Search results for: static test pad
10102 Coarse-Grained Molecular Simulations to Estimate Thermophysical Properties of Phase Equilibria
Authors: Hai Hoang, Thanh Xuan Nguyen Thi, Guillaume Galliero
Abstract:
Coarse-Grained (CG) molecular simulations have shown to be an efficient way to estimate thermophysical (static and dynamic) properties of fluids. Several strategies have been developed and reported in the literature for defining CG molecular models. Among them, those based on a top-down strategy (i.e. CG molecular models related to macroscopic observables), despite being heuristic, have increasingly gained attention. This is probably due to its simplicity in implementation and its ability to provide reasonable results for not only simple but also complex systems. Regarding simple Force-Fields associated with these CG molecular models, it has been found that the four parameters Mie chain model is one of the best compromises to describe thermophysical static properties (e.g. phase diagram, saturation pressure). However, parameterization procedures of these Mie-chain GC molecular models given in literature are generally insufficient to simultaneously provide static and dynamic (e.g. viscosity) properties. To deal with such situations, we have extended the corresponding states by using a quantity associated with the liquid viscosity. Results obtained from molecular simulations have shown that our approach is able to yield good estimates for both static and dynamic thermophysical properties for various real non-associating fluids. In addition, we will show that on simple (e.g. phase diagram, saturation pressure) and complex (e.g. thermodynamic response functions, thermodynamic energy potentials) static properties, results of our scheme generally provides improved results compared to existing approaches.Keywords: coarse-grained model, mie potential, molecular simulations, thermophysical properties, phase equilibria
Procedia PDF Downloads 33610101 Assessment of Analytical Equations for the Derivation of Young’s Modulus of Bonded Rubber Materials
Authors: Z. N. Haji, S. O. Oyadiji, H. Samami, O. Farrell
Abstract:
The prediction of the vibration response of rubber products by analytical or numerical method depends mainly on the predefined intrinsic material properties such as Young’s modulus, damping factor and Poisson’s ratio. Such intrinsic properties are determined experimentally by subjecting a bonded rubber sample to compression tests. The compression tests on such a sample yield an apparent Young’s modulus which is greater in magnitude than the intrinsic Young’s modulus of the rubber. As a result, many analytical equations have been developed to determine Young’s modulus from an apparent Young’s modulus of bonded rubber materials. In this work, the applicability of some of these analytical equations is assessed via experimental testing. The assessment is based on testing of vulcanized nitrile butadiene rubber (NBR70) samples using tensile test and compression test methods. The analytical equations are used to determine the intrinsic Young’s modulus from the apparent modulus that is derived from the compression test data of the bonded rubber samples. Then, these Young’s moduli are compared with the actual Young’s modulus that is derived from the tensile test data. The results show significant discrepancy between the Young’s modulus derived using the analytical equations and the actual Young’s modulus.Keywords: bonded rubber, quasi-static test, shape factor, apparent Young’s modulus
Procedia PDF Downloads 17310100 Design of Structure for a Heavy-Duty Mineral Tow Machine by Evaluating the Dynamic and Static Loads
Authors: M. Akhondizadeh, Mohsen Khajoei, Mojtaba Khajoei
Abstract:
The purpose of the present work was the design of a towing machine which was decided to be manufactured by Arman Gohar-e-Sirjan company in the Gol-e-Gohar iron ore complex in Iran. The load analysis has been conducted to determine the static and dynamic loads at the critical conditions. The inertial forces due to the velocity increment and road bump have been considered in load evaluation. The form of loading of the present machine is hauling and/or conveying the mineral machines on the mini ramp. Several stages of these forms of loading, from the initial touch of the tow and carried machine to the final position, have been assessed to determine the critical state. The stress analysis has been performed by the ANSYS software. Several geometries for the main load-carrying elements have been analyzed to have the optimum design by the minimum weight of the structure. Finally, a structure with a total weight of 38 tons has been designed with a static load-carrying capacity of 80 tons by considering the 40 tons additional capacity for dynamic effects. The stress analysis for 120 tons load gives the minimum safety factor of 1.18.Keywords: mechanical design, stress analysis, tow structure, dynamic load, static load
Procedia PDF Downloads 10810099 Advantages of Neural Network Based Air Data Estimation for Unmanned Aerial Vehicles
Authors: Angelo Lerro, Manuela Battipede, Piero Gili, Alberto Brandl
Abstract:
Redundancy requirements for UAV (Unmanned Aerial Vehicle) are hardly faced due to the generally restricted amount of available space and allowable weight for the aircraft systems, limiting their exploitation. Essential equipment as the Air Data, Attitude and Heading Reference Systems (ADAHRS) require several external probes to measure significant data as the Angle of Attack or the Sideslip Angle. Previous research focused on the analysis of a patented technology named Smart-ADAHRS (Smart Air Data, Attitude and Heading Reference System) as an alternative method to obtain reliable and accurate estimates of the aerodynamic angles. This solution is based on an innovative sensor fusion algorithm implementing soft computing techniques and it allows to obtain a simplified inertial and air data system reducing external devices. In fact, only one external source of dynamic and static pressures is needed. This paper focuses on the benefits which would be gained by the implementation of this system in UAV applications. A simplification of the entire ADAHRS architecture will bring to reduce the overall cost together with improved safety performance. Smart-ADAHRS has currently reached Technology Readiness Level (TRL) 6. Real flight tests took place on ultralight aircraft equipped with a suitable Flight Test Instrumentation (FTI). The output of the algorithm using the flight test measurements demonstrates the capability for this fusion algorithm to embed in a single device multiple physical and virtual sensors. Any source of dynamic and static pressure can be integrated with this system gaining a significant improvement in terms of versatility.Keywords: aerodynamic angles, air data system, flight test, neural network, unmanned aerial vehicle, virtual sensor
Procedia PDF Downloads 22110098 Dynamic Environmental Impact Study during the Construction of the French Nuclear Power Plants
Authors: A. Er-Raki, D. Hartmann, J. P. Belaud, S. Negny
Abstract:
This paper has a double purpose: firstly, a literature review of the life cycle analysis (LCA) and secondly a comparison between conventional (static) LCA and multi-level dynamic LCA on the following items: (i) inventories evolution with time (ii) temporal evolution of the databases. The first part of the paper summarizes the state of the art of the static LCA approach. The different static LCA limits have been identified and especially the non-consideration of the spatial and temporal evolution in the inventory, for the characterization factors (FCs) and into the databases. Then a description of the different levels of integration of the notion of temporality in life cycle analysis studies was made. In the second part, the dynamic inventory has been evaluated firstly for a single nuclear plant and secondly for the entire French nuclear power fleet by taking into account the construction durations of all the plants. In addition, the databases have been adapted by integrating the temporal variability of the French energy mix. Several iterations were used to converge towards the real environmental impact of the energy mix. Another adaptation of the databases to take into account the temporal evolution of the market data of the raw material was made. An identification of the energy mix of the time studied was based on an extrapolation of the production reference values of each means of production. An application to the construction of the French nuclear power plants from 1971 to 2000 has been performed, in which a dynamic inventory of raw material has been evaluated. Then the impacts were characterized by the ILCD 2011 characterization method. In order to compare with a purely static approach, a static impact assessment was made with the V 3.4 Ecoinvent data sheets without adaptation and a static inventory considering that all the power stations would have been built at the same time. Finally, a comparison between static and dynamic LCA approaches was set up to determine the gap between them for each of the two levels of integration. The results were analyzed to identify the contribution of the evolving nuclear power fleet construction to the total environmental impacts of the French energy mix during the same period. An equivalent strategy using a dynamic approach will further be applied to identify the environmental impacts that different scenarios of the energy transition could bring, allowing to choose the best energy mix from an environmental viewpoint.Keywords: LCA, static, dynamic, inventory, construction, nuclear energy, energy mix, energy transition
Procedia PDF Downloads 10510097 Welfare Dynamics and Food Prices' Changes: Evidence from Landholding Groups in Rural Pakistan
Authors: Lubna Naz, Munir Ahmad, G. M. Arif
Abstract:
This study analyzes static and dynamic welfare impacts of food price changes for various landholding groups in Pakistan. The study uses three classifications of land ownership, landless, small landowners and large landowners, for analysis. The study uses Panel Survey, Pakistan Rural Household Survey (PRHS) of Pakistan Institute of Development Economics Islamabad, of rural households from two largest provinces (Sindh and Punjab) of Pakistan. The study uses all three waves (2001, 2004 and 2010) of PRHS. This research work makes three important contributions in literature. First, this study uses Quadratic Almost Ideal Demand System (QUAIDS) to estimate demand functions for eight food groups-cereals, meat, milk and milk products, vegetables, cooking oil, pulses and other food. The study estimates food demand functions with Nonlinear Seemingly Unrelated (NLSUR), and employs Lagrange Multiplier and test on the coefficient of squared expenditure term to determine inclusion of squared expenditure term. Test results support the inclusion of squared expenditure term in the food demand model for each of landholding groups (landless, small landowners and large landowners). This study tests for endogeneity and uses control function for its correction. The problem of observed zero expenditure is dealt with a two-step procedure. Second, it creates low price and high price periods, based on literature review. It uses elasticity coefficients from QUAIDS to analyze static and dynamic welfare effects (first and second order Tylor approximation of expenditure function is used) of food price changes across periods. The study estimates compensation variation (CV), money metric loss from food price changes, for landless, small and large landowners. Third, this study compares the findings on welfare implications of food price changes based on QUAIDS with the earlier research in Pakistan, which used other specification of the demand system. The findings indicate that dynamic welfare impacts of food price changes are lower as compared to static welfare impacts for all landholding groups. The static and dynamic welfare impacts of food price changes are highest for landless. The study suggests that government should extend social security nets to landless poor and categorically to vulnerable landless (without livestock) to redress the short-term impact of food price increase. In addition, the government should stabilize food prices and particularly cereal prices in the long- run.Keywords: QUAIDS, Lagrange multiplier, NLSUR, and Tylor approximation
Procedia PDF Downloads 36410096 In-Plane Shear Tests of Prefabricated Masonry Panel System with Two-Component Polyurethane Adhesive
Authors: Ekkehard Fehling, Paul Capewell
Abstract:
In recent years, the importance of masonry glued by polyurethane adhesive has increased. In 2021, the Institute of Structural Engineering of the University of Kassel was commissioned to carry out quasi-static in-plane shear tests on prefabricated brick masonry panel systems with 2K PUR adhesive in order to investigate the load-bearing behavior during earthquakes. In addition to the usual measurement of deformations using displacement transducers, all tests were documented using an optical measuring system (“GOM”), which was used to determine the surface strains and deformations of the test walls. To compare the results with conventional mortar walls, additional reference tests were carried out on test specimens with thin-bed mortar joints. This article summarizes the results of the test program and provides a comparison between the load-bearing behavior of masonry bonded with polyurethane adhesive and thin bed mortar in order to enable realistic non-linear modeling.Keywords: masonry, shear tests, in-plane, polyurethane adhesive
Procedia PDF Downloads 7210095 Studying the Effectiveness of Using Narrative Animation on Students’ Understanding of Complex Scientific Concepts
Authors: Atoum Abdullah
Abstract:
The purpose of this research is to determine the extent to which computer animation and narration affect students’ understanding of complex scientific concepts and improve their exam performance, this is compared to traditional lectures that include PowerPoints with texts and static images. A mixed-method design in data collection was used, including quantitative and qualitative data. Quantitative data was collected using a pre and post-test method and a close-ended questionnaire. Qualitative data was collected through an open-ended questionnaire. A pre and posttest strategy was used to measure the level of students’ understanding with and without the use of animation. The test included multiple-choice questions to test factual knowledge, open-ended questions to test conceptual knowledge, and to label the diagram questions to test application knowledge. The results showed that students on average, performed significantly higher on the posttest as compared to the pretest on all areas of acquired knowledge. However, the increase in the posttest score with respect to the acquisition of conceptual and application knowledge was higher compared to the increase in the posttest score with respect to the acquisition of factual knowledge. This result demonstrates that animation is more beneficial when acquiring deeper, conceptual, and cognitive knowledge than when only factual knowledge is acquired.Keywords: animation, narration, science, teaching
Procedia PDF Downloads 17010094 Behavior of Reinforced Soil by Polypropylene Fibers
Authors: M. Kamal Elbokl
Abstract:
The beneficial effects of reinforcing the subgrade soil in pavement system with randomly distributed polypropylene fibers were investigated. For this issue, two types of soils and one type of fiber were selected. Proctor, CBR and unconfined compression tests were conducted on unreinforced samples as well as reinforced ones at different concentrations and aspect ratio of fibers. OMC, CBR and modulus of elasticity were investigated and thereby, the optimum value of aspect ratio and fiber content were determined. The static and repeated triaxial tests were also conducted to study the behaviour of fiber reinforced soils under both static and repeated loading. The results indicated that CBR values of reinforced sand and clay were 3.1 and 4.2 times of their unreinforced values respectively. The modulus of elasticity of fiber reinforced soils has increased by 100% for silty sandy soil and 60.20% for silty clay soil due to fiber reinforcement. The reinforced soils exhibited higher failure stresses in the static triaxial tests than the unreinforced ones due to the apparent bond developed between soil particle and the fiber. Fiber reinforcement of subgrade soils can play an important role in control the rut formation in the pavement system.Keywords: polypropylene fibers, CBR, static triaxial, cyclic triaxial, resilient strain, permanent strain
Procedia PDF Downloads 62310093 Experimental Options for the Role of Dynamic Torsion in General Relativity
Authors: Ivan Ravlich, Ivan Linscott, Sigrid Close
Abstract:
The experimental search for spin coupling in General Relativity via torsion has been inconclusive. In this work, further experimental avenues to test dynamic torsion are proposed and evaluated. In the extended theory, by relaxing the torsion free condition on the metric connection, general relativity is reformulated to relate the spin density of particles to a new quantity, the torsion tensor. In torsion theories, the spin tensor and torsion tensor are related in much the same way as the stress-energy tensor is related to the metric connection. Similarly, as the metric is the field associated with the metric connection, fields can be associated with the torsion tensor resulting in a field that is either propagating or static. Experimental searches for static torsion have thus far been inconclusive, and currently, there have been no experimental tests for propagating torsion. Experimental tests of propagating theories of torsion are proposed utilizing various spin densities of matter, such as interfaces in superconducting materials and plasmas. The experimental feasibility and observable bounds are estimated, and the most viable candidates are selected to pursue in detail in a future work.Keywords: general relativity, gravitation, propagating torsion, spin density
Procedia PDF Downloads 22910092 Enhancing Single Channel Minimum Quantity Lubrication through Bypass Controlled Design for Deep Hole Drilling with Small Diameter Tool
Authors: Yongrong Li, Ralf Domroes
Abstract:
Due to significant energy savings, enablement of higher machining speed as well as environmentally friendly features, Minimum Quantity Lubrication (MQL) has been used for many machining processes efficiently. However, in the deep hole drilling field (small tool diameter D < 5 mm) and long tool (length L > 25xD) it is always a bottle neck for a single channel MQL system. The single channel MQL, based on the Venturi principle, faces a lack of enough oil quantity caused by dropped pressure difference during the deep hole drilling process. In this paper, a system concept based on a bypass design has explored its possibility to dynamically reach the required pressure difference between the air inlet and the inside of aerosol generator, so that the deep hole drilling demanded volume of oil can be generated and delivered to tool tips. The system concept has been investigated in static and dynamic laboratory testing. In the static test, the oil volume with and without bypass control were measured. This shows an oil quantity increasing potential up to 1000%. A spray pattern test has demonstrated the differences of aerosol particle size, aerosol distribution and reaction time between single channel and bypass controlled single channel MQL systems. A dynamic trial machining test of deep hole drilling (drill tool D=4.5mm, L= 40xD) has been carried out with the proposed system on a difficult machining material AlSi7Mg. The tool wear along a 100 meter drilling was tracked and analyzed. The result shows that the single channel MQL with a bypass control can overcome the limitation and enhance deep hole drilling with a small tool. The optimized combination of inlet air pressure and bypass control results in a high quality oil delivery to tool tips with a uniform and continuous aerosol flow.Keywords: deep hole drilling, green production, Minimum Quantity Lubrication (MQL), near dry machining
Procedia PDF Downloads 20510091 Non-Linear Static Pushover Analysis of 15 Storied Reinforced Concrete Building Structure with Shear Wall
Authors: Hamid Nikzad, Shinta Yoshitomi
Abstract:
In this paper, nonlinear static pushover analysis is performed on 15 storied RC building structure with a shear wall to evaluate the seismic performance of the building. Section sizes of the members are obtained based on structural optimization method utilizing MATLAB frame optimizer, then the structure is simulated and designed in ETABS program conforming ACI 318-14 design code. The pushover curve has been generated by pushing the top node of the structure to the limited target displacement. Members failure due to the formation of plastic hinges, considering shear wall-frame structure was observed and the result of this study is presented based on current regulation of FEMA356, ASCE7-10, and ACI 318-14 design criteriaKeywords: structural optimization, linear static analysis, ETABS, MATLAB, RC moment frame, RC shear wall structures
Procedia PDF Downloads 15810090 Investigation on an Innovative Way to Connect RC Beam and Steel Column
Authors: Ahmed H. El-Masry, Mohamed A. Dabaon, Tarek F. El-Shafiey, Abd El-Hakim A. Khalil
Abstract:
An experimental study was performed to investigate the behavior and strength of proposed technique to connect reinforced concrete (RC) beam to steel or composite columns. This approach can practically be used in several types of building construction. In this technique, the main beam of the frame consists of a transfer part (part of beam; Tr.P) and a common reinforcement concrete beam. The transfer part of the beam is connected to the column, whereas the rest of the beam is connected to the transfer part from each side. Four full-scale beam-column connections were tested under static loading. The test parameters were the length of the transfer part and the column properties. The test results show that using of the transfer part technique leads to modify the deformation capabilities for the RC beam and hence it increases its resistance against failure. Increase in length of the transfer part did not necessarily indicate an enhanced behavior. The test results contribute to the characterization of the connection behavior between RC beam - steel column and can be used to calibrate numerical models for the simulation of this type of connection.Keywords: composite column, reinforced concrete beam, steel column, transfer part
Procedia PDF Downloads 43010089 Reformulation of Theory of Critical Distances to Predict the Strength of Notched Plain Concrete Beams under Quasi Static Loading
Authors: Radhika V., J. M. Chandra Kishen
Abstract:
The theory of critical distances (TCD), due to its appealing characteristics, has been successfully used in the past to predict the strength of brittle as well as ductile materials, weakened by the presence of stress risers under both static and fatigue loading. By utilising most of the TCD's unique features, this paper summarises an attempt for a reformulation of the point method of the TCD to predict the strength of notched plain concrete beams under mode I quasi-static loading. A zone of micro cracks, which is responsible for the non-linearity of concrete, is taken into account considering the concept of an effective elastic crack. An attempt is also made to correlate the value of the material characteristic length required for the application of TCD with the maximum aggregate size in the concrete mix, eliminating the need for any extensive experimentation prior to the application of TCD. The devised reformulation and the proposed power law based relationship is found to yield satisfactory predictions for static strength of notched plain concrete beams, with geometric dimensions of the beam, tensile strength, and maximum aggregate size of the concrete mix being the only needed input parameters.Keywords: characteristic length, effective elastic crack, inherent material strength, modeI loading, theory of critical distances
Procedia PDF Downloads 9810088 Relationship between Static Balance and Body Characteristics in the Elderly
Authors: J. W. Kim, Y. R. Kwon, Y. J. Ho, H. M. Jeon, G. M. Eom
Abstract:
The aim of this study was to investigate the association of anthropometry with static balance in the elderly and their possible gender difference. Forty six subjects (23 men and 23 women) participated in this study. COP (Center of Pressure) was measured on a force-platform during quiet feet-together standing. As outcome measures, mean distance were derived from the COP. Weight was significantly correlated with postural variable only in the elderly men. This result suggests that the gender should be considered when normalizing postural variables.Keywords: body characteristics, postural balance, elderly, gender difference
Procedia PDF Downloads 43710087 Seismic Behavior of Concrete Filled Steel Tube Reinforced Concrete Column
Authors: Raghabendra Yadav, Baochun Chen, Huihui Yuan, Zhibin Lian
Abstract:
Pseudo-dynamic test (PDT) method is an advanced seismic test method that combines loading technology with computer technology. Large-scale models or full scale seismic tests can be carried out by using this method. CFST-RC columns are used in civil engineering structures because of their better seismic performance. A CFST-RC column is composed of four CFST limbs which are connected with RC web in longitudinal direction and with steel tube in transverse direction. For this study, a CFST-RC pier is tested under Four different earthquake time histories having scaled PGA of 0.05g. From the experiment acceleration, velocity, displacement and load time histories are observed. The dynamic magnification factors for acceleration due to Elcentro, Chi-Chi, Imperial Valley and Kobe ground motions are observed as 15, 12, 17 and 14 respectively. The natural frequency of the pier is found to be 1.40 Hz. The result shows that this type of pier has excellent static and earthquake resistant properties.Keywords: bridge pier, CFST-RC pier, pseudo dynamic test, seismic performance, time history
Procedia PDF Downloads 18510086 Static and Dynamic Load on Hip Contact of Hip Prosthesis and Thai Femoral Bones
Authors: K. Chalernpon, P. Aroonjarattham, K. Aroonjarattham
Abstract:
Total hip replacement had been one of the most successful operations in hip arthritis surgery. The purpose of this research had been to develop a dynamic hip contact of Thai femoral bone to analyze the stress distribution on the implant and the strain distribution on the bone model under daily activities and compared with the static load simulation. The results showed the different of maximum von Mises stress 0.14 percent under walking and 0.03 percent under climbing stair condition and the different of equivalent total strain 0.52 percent under walking and 0.05 percent under climbing stair condition. The muscular forces should be evaluated with dynamic condition to reduce the maximum von Mises stress and equivalent total strain.Keywords: dynamic loading, static load, hip prosthesis, Thai femur, femoral bone, finite element analysis
Procedia PDF Downloads 34910085 A Survey on the Status of Test Automation
Authors: Andrei Contan, Richard Torkar
Abstract:
Aim: The process of test automation and its practices in industry have to be better understood, both for the industry itself and for the research community. Method: We conducted a quantitative industry survey by asking IT professionals to answer questions related to the area of test automation. Results: Test automation needs and practices vary greatly between organizations at different stages of the software development life cycle. Conclusions: Most of the findings are general test automation challenges and are specific to small- to medium-sized companies, developing software applications in the web, desktop or mobile domain.Keywords: survey, testing, test automation, status of test automation
Procedia PDF Downloads 65910084 Produced Water Treatment Using Novel Solid Scale Inhibitors Based on Silver Tungstate Loaded Kit-6: Static and Modeling Evaluation
Authors: R. Hosny, Mahmoud F. Mubarak, Heba M. Salem, Asmaa A. Abdelrahman
Abstract:
Oilfield scaling is a major problem in the oil and gas industry. Scale issues cost the industry millions of dollars in damage and lost production every year. One of the main causes of global production decline is scale. In this study, solid scale inhibitors based on silver tungstate loaded KIT-6 were synthesized and evaluated in both static and scale inhibition modeling. The silver tungstate loaded KIT-6 catalysts were synthesized via a simple impregnated method using 3D mesoporous KIT-6 as support. The synthesized materials were characterized using wide and low XRD, N2 adsorption–desorption analysis, TGA analysis, and FTIR, SEM, and XPS analysis. The scale inhibition efficiency of the synthesized materials was evaluated using a static scale inhibition test. The results of this study demonstrate the potential application of silver tungstate-loaded KIT-6 solid scale inhibitors for the oil and gas industry. The results of this study will contribute to the development of new and innovative solid scale inhibitors based on silver tungstate-loaded KIT-6. The inhibition efficiency of the scale inhibitor increases, and calcite scale inhibitor decreases with increasing pH (2 to8), it proposes that the scale inhibitor was more effective under alkaline conditions. An inhibition efficiency of 99% on calcium carbonate can be achieved at the optimal dosage of 7.5 ppm at 55oC, indicating that the scale inhibitor exhibits a relatively good inhibition performance on calcium carbonate. The use of these materials can potentially lead to more efficient and cost-effective solutions for scaling inhibition in various industrial processes.Keywords: produced water treatment, solid scale inhibitors, calcite, silver tungestate, 3 D mesoporous KIT-6, oilfield scales, adsorption
Procedia PDF Downloads 14410083 Sustainable Design in the Use of Deployable Structures
Authors: Umweni Osahon Joshua, Anton Ianakiev
Abstract:
Deployable structures have been used in various scenarios from moving roofs in stadia, space antennae or booms. There has been a lot of literature relating deployable structures but with main focus on space applications. The complexities in the design of deployable structures may be the reason only few have been constructed for earth based solutions. This paper intends to explore the possibilities of integrating sustainable design concepts in deployable structures. Key aspects of sustainable design of structures as applicable to deployable structures have not been explored. Sustainable design of structures have mainly been concerned with static structures in the built environment. However, very little literature, concepts or framework has been drafted as it relates to deployable structures or their integration to static structures as a model for sustainable design. This article seeks to address this flaw in sustainable design for structural engineering and to provide a framework for designing structures in a sustainable manner. This framework will apply to deployable structures for earth-based environments as a form of disaster relief measures and also as part of static structures in the built environment.Keywords: deployable structures, sustainable design, framework, earth-based environments
Procedia PDF Downloads 54110082 Energy Absorption Characteristic of a Coupler Rubber Buffer Used in Rail Vehicles
Authors: Zhixiang Li, Shuguang Yao, Wen Ma
Abstract:
Coupler rubber buffer has been widely applied on the high-speed trains and the main function of the rubber buffer is dissipating the impact energy between vehicles. The rubber buffer consists of two groups of rubbers, which are both pre-compressed and then installed into the frame body. This paper focuses on the energy absorption characteristics of the rubber buffers particularly. Firstly, the quasi-static compression tests were carried out for 1 and 3 pairs of rubber sheets and some energy absorption responses relationship, i.e. Eabn = n×Eab1, Edissn = n×Ediss1, and Ean = Ea1, were obtained. Next, a series of quasi-static tests were performed for 1 pair of rubber sheet to investigate the energy absorption performance with different compression ratio of the rubber buffers. Then the impact tests with five impact velocities were conducted and the coupler knuckle was destroyed when the impact velocity was 10.807 km/h. The impact tests results showed that with the increase of impact velocity, the Eab, Ediss and Ea of rear buffer increased a lot, but the three responses of front buffer had not much increase. Finally, the results of impact tests and quasi-static tests were contrastively analysed and the results showed that with the increase of the stroke, the values of Eab, Ediss, and Ea were all increase. However, the increasing rates of impact tests were all larger than that of quasi-static tests. The maximum value of Ea was 68.76% in impact tests, it was a relatively high value for vehicle coupler buffer. The energy capacity of the rear buffer was determined for dynamic loading, it was 22.98 kJ.Keywords: rubber buffer, coupler, energy absorption, impact tests
Procedia PDF Downloads 19610081 Prioritization of Mutation Test Generation with Centrality Measure
Authors: Supachai Supmak, Yachai Limpiyakorn
Abstract:
Mutation testing can be applied for the quality assessment of test cases. Prioritization of mutation test generation has been a critical element of the industry practice that would contribute to the evaluation of test cases. The industry generally delivers the product under the condition of time to the market and thus, inevitably sacrifices software testing tasks, even though many test cases are required for software verification. This paper presents an approach of applying a social network centrality measure, PageRank, to prioritize mutation test generation. The source code with the highest values of PageRank will be focused first when developing their test cases as these modules are vulnerable to defects or anomalies which may cause the consequent defects in many other associated modules. Moreover, the approach would help identify the reducible test cases in the test suite, still maintaining the same criteria as the original number of test cases.Keywords: software testing, mutation test, network centrality measure, test case prioritization
Procedia PDF Downloads 11210080 Developing a Test Specifications for an Internationalization Course: Environment for Health in Thai Context
Authors: Rungrawee Samawathdana, Aim-Utcha Wattanaburanon
Abstract:
Test specifications for open book or notes exams provide the essential information to identify the types of the test items with validity of the evaluations process. This article explains the purpose of test specifications and illustrates how to use it to help construct the approach of open book or notes exams. The complication of the course objectives is challenging for the test designing.Keywords: course curriculum, environment for health, internationalization, test specifications
Procedia PDF Downloads 57610079 Design Application Procedures of 15 Storied 3D Reinforced Concrete Shear Wall-Frame Structure
Authors: H. Nikzad, S. Yoshitomi
Abstract:
This paper presents the design application and reinforcement detailing of 15 storied reinforced concrete shear wall-frame structure based on linear static analysis. Databases are generated for section sizes based on automated structural optimization method utilizing Active-set Algorithm in MATLAB platform. The design constraints of allowable section sizes, capacity criteria and seismic provisions for static loads, combination of gravity and lateral loads are checked and determined based on ASCE 7-10 documents and ACI 318-14 design provision. The result of this study illustrates the efficiency of proposed method, and is expected to provide a useful reference in designing of RC shear wall-frame structures.Keywords: design constraints, ETABS, linear static analysis, MATLAB, RC shear wall-frame structures, structural optimization
Procedia PDF Downloads 26110078 Inference for Synthetic Control Methods with Multiple Treated Units
Authors: Ziyan Zhang
Abstract:
Although the Synthetic Control Method (SCM) is now widely applied, its most commonly- used inference method, placebo test, is often problematic, especially when the treatment is not uniquely assigned. This paper discusses the problems with the placebo test under the multivariate treatment case. And, to improve the power of inferences, I further propose an Andrews-type procedure as it potentially solves some drawbacks of the placebo test. Simulations are conducted to show the Andrews’ test is often valid and powerful, compared with the placebo test.Keywords: Synthetic Control Method, Multiple treatments, Andrews' test, placebo test
Procedia PDF Downloads 16410077 Reinforced Concrete Slab under Static and Dynamic Loading
Authors: Aaron Aboshio, Jianqiao Ye
Abstract:
In this study, static and dynamic responses of a typical reinforced concrete flat slab, designed to British Standard (BS 8110, 1997) and under self and live loadings for dance halls are reported. Linear perturbation analysis using finite element method was employed for modal, impulse loading and frequency response analyses of the slab under the aforementioned loading condition. Results from the static and dynamic analyses, comprising of the slab fundamental frequencies and mode shapes, dynamic amplification factor, maximum deflection, stress distributions among other valuable outcomes are presented and discussed. These were gauged with the limiting provisions in the design code with a view to optimise the structure and ensure both adequate strength and economical section for large clear span slabs. This is necessary owing to the continued increase in cost of erecting building structures and the squeeze on public finance globally.Keywords: economical design, finite element method, modal dynamics, reinforced concrete, slab
Procedia PDF Downloads 32210076 Influence of Displacement Amplitude and Vertical Load on the Horizontal Dynamic and Static Behavior of Helical Wire Rope Isolators
Authors: Nicolò Vaiana, Mariacristina Spizzuoco, Giorgio Serino
Abstract:
In this paper, the results of experimental tests performed on a Helical Wire Rope Isolator (HWRI) are presented in order to describe the dynamic and static behavior of the selected metal device in three different displacements ranges, namely small, relatively large, and large displacements ranges, without and under the effect of a vertical load. A testing machine, allowing to apply horizontal displacement or load histories to the tested bearing with a constant vertical load, has been adopted to perform the dynamic and static tests. According to the experimental results, the dynamic behavior of the tested device depends on the applied displacement amplitude. Indeed, the HWRI displays a softening and a hardening stiffness at small and relatively large displacements, respectively, and a stronger nonlinear stiffening behavior at large displacements. Furthermore, the experimental tests reveal that the application of a vertical load allows to have a more flexible device with higher damping properties and that the applied vertical load affects much less the dynamic response of the metal device at large displacements. Finally, a decrease in the static to dynamic effective stiffness ratio with increasing displacement amplitude has been observed.Keywords: base isolation, earthquake engineering, experimental hysteresis loops, wire rope isolators
Procedia PDF Downloads 43310075 Behavior of Laminated Plates under Mechanical Loading
Authors: Mahmoudi Noureddine
Abstract:
In this study the use of two variable refined plate theories of laminated composite plates to static response of laminated plates. The plate theory accounts for parabolic distribution of the transverse shear strains, and satisfies the zero traction boundary conditions on the surfaces of the plate without using shear correction factor. The validity of the present theory is demonstrated by comparison with solutions available in the literature and finite element method. The result is presented for the static response of simply supported rectangular plates under uniform sinusoidal mechanical loadings.Keywords: bending, composite, laminate, plates, fem
Procedia PDF Downloads 40610074 A Study on Effect of Dynamic Loading Speed on the Fracture Toughness of Equivalent Stress Gradient (ESG) Specimen
Authors: Moon Byung Woo, Seok Chang-Sung, Koo Jae-Mean, Kim Sang-Young, Choi Jae Gu, Huh Nam-Su
Abstract:
Recently, the occurrence of the earthquake has increased sharply and many of the casualties have occurred worldwide, due to the influence of earthquakes. Especially, the Fukushima nuclear power plant accident which was caused by the earthquake in 2011 has significantly increased the fear of people and the demand for the safety of the nuclear power plant. Thus, in order to prevent the earthquake accident at nuclear power plant, it is important to evaluate the fracture toughness considering the seismic loading rate. To obtain fracture toughness for the safety evaluation of nuclear power plant, it is desirable to perform experiments with a real scale pipe which is expensive and hard to perform. Therefore, many researchers have proposed various test specimens to replicate the fracture toughness of a real scale pipe. Since such specimens have several problems, the equivalent stress gradient (ESG) specimen has been recently suggested. In this study, in order to consider the effects of the dynamic loading speed on fracture toughness, the experiment was conducted by applying five different kinds of test speeds using an ESG specimen. In addition, after we performed the fracture toughness test under dynamic loading with different speeds using an ESG specimen and a standard specimen, we compared them with the test results under static loading.Keywords: dynamic loading speed, fracture toughness, load-ratio-method, equivalent stress gradient (ESG) specimen
Procedia PDF Downloads 30910073 Behavior of Fibre Reinforced Polymer Composite with Nano-Ceramic Particle under Ballistic Impact and Quasi-Static Punch-Shear Loading
Authors: K. Rajalakshmi, A. Vasudevan
Abstract:
The performance of Fibre Reinforced Polymer composite with the nano-ceramic particle as function of time and thickness of laminate which is subjected to ballistic impact and quasi-static punch-shear loading is investigated. The material investigated is made up of several layers of Kevlar fibres which are fabricated with nano-ceramic particles and epoxy resin by compression moulding. The ballistic impact and quasi-static punch-shear loading are studied experimentally and numerically. The failure mechanism is observed using scanning electron microscope (SEM). The result obtained in the experiment and numerical studies are compared. Due to nano size of the ceramic particle, the strength to weight ratio and penetrating resistance will improve in Fibre Reinforced Polymer composite which will have better impact property compared to ceramic plates.Keywords: ballistic impact, Kevlar, nano ceramic, penetration, polymer composite, shear plug
Procedia PDF Downloads 288