in vitro, aeeds

Procedia PDF Downloads 417
26535 Simulation Study of Multiple-Thick Gas Electron Multiplier-Based Microdosimeters for Fast Neutron Measurements

Authors: Amir Moslehi, Gholamreza Raisali

Abstract:

Microdosimetric detectors based on multiple-thick gas electron multiplier (multiple-THGEM) configurations are being used in various fields of radiation protection and dosimetry. In the present work, microdosimetric response of these detectors to fast neutrons has been investigated by Monte Carlo method. Three similar microdosimeters made of A-150 and rexolite as the wall materials are designed; the first based on single-THGEM, the second based on double-THGEM and the third is based on triple-THGEM. Sensitive volume of the three microdosimeters is a right cylinder of 5 mm height and diameter which is filled with the propane-based tissue-equivalent (TE) gas. The TE gas with 0.11 atm pressure at the room temperature simulates 1 µm of tissue. Lineal energy distributions for several neutron energies from 10 keV to 14 MeV including 241Am-Be neutrons are calculated by the Geant4 simulation toolkit. Also, mean quality factor and dose-equivalent value for any neutron energy has been determined by these distributions. Obtained data derived from the three microdosimeters are in agreement. Therefore, we conclude that the multiple-THGEM structures present similar microdosimetric responses to fast neutrons.

Keywords: fast neutrons, geant4, multiple-thick gas electron multiplier, microdosimeter

Procedia PDF Downloads 348
26534 A Visual Analytics Tool for the Structural Health Monitoring of an Aircraft Panel

Authors: F. M. Pisano, M. Ciminello

Abstract:

Aerospace, mechanical, and civil engineering infrastructures can take advantages from damage detection and identification strategies in terms of maintenance cost reduction and operational life improvements, as well for safety scopes. The challenge is to detect so called “barely visible impact damage” (BVID), due to low/medium energy impacts, that can progressively compromise the structure integrity. The occurrence of any local change in material properties, that can degrade the structure performance, is to be monitored using so called Structural Health Monitoring (SHM) systems, in charge of comparing the structure states before and after damage occurs. SHM seeks for any "anomalous" response collected by means of sensor networks and then analyzed using appropriate algorithms. Independently of the specific analysis approach adopted for structural damage detection and localization, textual reports, tables and graphs describing possible outlier coordinates and damage severity are usually provided as artifacts to be elaborated for information extraction about the current health conditions of the structure under investigation. Visual Analytics can support the processing of monitored measurements offering data navigation and exploration tools leveraging the native human capabilities of understanding images faster than texts and tables. Herein, a SHM system enrichment by integration of a Visual Analytics component is investigated. Analytical dashboards have been created by combining worksheets, so that a useful Visual Analytics tool is provided to structural analysts for exploring the structure health conditions examined by a Principal Component Analysis based algorithm.

Keywords: interactive dashboards, optical fibers, structural health monitoring, visual analytics

Procedia PDF Downloads 123
26533 Effect of Enterprise Digital Transformation on Enterprise Growth: Theoretical Logic and Chinese Experience

Authors: Bin Li

Abstract:

In the era of the digital economy, digital transformation has gradually become a strategic choice for enterprise development, but there is a relative lack of systematic research from the perspective of enterprise growth. Based on the sample of Chinese A-share listed companies from 2011 to 2021, this paper constructs A digital transformation index system and an enterprise growth composite index to empirically test the impact of enterprise digital transformation on enterprise growth and its mechanism. The results show that digital transformation can significantly promote corporate growth. The mechanism analysis finds that reducing operating costs, optimizing human capital structure, promoting R&D output and improving digital innovation capability play an important intermediary role in the process of digital transformation promoting corporate growth. At the same time, the level of external digital infrastructure and the strength of organizational resilience play a positive moderating role in the process of corporate digital transformation promoting corporate growth. In addition, while further analyzing the heterogeneity of enterprises, this paper further deepens the analysis of the driving factors and digital technology support of digital transformation, as well as the three dimensions of enterprise growth, thus deepening the research depth of enterprise digital transformation.

Keywords: digital transformation, enterprise growth, digital technology, digital infrastructure, organization resilience, digital innovation

Procedia PDF Downloads 59
26532 Automated Detection of Targets and Retrieve the Corresponding Analytics Using Augmented Reality

Authors: Suvarna Kumar Gogula, Sandhya Devi Gogula, P. Chanakya

Abstract:

Augmented reality is defined as the collection of the digital (or) computer generated information like images, audio, video, 3d models, etc. and overlay them over the real time environment. Augmented reality can be thought as a blend between completely synthetic and completely real. Augmented reality provides scope in a wide range of industries like manufacturing, retail, gaming, advertisement, tourism, etc. and brings out new dimensions in the modern digital world. As it overlays the content, it makes the users enhance the knowledge by providing the content blended with real world. In this application, we integrated augmented reality with data analytics and integrated with cloud so the virtual content will be generated on the basis of the data present in the database and we used marker based augmented reality where every marker will be stored in the database with corresponding unique ID. This application can be used in wide range of industries for different business processes, but in this paper, we mainly focus on the marketing industry which helps the customer in gaining the knowledge about the products in the market which mainly focus on their prices, customer feedback, quality, and other benefits. This application also focuses on providing better market strategy information for marketing managers who obtain the data about the stocks, sales, customer response about the product, etc. In this paper, we also included the reports from the feedback got from different people after the demonstration, and finally, we presented the future scope of Augmented Reality in different business processes by integrating with new technologies like cloud, big data, artificial intelligence, etc.

Keywords: augmented reality, data analytics, catch room, marketing and sales

Procedia PDF Downloads 237
26531 ELD79-LGD2006 Transformation Techniques Implementation and Accuracy Comparison in Tripoli Area, Libya

Authors: Jamal A. Gledan, Othman A. Azzeidani

Abstract:

During the last decade, Libya established a new Geodetic Datum called Libyan Geodetic Datum 2006 (LGD 2006) by using GPS, whereas the ground traversing method was used to establish the last Libyan datum which was called the Europe Libyan Datum 79 (ELD79). The current research paper introduces ELD79 to LGD2006 coordinate transformation technique, the accurate comparison of transformation between multiple regression equations and the three-parameters model (Bursa-Wolf). The results had been obtained show that the overall accuracy of stepwise multi regression equations is better than that can be determined by using Bursa-Wolf transformation model.

Keywords: geodetic datum, horizontal control points, traditional similarity transformation model, unconventional transformation techniques

Procedia PDF Downloads 306
26530 The Role of Business Process Management in Driving Digital Transformation: Insurance Company Case Study

Authors: Dalia Suša Vugec, Ana-Marija Stjepić, Darija Ivandić Vidović

Abstract:

Digital transformation is one of the latest trends on the global market. In order to maintain the competitive advantage and sustainability, increasing number of organizations are conducting digital transformation processes. Those organizations are changing their business processes and creating new business models with the help of digital technologies. In that sense, one should also observe the role of business process management (BPM) and its maturity in driving digital transformation. Therefore, the goal of this paper is to investigate the role of BPM in digital transformation process within one organization. Since experiences from practice show that organizations from financial sector could be observed as leaders in digital transformation, an insurance company has been selected to participate in the study. That company has been selected due to the high level of its BPM maturity and the fact that it has previously been through a digital transformation process. In order to fulfill the goals of the paper, several interviews, as well as questionnaires, have been conducted within the selected company. The results are presented in a form of a case study. Results indicate that digital transformation process within the observed company has been successful, with special focus on the development of digital strategy, BPM and change management. The role of BPM in the digital transformation of the observed company is further discussed in the paper.

Keywords: business process management, case study, Croatia, digital transformation, insurance company

Procedia PDF Downloads 192
26529 Digital Transformation and Environmental Disclosure in Industrial Firms: The Moderating Role of the Top Management Team

Authors: Yongxin Chen, Min Zhang

Abstract:

As industrial enterprises are the primary source of national pollution, environmental information disclosure is a crucial way to demonstrate to stakeholders the work they have done in fulfilling their environmental responsibilities and accepting social supervision. In the era of the digital economy, many companies, actively embracing the opportunities that come with digital transformation, have begun to apply digital technology to information collection and disclosure within the enterprise. However, less is known about the relationship between digital transformation and environmental disclosure. This study investigates how enterprise digital transformation affects environmental disclosure in 643 Chinese industrial companies, according to information processing theory. What is intriguing is that the depth (size) and breadth (diversity) of environmental disclosure linearly increase with the rise in the collection, processing, and analytical capabilities in the digital transformation process. However, the volume of data will grow exponentially, leading to a marginal increase in the economic and environmental costs of utilizing, storing, and managing data. In our empirical findings, linearly increasing benefits and marginal costs create a unique inverted U-shaped relationship between the degree of digital transformation and environmental disclosure in the Chinese industrial sector. Besides, based on the upper echelons theory, we also propose that the top management team with high stability and managerial capabilities will invest more effort and expense into improving environmental disclosure quality, lowering the carbon footprint caused by digital technology, maintaining data security etc. In both these contexts, the increasing marginal cost curves would become steeper, weakening the inverted U-shaped slope between DT and ED.

Keywords: digital transformation, environmental disclosure, the top management team, information processing theory, upper echelon theory

Procedia PDF Downloads 141
26528 Stakeholder Voices in Digital Evolution: Challenges Faced by SMEs in Automotive Supply Chain

Authors: Mohammed Sharaf, Alireza Shokri, Adrian Small, Toby Bridges

Abstract:

This paper investigates digital transformation challenges in SMEs within the automotive supply chain. A case study approach and participant observation revealed significant data management and process optimization barriers, corroborated by a conceptual model. Stakeholder feedback, visualized through a pie chart, emphasized data management and process efficiency as primary concerns. Recommended strategies include implementing advanced data systems, process simplification, and enhancing digital skills. Despite the single-case study limitation, the findings offer actionable insights for SMEs to leverage Industry 4.0 technologies effectively. This research contributes to the strategic roadmap necessary for SMEs to achieve competitive digital transformation.

Keywords: automotive supply chain, digital transformation, industry 4.0

Procedia PDF Downloads 33
26527 Advancing in Cricket Analytics: Novel Approaches for Pitch and Ball Detection Employing OpenCV and YOLOV8

Authors: Pratham Madnur, Prathamkumar Shetty, Sneha Varur, Gouri Parashetti

Abstract:

In order to overcome conventional obstacles, this research paper investigates novel approaches for cricket pitch and ball detection that make use of cutting-edge technologies. The research integrates OpenCV for pitch inspection and modifies the YOLOv8 model for cricket ball detection in order to overcome the shortcomings of manual pitch assessment and traditional ball detection techniques. To ensure flexibility in a range of pitch environments, the pitch detection method leverages OpenCV’s color space transformation, contour extraction, and accurate color range defining features. Regarding ball detection, the YOLOv8 model emphasizes the preservation of minor object details to improve accuracy and is specifically trained to the unique properties of cricket balls. The methods are more reliable because of the careful preparation of the datasets, which include novel ball and pitch information. These cutting-edge methods not only improve cricket analytics but also set the stage for flexible methods in more general sports technology applications.

Keywords: OpenCV, YOLOv8, cricket, custom dataset, computer vision, sports

Procedia PDF Downloads 78
26526 Predictive Analytics for Theory Building

Authors: Ho-Won Jung, Donghun Lee, Hyung-Jin Kim

Abstract:

Predictive analytics (data analysis) uses a subset of measurements (the features, predictor, or independent variable) to predict another measurement (the outcome, target, or dependent variable) on a single person or unit. It applies empirical methods in statistics, operations research, and machine learning to predict the future, or otherwise unknown events or outcome on a single or person or unit, based on patterns in data. Most analyses of metabolic syndrome are not predictive analytics but statistical explanatory studies that build a proposed model (theory building) and then validate metabolic syndrome predictors hypothesized (theory testing). A proposed theoretical model forms with causal hypotheses that specify how and why certain empirical phenomena occur. Predictive analytics and explanatory modeling have their own territories in analysis. However, predictive analytics can perform vital roles in explanatory studies, i.e., scientific activities such as theory building, theory testing, and relevance assessment. In the context, this study is to demonstrate how to use our predictive analytics to support theory building (i.e., hypothesis generation). For the purpose, this study utilized a big data predictive analytics platform TM based on a co-occurrence graph. The co-occurrence graph is depicted with nodes (e.g., items in a basket) and arcs (direct connections between two nodes), where items in a basket are fully connected. A cluster is a collection of fully connected items, where the specific group of items has co-occurred in several rows in a data set. Clusters can be ranked using importance metrics, such as node size (number of items), frequency, surprise (observed frequency vs. expected), among others. The size of a graph can be represented by the numbers of nodes and arcs. Since the size of a co-occurrence graph does not depend directly on the number of observations (transactions), huge amounts of transactions can be represented and processed efficiently. For a demonstration, a total of 13,254 metabolic syndrome training data is plugged into the analytics platform to generate rules (potential hypotheses). Each observation includes 31 predictors, for example, associated with sociodemographic, habits, and activities. Some are intentionally included to get predictive analytics insights on variable selection such as cancer examination, house type, and vaccination. The platform automatically generates plausible hypotheses (rules) without statistical modeling. Then the rules are validated with an external testing dataset including 4,090 observations. Results as a kind of inductive reasoning show potential hypotheses extracted as a set of association rules. Most statistical models generate just one estimated equation. On the other hand, a set of rules (many estimated equations from a statistical perspective) in this study may imply heterogeneity in a population (i.e., different subpopulations with unique features are aggregated). Next step of theory development, i.e., theory testing, statistically tests whether a proposed theoretical model is a plausible explanation of a phenomenon interested in. If hypotheses generated are tested statistically with several thousand observations, most of the variables will become significant as the p-values approach zero. Thus, theory validation needs statistical methods utilizing a part of observations such as bootstrap resampling with an appropriate sample size.

Keywords: explanatory modeling, metabolic syndrome, predictive analytics, theory building

Procedia PDF Downloads 275
26525 Effectiveness of GeoGebra in Developing Conceptual Understanding of Transformation Geometry Case of Grade 11 Students

Authors: Gebreegziabher Hailu Gebrecherkos

Abstract:

This study examines the effectiveness of GeoGebra in developing the conceptual understanding of transformation geometry among Grade 11 students. Utilizing a quasi-experimental design, the research compares the learning outcomes of students who engaged with GeoGebra against those who received traditional instruction. Pre- and post-tests were administered to assess students' grasp of key transformation concepts, including translations, rotations, reflections, and dilations. Additionally, qualitative data were gathered through student interviews and classroom observations to explore their experiences and perceptions of using GeoGebra. Results indicate that students utilizing GeoGebra showed significantly greater improvement in their understanding of transformation geometry concepts. The interactive features of GeoGebra facilitated visualization and exploration, leading to enhanced engagement and deeper conceptual insights. The findings underscore the potential of GeoGebra as a powerful educational tool that not only fosters mathematical understanding but also accommodates diverse learning styles in the classroom. This study contributes valuable insights for educators seeking to improve the teaching and learning of transformation geometry in secondary education.

Keywords: calculus, conceptual understanding, GeoGebra, transformation geometry

Procedia PDF Downloads 19
26524 Delivery Service and Online-and-Offline Purchasing for Collaborative Recommendations on Retail Cross-Channels

Authors: S. H. Liao, J. M. Huang

Abstract:

The delivery service business model is the final link in logistics for both online-and-offline businesses. The online-and-offline business model focuses on the entire customer purchasing process online and offline, placing greater emphasis on the importance of data to optimize overall retail operations. For the retail industry, it is an important task of information and management to strengthen the collection and investigation of consumers' online and offline purchasing data to better understand customers and then recommend products. This study implements two-stage data mining analytics for clustering and association rules analysis to investigate Taiwanese consumers' (n=2,209) preferences for delivery service. This process clarifies online-and-offline purchasing behaviors and preferences to find knowledge profiles/patterns/rules for cross-channel collaborative recommendations. Finally, theoretical and practical implications for methodology and enterprise are presented.

Keywords: delivery service, online-and-offline purchasing, retail cross-channel, collaborative recommendations, data mining analytics

Procedia PDF Downloads 30