Search results for: subsection identification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2956

Search results for: subsection identification

2866 Molecular Diversity of Forensically Relevant Insects from the Cadavers of Lahore

Authors: Sundus Mona, Atif Adnan, Babar Ali, Fareeha Arshad, Allah Rakha

Abstract:

Molecular diversity is the variation in the abundance of species. Forensic entomology is a neglected field in Pakistan. Insects collected from the crime scene should be handled by forensic entomologists who are currently virtually non-existent in Pakistan. Correct identification of insect specimen along with knowledge of their biodiversity can aid in solving many problems related to complicated forensic cases. Inadequate morphological identification and insufficient thermal biological studies limit the entomological utility in Forensic Medicine. Recently molecular identification of entomological evidence has gained attention globally. DNA barcoding is the latest and established method for species identification. Only proper identification can provide a precise estimation of postmortem intervals. Arthropods are known to be the first tourists scavenging on decomposing dead matter. The objective of the proposed study was to identify species by molecular techniques and analyze their phylogenetic importance with barcoded necrophagous insect species of early succession on human cadavers. Based upon this identification, the study outcomes will be the utilization of established DNA bar codes to identify carrion feeding insect species for concordant estimation of post mortem interval. A molecular identification method involving sequencing of a 658bp ‘barcode’ fragment of the mitochondrial cytochrome oxidase subunit 1 (CO1) gene from collected specimens of unknown dipteral species from cadavers of Lahore was evaluated. Nucleotide sequence divergences were calculated using MEGA 7 and Arlequin, and a neighbor-joining phylogenetic tree was generated. Three species were identified, Chrysomya megacephala, Chrysomya saffranea, and Chrysomya rufifacies with low genetic diversity. The fixation index was 0.83992 that suggests a need for further studies to identify and classify forensically relevant insects in Pakistan. There is an exigency demand for further research especially when immature forms of arthropods are recovered from the crime scene.

Keywords: molecular diversity, DNA barcoding, species identification, forensically relevant

Procedia PDF Downloads 150
2865 Identity Verification Using k-NN Classifiers and Autistic Genetic Data

Authors: Fuad M. Alkoot

Abstract:

DNA data have been used in forensics for decades. However, current research looks at using the DNA as a biometric identity verification modality. The goal is to improve the speed of identification. We aim at using gene data that was initially used for autism detection to find if and how accurate is this data for identification applications. Mainly our goal is to find if our data preprocessing technique yields data useful as a biometric identification tool. We experiment with using the nearest neighbor classifier to identify subjects. Results show that optimal classification rate is achieved when the test set is corrupted by normally distributed noise with zero mean and standard deviation of 1. The classification rate is close to optimal at higher noise standard deviation reaching 3. This shows that the data can be used for identity verification with high accuracy using a simple classifier such as the k-nearest neighbor (k-NN). 

Keywords: biometrics, genetic data, identity verification, k nearest neighbor

Procedia PDF Downloads 258
2864 Efficient Neural and Fuzzy Models for the Identification of Dynamical Systems

Authors: Aouiche Abdelaziz, Soudani Mouhamed Salah, Aouiche El Moundhe

Abstract:

The present paper addresses the utilization of Artificial Neural Networks (ANNs) and Fuzzy Inference Systems (FISs) for the identification and control of dynamical systems with some degree of uncertainty. Because ANNs and FISs have an inherent ability to approximate functions and to adapt to changes in input and parameters, they can be used to control systems too complex for linear controllers. In this work, we show how ANNs and FISs can be put in order to form nets that can learn from external data. In sequence, it is presented structures of inputs that can be used along with ANNs and FISs to model non-linear systems. Four systems were used to test the identification and control of the structures proposed. The results show the ANNs and FISs (Back Propagation Algorithm) used were efficient in modeling and controlling the non-linear plants.

Keywords: non-linear systems, fuzzy set Models, neural network, control law

Procedia PDF Downloads 213
2863 Identification of Vehicle Dynamic Parameters by Using Optimized Exciting Trajectory on 3- DOF Parallel Manipulator

Authors: Di Yao, Gunther Prokop, Kay Buttner

Abstract:

Dynamic parameters, including the center of gravity, mass and inertia moments of vehicle, play an essential role in vehicle simulation, collision test and real-time control of vehicle active systems. To identify the important vehicle dynamic parameters, a systematic parameter identification procedure is studied in this work. In the first step of the procedure, a conceptual parallel manipulator (virtual test rig), which possesses three rotational degrees-of-freedom, is firstly proposed. To realize kinematic characteristics of the conceptual parallel manipulator, the kinematic analysis consists of inverse kinematic and singularity architecture is carried out. Based on the Euler's rotation equations for rigid body dynamics, the dynamic model of parallel manipulator and derivation of measurement matrix for parameter identification are presented subsequently. In order to reduce the sensitivity of parameter identification to measurement noise and other unexpected disturbances, a parameter optimization process of searching for optimal exciting trajectory of parallel manipulator is conducted in the following section. For this purpose, the 321-Euler-angles defined by parameterized finite-Fourier-series are primarily used to describe the general exciting trajectory of parallel manipulator. To minimize the condition number of measurement matrix for achieving better parameter identification accuracy, the unknown coefficients of parameterized finite-Fourier-series are estimated by employing an iterative algorithm based on MATLAB®. Meanwhile, the iterative algorithm will ensure the parallel manipulator still keeps in an achievable working status during the execution of optimal exciting trajectory. It is showed that the proposed procedure and methods in this work can effectively identify the vehicle dynamic parameters and could be an important application of parallel manipulator in the fields of parameter identification and test rig development.

Keywords: parameter identification, parallel manipulator, singularity architecture, dynamic modelling, exciting trajectory

Procedia PDF Downloads 267
2862 Smart Unmanned Parking System Based on Radio Frequency Identification Technology

Authors: Yu Qin

Abstract:

In order to tackle the ever-growing problem of the lack of parking space, this paper presents the design and implementation of a smart unmanned parking system that is based on RFID (radio frequency identification) technology and Wireless communication technology. This system uses RFID technology to achieve the identification function (transmitted by 2.4 G wireless module) and is equipped with an STM32L053 micro controller as the main control chip of the smart vehicle. This chip can accomplish automatic parking (in/out), charging and other functions. On this basis, it can also help users easily query the information that is stored in the database through the Internet. Experimental tests have shown that the system has the features of low power consumption and stable operation, among others. It can effectively improve the level of automation control of the parking lot management system and has enormous application prospects.

Keywords: RFID, embedded system, unmanned, parking management

Procedia PDF Downloads 334
2861 Comparison of Deep Convolutional Neural Networks Models for Plant Disease Identification

Authors: Megha Gupta, Nupur Prakash

Abstract:

Identification of plant diseases has been performed using machine learning and deep learning models on the datasets containing images of healthy and diseased plant leaves. The current study carries out an evaluation of some of the deep learning models based on convolutional neural network (CNN) architectures for identification of plant diseases. For this purpose, the publicly available New Plant Diseases Dataset, an augmented version of PlantVillage dataset, available on Kaggle platform, containing 87,900 images has been used. The dataset contained images of 26 diseases of 14 different plants and images of 12 healthy plants. The CNN models selected for the study presented in this paper are AlexNet, ZFNet, VGGNet (four models), GoogLeNet, and ResNet (three models). The selected models are trained using PyTorch, an open-source machine learning library, on Google Colaboratory. A comparative study has been carried out to analyze the high degree of accuracy achieved using these models. The highest test accuracy and F1-score of 99.59% and 0.996, respectively, were achieved by using GoogLeNet with Mini-batch momentum based gradient descent learning algorithm.

Keywords: comparative analysis, convolutional neural networks, deep learning, plant disease identification

Procedia PDF Downloads 200
2860 The Cases Studies of Eyewitness Misidentifications during Criminal Investigation in Taiwan

Authors: Chih Hung Shih

Abstract:

Eyewitness identification is one of the efficient information to identify suspects during criminal investigation. However eyewitness identification is improved frequently, inaccurate and plays vital roles in wrongful convictions. Most eyewitness misidentifications are made during police criminal investigation stage and then accepted by juries. Four failure investigation case studies in Taiwan are conduct to demonstrate how misidentifications are caused during the police investigation context. The result shows that there are several common grounds among these cases: (1) investigators lacked for knowledge about eyewitness memory so that they couldn’t evaluate the validity of the eyewitnesses’ accounts and identifications, (2) eyewitnesses were always asked to filter out several suspects during the investigation, and received investigation information which contaminated the eyewitnesses’ memory, (3) one to one live individual identifications were made in most of cases, (4) eyewitness identifications were always used to support the hypotheses of investigators, and exaggerated theirs powers when conform with the investigation lines, (5) the eyewitnesses’ confidence didn’t t reflect the validity of their identifications , but always influence the investigators’ beliefs for the identifications, (6) the investigators overestimated the power of the eyewitness identifications and ignore the inconsistency with other evidence. Recommendations have been proposed for future academic research and police practice of eyewitness identification in Taiwan.

Keywords: criminal investigation, eyewitness identification, investigative bias, investigative failures

Procedia PDF Downloads 246
2859 Automatic Product Identification Based on Deep-Learning Theory in an Assembly Line

Authors: Fidel Lòpez Saca, Carlos Avilés-Cruz, Miguel Magos-Rivera, José Antonio Lara-Chávez

Abstract:

Automated object recognition and identification systems are widely used throughout the world, particularly in assembly lines, where they perform quality control and automatic part selection tasks. This article presents the design and implementation of an object recognition system in an assembly line. The proposed shapes-color recognition system is based on deep learning theory in a specially designed convolutional network architecture. The used methodology involve stages such as: image capturing, color filtering, location of object mass centers, horizontal and vertical object boundaries, and object clipping. Once the objects are cut out, they are sent to a convolutional neural network, which automatically identifies the type of figure. The identification system works in real-time. The implementation was done on a Raspberry Pi 3 system and on a Jetson-Nano device. The proposal is used in an assembly course of bachelor’s degree in industrial engineering. The results presented include studying the efficiency of the recognition and processing time.

Keywords: deep-learning, image classification, image identification, industrial engineering.

Procedia PDF Downloads 162
2858 Polymorphism of HMW-GS in Collection of Wheat Genotypes

Authors: M. Chňapek, M. Tomka, R. Peroutková, Z. Gálová

Abstract:

Processes of plant breeding, testing and licensing of new varieties, patent protection in seed production, relations in trade and protection of copyright are dependent on identification, differentiation and characterization of plant genotypes. Therefore, we focused our research on utilization of wheat storage proteins as genetic markers suitable not only for differentiation of individual genotypes, but also for identification and characterization of their considerable properties. We analyzed a collection of 102 genotypes of bread wheat (Triticum aestivum L.), 41 genotypes of spelt wheat (Triticum spelta L.), and 35 genotypes of durum wheat (Triticum durum Desf.), in this study. Our results show, that genotypes of bread wheat and durum wheat were homogenous and single line, but spelt wheat genotypes were heterogenous. We observed variability of HMW-GS composition according to environmental factors and level of breeding and predict technological quality on the basis of Glu-score calculation.

Keywords: genotype identification, HMW-GS, wheat quality, polymorphism

Procedia PDF Downloads 465
2857 Parameters Estimation of Multidimensional Possibility Distributions

Authors: Sergey Sorokin, Irina Sorokina, Alexander Yazenin

Abstract:

We present a solution to the Maxmin u/E parameters estimation problem of possibility distributions in m-dimensional case. Our method is based on geometrical approach, where minimal area enclosing ellipsoid is constructed around the sample. Also we demonstrate that one can improve results of well-known algorithms in fuzzy model identification task using Maxmin u/E parameters estimation.

Keywords: possibility distribution, parameters estimation, Maxmin u\E estimator, fuzzy model identification

Procedia PDF Downloads 470
2856 Evaluation of DNA Microarray System in the Identification of Microorganisms Isolated from Blood

Authors: Merih Şimşek, Recep Keşli, Özgül Çetinkaya, Cengiz Demir, Adem Aslan

Abstract:

Bacteremia is a clinical entity with high morbidity and mortality rates when immediate diagnose, or treatment cannot be achieved. Microorganisms which can cause sepsis or bacteremia are easily isolated from blood cultures. Fifty-five positive blood cultures were included in this study. Microorganisms in 55 blood cultures were isolated by conventional microbiological methods; afterwards, microorganisms were defined in terms of the phenotypic aspects by the Vitek-2 system. The same microorganisms in all blood culture samples were defined in terms of genotypic aspects again by Multiplex-PCR DNA Low-Density Microarray System. At the end of the identification process, the DNA microarray system’s success in identification was evaluated based on the Vitek-2 system. The Vitek-2 system and DNA Microarray system were able to identify the same microorganisms in 53 samples; on the other hand, different microorganisms were identified in the 2 blood cultures by DNA Microarray system. The microorganisms identified by Vitek-2 system were found to be identical to 96.4 % of microorganisms identified by DNA Microarrays system. In addition to bacteria identified by Vitek-2, the presence of a second bacterium has been detected in 5 blood cultures by the DNA Microarray system. It was identified 18 of 55 positive blood culture as E.coli strains with both Vitek 2 and DNA microarray systems. The same identification numbers were found 6 and 8 for Acinetobacter baumanii, 10 and 10 for K.pneumoniae, 5 and 5 for S.aureus, 7 and 11 for Enterococcus spp, 5 and 5 for P.aeruginosa, 2 and 2 for C.albicans respectively. According to these results, DNA Microarray system requires both a technical device and experienced staff support; besides, it requires more expensive kits than Vitek-2. However, this method should be used in conjunction with conventional microbiological methods. Thus, large microbiology laboratories will produce faster, more sensitive and more successful results in the identification of cultured microorganisms.

Keywords: microarray, Vitek-2, blood culture, bacteremia

Procedia PDF Downloads 352
2855 Comparison of Different Methods of Microorganism's Identification from a Copper Mining in Pará, Brazil

Authors: Louise H. Gracioso, Marcela P.G. Baltazar, Ingrid R. Avanzi, Bruno Karolski, Luciana J. Gimenes, Claudio O. Nascimento, Elen A. Perpetuo

Abstract:

Introduction: Higher copper concentrations promote a selection pressure on organisms such as plants, fungi and bacteria, which allows surviving only the resistant organisms to the contaminated site. This selective pressure keeps only the organisms most resistant to a specific condition and subsequently increases their bioremediation potential. Despite the bacteria importance for biosphere maintenance, it is estimated that only a small fraction living microbial species has been described and characterized. Due to the molecular biology development, tools based on analysis 16S ribosomal RNA or another specific gene are making a new scenario for the characterization studies and identification of microorganisms in the environment. News identification of microorganisms methods have also emerged like Biotyper (MALDI / TOF), this method mass spectrometry is subject to the recognition of spectroscopic patterns of conserved and features proteins for different microbial species. In view of this, this study aimed to isolate bacteria resistant to copper present in a Copper Processing Area (Sossego Mine, Canaan, PA) and identifies them in two different methods: Recent (spectrometry mass) and conventional. This work aimed to use them for a future bioremediation of this Mining. Material and Methods: Samples were collected at fifteen different sites of five periods of times. Microorganisms were isolated from mining wastes by culture enrichment technique; this procedure was repeated 4 times. The isolates were inoculated into MJS medium containing different concentrations of chloride copper (1mM, 2.5mM, 5mM, 7.5mM and 10 mM) and incubated in plates for 72 h at 28 ºC. These isolates were subjected to mass spectrometry identification methods (Biotyper – MALDI/TOF) and 16S gene sequencing. Results: A total of 105 strains were isolated in this area, bacterial identification by mass spectrometry method (MALDI/TOF) achieved 74% agreement with the conventional identification method (16S), 31% have been unsuccessful in MALDI-TOF and 2% did not obtain identification sequence the 16S. These results show that Biotyper can be a very useful tool in the identification of bacteria isolated from environmental samples, since it has a better value for money (cheap and simple sample preparation and MALDI plates are reusable). Furthermore, this technique is more rentable because it saves time and has a high performance (the mass spectra are compared to the database and it takes less than 2 minutes per sample).

Keywords: copper mining area, bioremediation, microorganisms, identification, MALDI/TOF, RNA 16S

Procedia PDF Downloads 378
2854 Damage Identification Using Experimental Modal Analysis

Authors: Niladri Sekhar Barma, Satish Dhandole

Abstract:

Damage identification in the context of safety, nowadays, has become a fundamental research interest area in the field of mechanical, civil, and aerospace engineering structures. The following research is aimed to identify damage in a mechanical beam structure and quantify the severity or extent of damage in terms of loss of stiffness, and obtain an updated analytical Finite Element (FE) model. An FE model is used for analysis, and the location of damage for single and multiple damage cases is identified numerically using the modal strain energy method and mode shape curvature method. Experimental data has been acquired with the help of an accelerometer. Fast Fourier Transform (FFT) algorithm is applied to the measured signal, and subsequently, post-processing is done in MEscopeVes software. The two sets of data, the numerical FE model and experimental results, are compared to locate the damage accurately. The extent of the damage is identified via modal frequencies using a mixed numerical-experimental technique. Mode shape comparison is performed by Modal Assurance Criteria (MAC). The analytical FE model is adjusted by the direct method of model updating. The same study has been extended to some real-life structures such as plate and GARTEUR structures.

Keywords: damage identification, damage quantification, damage detection using modal analysis, structural damage identification

Procedia PDF Downloads 117
2853 Evaluation of Sensor Pattern Noise Estimators for Source Camera Identification

Authors: Benjamin Anderson-Sackaney, Amr Abdel-Dayem

Abstract:

This paper presents a comprehensive survey of recent source camera identification (SCI) systems. Then, the performance of various sensor pattern noise (SPN) estimators was experimentally assessed, under common photo response non-uniformity (PRNU) frameworks. The experiments used 1350 natural and 900 flat-field images, captured by 18 individual cameras. 12 different experiments, grouped into three sets, were conducted. The results were analyzed using the receiver operator characteristic (ROC) curves. The experimental results demonstrated that combining the basic SPN estimator with a wavelet-based filtering scheme provides promising results. However, the phase SPN estimator fits better with both patch-based (BM3D) and anisotropic diffusion (AD) filtering schemes.

Keywords: sensor pattern noise, source camera identification, photo response non-uniformity, anisotropic diffusion, peak to correlation energy ratio

Procedia PDF Downloads 442
2852 Heart Failure Identification and Progression by Classifying Cardiac Patients

Authors: Muhammad Saqlain, Nazar Abbas Saqib, Muazzam A. Khan

Abstract:

Heart Failure (HF) has become the major health problem in our society. The prevalence of HF has increased as the patient’s ages and it is the major cause of the high mortality rate in adults. A successful identification and progression of HF can be helpful to reduce the individual and social burden from this syndrome. In this study, we use a real data set of cardiac patients to propose a classification model for the identification and progression of HF. The data set has divided into three age groups, namely young, adult, and old and then each age group have further classified into four classes according to patient’s current physical condition. Contemporary Data Mining classification algorithms have been applied to each individual class of every age group to identify the HF. Decision Tree (DT) gives the highest accuracy of 90% and outperform all other algorithms. Our model accurately diagnoses different stages of HF for each age group and it can be very useful for the early prediction of HF.

Keywords: decision tree, heart failure, data mining, classification model

Procedia PDF Downloads 402
2851 An Approach to Apply Kernel Density Estimation Tool for Crash Prone Location Identification

Authors: Kazi Md. Shifun Newaz, S. Miaji, Shahnewaz Hazanat-E-Rabbi

Abstract:

In this study, the kernel density estimation tool has been used to identify most crash prone locations in a national highway of Bangladesh. Like other developing countries, in Bangladesh road traffic crashes (RTC) have now become a great social alarm and the situation is deteriorating day by day. Today’s black spot identification process is not based on modern technical tools and most of the cases provide wrong output. In this situation, characteristic analysis and black spot identification by spatial analysis would be an effective and low cost approach in ensuring road safety. The methodology of this study incorporates a framework on the basis of spatial-temporal study to identify most RTC occurrence locations. In this study, a very important and economic corridor like Dhaka to Sylhet highway has been chosen to apply the method. This research proposes that KDE method for identification of Hazardous Road Location (HRL) could be used for all other National highways in Bangladesh and also for other developing countries. Some recommendations have been suggested for policy maker to reduce RTC in Dhaka-Sylhet especially in black spots.

Keywords: hazardous road location (HRL), crash, GIS, kernel density

Procedia PDF Downloads 314
2850 Studying in Private Muslim Schools in Australia: Implications for Identity, Religiosity, and Adjustment

Authors: Hisham Motkal Abu-Rayya, Maram Hussein Abu-Rayya

Abstract:

Education in religious private schools raises questions regarding identity, belonging and adaptation in multicultural Australia. This research project aimed at examined cultural identification styles among Australian adolescent Muslims studying in Muslim schools, adolescents’ religiosity and the interconnections between cultural identification styles, religiosity, and adaptation. Two Muslim high school samples were recruited for the purposes of this study, one from Muslim schools in metropolitan Sydney and one from Muslim schools in metropolitan Melbourne. Participants filled in a survey measuring themes of the current study. Findings revealed that the majority of Australian adolescent Muslims showed a preference for the integration identification style (55.2%); separation was less prevailing (26.9%), followed by assimilation (9.7%) and marginalisation (8.3%). Supporting evidence suggests that the styles of identification were valid representation of the participants’ identification. A series of hierarchical regression analyses revealed that while adolescents’ preference for integration of their cultural and Australian identities was advantageous for a range of their psychological and socio-cultural adaptation measures, marginalisation was consistently the worst. Further hierarchical regression analyses showed that adolescent Muslims’ religiosity was better for a range of their adaptation measures compared to their preference for an integration acculturation style. Theoretical and practical implications of these findings are discussed.

Keywords: adaptation, identity, multiculturalism, religious school education

Procedia PDF Downloads 305
2849 Smartphone Video Source Identification Based on Sensor Pattern Noise

Authors: Raquel Ramos López, Anissa El-Khattabi, Ana Lucila Sandoval Orozco, Luis Javier García Villalba

Abstract:

An increasing number of mobile devices with integrated cameras has meant that most digital video comes from these devices. These digital videos can be made anytime, anywhere and for different purposes. They can also be shared on the Internet in a short period of time and may sometimes contain recordings of illegal acts. The need to reliably trace the origin becomes evident when these videos are used for forensic purposes. This work proposes an algorithm to identify the brand and model of mobile device which generated the video. Its procedure is as follows: after obtaining the relevant video information, a classification algorithm based on sensor noise and Wavelet Transform performs the aforementioned identification process. We also present experimental results that support the validity of the techniques used and show promising results.

Keywords: digital video, forensics analysis, key frame, mobile device, PRNU, sensor noise, source identification

Procedia PDF Downloads 429
2848 Native Language Identification with Cross-Corpus Evaluation Using Social Media Data: ’Reddit’

Authors: Yasmeen Bassas, Sandra Kuebler, Allen Riddell

Abstract:

Native language identification is one of the growing subfields in natural language processing (NLP). The task of native language identification (NLI) is mainly concerned with predicting the native language of an author’s writing in a second language. In this paper, we investigate the performance of two types of features; content-based features vs. content independent features, when they are evaluated on a different corpus (using social media data “Reddit”). In this NLI task, the predefined models are trained on one corpus (TOEFL), and then the trained models are evaluated on different data using an external corpus (Reddit). Three classifiers are used in this task; the baseline, linear SVM, and logistic regression. Results show that content-based features are more accurate and robust than content independent ones when tested within the corpus and across corpus.

Keywords: NLI, NLP, content-based features, content independent features, social media corpus, ML

Procedia PDF Downloads 139
2847 Identification of Nonlinear Systems Using Radial Basis Function Neural Network

Authors: C. Pislaru, A. Shebani

Abstract:

This paper uses the radial basis function neural network (RBFNN) for system identification of nonlinear systems. Five nonlinear systems are used to examine the activity of RBFNN in system modeling of nonlinear systems; the five nonlinear systems are dual tank system, single tank system, DC motor system, and two academic models. The feed forward method is considered in this work for modelling the non-linear dynamic models, where the K-Means clustering algorithm used in this paper to select the centers of radial basis function network, because it is reliable, offers fast convergence and can handle large data sets. The least mean square method is used to adjust the weights to the output layer, and Euclidean distance method used to measure the width of the Gaussian function.

Keywords: system identification, nonlinear systems, neural networks, radial basis function, K-means clustering algorithm

Procedia PDF Downloads 471
2846 An Improved OCR Algorithm on Appearance Recognition of Electronic Components Based on Self-adaptation of Multifont Template

Authors: Zhu-Qing Jia, Tao Lin, Tong Zhou

Abstract:

The recognition method of Optical Character Recognition has been expensively utilized, while it is rare to be employed specifically in recognition of electronic components. This paper suggests a high-effective algorithm on appearance identification of integrated circuit components based on the existing methods of character recognition, and analyze the pros and cons.

Keywords: optical character recognition, fuzzy page identification, mutual correlation matrix, confidence self-adaptation

Procedia PDF Downloads 540
2845 Identification of Stakeholders and Practices of Inclusive Education

Authors: Luis Javier Serrano-Tamayo

Abstract:

This paper focuses on the recent interest in the concept of inclusion from multiple areas of social sciences, but particularly from the academic studies on what do scholars mean when they refer to inclusive education. Therefore, this paper has been based on a three-year systematic review of near two hundred peer-reviewed documents in the last two decades. The results illustrate some of the use, misuse, and abuse of inclusive education as well as shed some light on the identification of the different stakeholders involved in the dynamic concept of inclusive education and their suggested practices.

Keywords: inclusion, inclusive education, inclusive practices, education stakeholders

Procedia PDF Downloads 240
2844 Design of Bacterial Pathogens Identification System Based on Scattering of Laser Beam Light and Classification of Binned Plots

Authors: Mubashir Hussain, Mu Lv, Xiaohan Dong, Zhiyang Li, Bin Liu, Nongyue He

Abstract:

Detection and classification of microbes have a vast range of applications in biomedical engineering especially in detection, characterization, and quantification of bacterial contaminants. For identification of pathogens, different techniques are emerging in the field of biomedical engineering. Latest technology uses light scattering, capable of identifying different pathogens without any need for biochemical processing. Bacterial Pathogens Identification System (BPIS) which uses a laser beam, passes through the sample and light scatters off. An assembly of photodetectors surrounded by the sample at different angles to detect the scattering of light. The algorithm of the system consists of two parts: (a) Library files, and (b) Comparator. Library files contain data of known species of bacterial microbes in the form of binned plots, while comparator compares data of unknown sample with library files. Using collected data of unknown bacterial species, highest voltage values stored in the form of peaks and arranged in 3D histograms to find the frequency of occurrence. Resulting data compared with library files of known bacterial species. If sample data matching with any library file of known bacterial species, sample identified as a matched microbe. An experiment performed to identify three different bacteria particles: Enterococcus faecalis, Pseudomonas aeruginosa, and Escherichia coli. By applying algorithm using library files of given samples, results were compromising. This system is potentially applicable to several biomedical areas, especially those related to cell morphology.

Keywords: microbial identification, laser scattering, peak identification, binned plots classification

Procedia PDF Downloads 150
2843 Tag Impersonation Attack on Ultra-lightweight Radio Frequency Identification Authentication Scheme (ESRAS)

Authors: Reham Al-Zahrani, Noura Aleisa

Abstract:

The proliferation of Radio Frequency Identification (RFID) technology has raised concerns about system security, particularly regarding tag impersonation attacks. Regarding RFID systems, an appropriate authentication protocol must resist active and passive attacks. A tag impersonation occurs when an adversary's tag is used to fool an authenticating reader into believing it is a legitimate tag. This paper analyzed the security of the efficient, secure, and practical ultra-lightweight RFID Authentication Scheme (ESRAS). Then, the paper presents a comprehensive analysis of the Efficient, Secure, and Practical Ultra-Lightweight RFID Authentication Scheme (ESRAS) in the context of radio frequency identification (RFID) systems that employed the Scyther tool to examine the protocol's security against a tag impersonation attack.

Keywords: RFID, impersonation attack, authentication, ultra-lightweight protocols

Procedia PDF Downloads 66
2842 Medicinal and Aromatic Plants of Borcka (Artvin)

Authors: Özgür Emi̇nağaoğlu, Hayal Akyildirim Beğen, Şevval Sali̇oğlu

Abstract:

In this study, the plant used for purification and aromatic purposes by the public in Adagül, Akpınar, Alaca, Ambarlı, Arkaköy, Avcılar, Balcı, Civan, Demirciler, Düzköy, İbrikli, Kale, Kaynarca and Taraklı villages in Borcka (Artvin) district between 2020-2022. The purpose of the study, determining the surgical common and local names, regions, botanical features, used parts of plants, purpose of use, local usage intensive, and giving literature data. The research area is located on the A8 square according to Davis's grid system; its phytogeographic extensions are in the Holarctic regions, and the Euro-Siberian flora settlement is in the Colchic subsection of the Euxine region. In the research area, 71 personal questionnaires were applied. As a result of the surveys, it was determined that 93 plant species belonging to 44 families were used by the local people for purification and aromatic purposes. The families that contain the most taxa in the research area are, respectively, Rosaceae (15 taxa), Astericaeae (9 taxa), Lamiaceae (7 taxa), Crassulaceae (4 taxa). As a result of the survey studies, Plantago major L. is known by almost all participants. The most used plants were Allium scorodoprasum, Helichrysum arenarium, Alnus glutinosa subsp. barbata, Juglans regia, Tilia rubra subsp. caucasica, Picea orientalis, Urtica dioica. These plants are used in the treatment of many diseases. Some of these plants that grow in Borçka are used in different countries for the treatment of the same diseases.

Keywords: artvin, borçka, medicinal, aromatic, plant

Procedia PDF Downloads 71
2841 Evaluation Study of Easily Identification of Tactile Symbol on Body Soap Bottle

Authors: K. Doi, T. Nishimura, H. Fujimoto, Y. Hoshikawa, T. Wada

Abstract:

Japanese industrial standard (JIS) association established one JIS (JIS S 0021) regarding packaging accessible design for people with visual impairments and elderly people in 2000. Recently, tactile symbol on shampoo bottle has been known as one of package accessible design and more effectively used. However, it has been said that people with visual impairment have been not been in trouble with difficulty of identifying body soap bottle between three bottles such as body soap bottle, shampoo bottle, and conditioner bottle. Japanese low vision association asked JIS association to solve this problem. JIS association and Japan cosmetic industry association constituted one review team for solving the problem. The review team asked our research team to make a proposal regarding new tactile symbol on body soap bottle. We conducted user survey and maker survey regarding tactile symbol on body soap bottle with easily identification. Seven test tactile symbol marks were elected in our proposed tactile symbols. In this study, we evaluate easily identification of tactile symbol on body soap bottle. Six visual impaired subjects were participated in our experiment. These subjects were asked to identify body soap bottle between three bottles such as body soap bottle, shampoo bottle, and conditioner bottle. The test tactile symbol on body soap were presented in random order. The test tactile symbols were produced by use of our originally developed 3D raised equipment. From our study, test tactile symbol marks with easily identification were made a short list of our proposed tactile symbols. This knowledge will be helpful in revision of ISO 11156.

Keywords: tactile symbol, easily identification, body soap, people with visual impairments

Procedia PDF Downloads 313
2840 Solving Crimes through DNA Methylation Analysis

Authors: Ajay Kumar Rana

Abstract:

Predicting human behaviour, discerning monozygotic twins or left over remnant tissues/fluids of a single human source remains a big challenge in forensic science. Recent advances in the field of DNA methylations which are broadly chemical hallmarks in response to environmental factors can certainly help to identify and discriminate various single-source DNA samples collected from the crime scenes. In this review, cytosine methylation of DNA has been methodologically discussed with its broad applications in many challenging forensic issues like body fluid identification, race/ethnicity identification, monozygotic twins dilemma, addiction or behavioural prediction, age prediction, or even authenticity of the human DNA. With the advent of next-generation sequencing techniques, blooming of DNA methylation datasets and together with standard molecular protocols, the prospect of investigating and solving the above issues and extracting the exact nature of the truth for reconstructing the crime scene events would be undoubtedly helpful in defending and solving the critical crime cases.

Keywords: DNA methylation, differentially methylated regions, human identification, forensics

Procedia PDF Downloads 322
2839 Genetic Identification of Crop Cultivars Using Barcode System

Authors: Kesavan Markkandan, Ha Young Park, Seung-Il Yoo, Sin-Gi Park, Junhyung Park

Abstract:

For genetic identification of crop cultivars, insertions/deletions (InDel) markers have been preferred currently because they are easy to use, PCR based, co-dominant and relatively abundant. However, new InDels need to be developed for genetic studies of new varieties due to the difference of allele frequencies in InDels among the population groups. These new varieties are evolved with low levels of genetic diversity in specific genome loci with high recombination rate. In this study, we described soybean barcode system approach based on InDel makers, each of which is specific to a variation block (VB), where the genomes split by all assumed recombination sites. Firstly, VBs in crop cultivars were mined for transferability to VB-specific InDel markers. Secondly, putative InDels in the VB regions were identified for the development of barcode system by analyzing particular cultivar’s whole genome data. Thirdly, common VB-specific InDels from all cultivars were selected by gel electrophoresis, which were converted as 2D barcode types according to comparing amplicon polymorphisms in the five cultivars to the reference cultivar. Finally, the polymorphism of the selected markers was assessed with other cultivars, and the barcode system that allows a clear distinction among those cultivars is described. The same approach can be applicable for other commercial crops. Hence, VB-based genetic identification not only minimize the molecular markers but also useful for assessing cultivars and for marker-assisted breeding in other crop species.

Keywords: variation block, polymorphism, InDel marker, genetic identification

Procedia PDF Downloads 380
2838 Clothes Identification Using Inception ResNet V2 and MobileNet V2

Authors: Subodh Chandra Shakya, Badal Shrestha, Suni Thapa, Ashutosh Chauhan, Saugat Adhikari

Abstract:

To tackle our problem of clothes identification, we used different architectures of Convolutional Neural Networks. Among different architectures, the outcome from Inception ResNet V2 and MobileNet V2 seemed promising. On comparison of the metrices, we observed that the Inception ResNet V2 slightly outperforms MobileNet V2 for this purpose. So this paper of ours proposes the cloth identifier using Inception ResNet V2 and also contains the comparison between the outcome of ResNet V2 and MobileNet V2. The document here contains the results and findings of the research that we performed on the DeepFashion Dataset. To improve the dataset, we used different image preprocessing techniques like image shearing, image rotation, and denoising. The whole experiment was conducted with the intention of testing the efficiency of convolutional neural networks on cloth identification so that we could develop a reliable system that is good enough in identifying the clothes worn by the users. The whole system can be integrated with some kind of recommendation system.

Keywords: inception ResNet, convolutional neural net, deep learning, confusion matrix, data augmentation, data preprocessing

Procedia PDF Downloads 188
2837 Experimental Assessment of the Effectiveness of Judicial Instructions and of Expert Testimony in Improving Jurors’ Evaluation of Eyewitness Evidence

Authors: Alena Skalon, Jennifer L. Beaudry

Abstract:

Eyewitness misidentifications can sometimes lead to wrongful convictions of innocent people. This occurs in part because jurors tend to believe confident eyewitnesses even when the identification took place under suggestive conditions. Empirical research demonstrated that jurors are often unaware of the factors that can influence the reliability of eyewitness identification. Most common legal safeguards that are designed to educate jurors about eyewitness evidence are judicial instructions and expert testimony. To date, very few studies assessed the effectiveness of judicial instructions and most of them found that judicial instructions make jurors more skeptical of eyewitness evidence or do not have any effect on jurors’ judgments. Similar results were obtained for expert testimony. However, none of the previous studies focused on the ability of legal safeguards to improve jurors’ assessment of evidence obtained from suggestive identification procedures—this is one of the gaps addressed by this paper. Furthermore, only three studies investigated whether legal safeguards improve the ultimate accuracy of jurors’ judgments—that is, whether after listening to judicial instructions or expert testimony jurors can differentiate between accurate and inaccurate eyewitnesses. This presentation includes two studies. Both studies used genuine eyewitnesses (i.e., eyewitnesses who watched the crime) and manipulated the suggestiveness of identification procedures. The first study manipulated the presence of judicial instructions; the second study manipulated the presence of one of two types of expert testimony: a traditional, verbal expert testimony or expert testimony accompanied by visual aids. All participant watched a video-recording of an identification procedure and of an eyewitness testimony. The results indicated that neither judicial instructions nor expert testimony affected jurors’ judgments. However, consistent with the previous findings, when the identification procedure was non-suggestive, jurors believed accurate eyewitnesses more often than inaccurate eyewitnesses. When the procedure was suggestive, jurors believed accurate and inaccurate eyewitnesses at the same rate. The paper will discuss the implications of these studies and directions for future research.

Keywords: expert testimony, eyewitness evidence, judicial instructions, jurors’ decision making, legal safeguards

Procedia PDF Downloads 179