Search results for: sparse-view reconstruction
546 Advancements in Arthroscopic Surgery Techniques for Anterior Cruciate Ligament (ACL) Reconstruction
Authors: Islam Sherif, Ahmed Ashour, Ahmed Hassan, Hatem Osman
Abstract:
Anterior Cruciate Ligament (ACL) injuries are common among athletes and individuals participating in sports with sudden stops, pivots, and changes in direction. Arthroscopic surgery is the gold standard for ACL reconstruction, aiming to restore knee stability and function. Recent years have witnessed significant advancements in arthroscopic surgery techniques, graft materials, and technological innovations, revolutionizing the field of ACL reconstruction. This presentation delves into the latest advancements in arthroscopic surgery techniques for ACL reconstruction and their potential impact on patient outcomes. Traditionally, autografts from the patellar tendon, hamstring tendon, or quadriceps tendon have been commonly used for ACL reconstruction. However, recent studies have explored the use of allografts, synthetic scaffolds, and tissue-engineered grafts as viable alternatives. This abstract evaluates the benefits and potential drawbacks of each graft type, considering factors such as graft incorporation, strength, and risk of graft failure. Moreover, the application of augmented reality (AR) and virtual reality (VR) technologies in surgical planning and intraoperative navigation has gained traction. AR and VR platforms provide surgeons with detailed 3D anatomical reconstructions of the knee joint, enhancing preoperative visualization and aiding in graft tunnel placement during surgery. We discuss the integration of AR and VR in arthroscopic ACL reconstruction procedures, evaluating their accuracy, cost-effectiveness, and overall impact on surgical outcomes. Beyond graft selection and surgical navigation, patient-specific planning has gained attention in recent research. Advanced imaging techniques, such as MRI-based personalized planning, enable surgeons to tailor ACL reconstruction procedures to each patient's unique anatomy. By accounting for individual variations in the femoral and tibial insertion sites, this personalized approach aims to optimize graft placement and potentially improve postoperative knee kinematics and stability. Furthermore, rehabilitation and postoperative care play a crucial role in the success of ACL reconstruction. This abstract explores novel rehabilitation protocols, emphasizing early mobilization, neuromuscular training, and accelerated recovery strategies. Integrating technology, such as wearable sensors and mobile applications, into postoperative care can facilitate remote monitoring and timely intervention, contributing to enhanced rehabilitation outcomes. In conclusion, this presentation provides an overview of the cutting-edge advancements in arthroscopic surgery techniques for ACL reconstruction. By embracing innovative graft materials, augmented reality, patient-specific planning, and technology-driven rehabilitation, orthopedic surgeons and sports medicine specialists can achieve superior outcomes in ACL injury management. These developments hold great promise for improving the functional outcomes and long-term success rates of ACL reconstruction, benefitting athletes and patients alike.Keywords: arthroscopic surgery, ACL, autograft, allograft, graft materials, ACL reconstruction, synthetic scaffolds, tissue-engineered graft, virtual reality, augmented reality, surgical planning, intra-operative navigation
Procedia PDF Downloads 92545 Sensor Validation Using Bottleneck Neural Network and Variable Reconstruction
Authors: Somia Bouzid, Messaoud Ramdani
Abstract:
The success of any diagnosis strategy critically depends on the sensors measuring process variables. This paper presents a detection and diagnosis sensor faults method based on a Bottleneck Neural Network (BNN). The BNN approach is used as a statistical process control tool for drinking water distribution (DWD) systems to detect and isolate the sensor faults. Variable reconstruction approach is very useful for sensor fault isolation, this method is validated in simulation on a nonlinear system: actual drinking water distribution system. Several results are presented.Keywords: fault detection, localization, PCA, NLPCA, auto-associative neural network
Procedia PDF Downloads 389544 The Power of the Proper Orthogonal Decomposition Method
Authors: Charles Lee
Abstract:
The Principal Orthogonal Decomposition (POD) technique has been used as a model reduction tool for many applications in engineering and science. In principle, one begins with an ensemble of data, called snapshots, collected from an experiment or laboratory results. The beauty of the POD technique is that when applied, the entire data set can be represented by the smallest number of orthogonal basis elements. It is the such capability that allows us to reduce the complexity and dimensions of many physical applications. Mathematical formulations and numerical schemes for the POD method will be discussed along with applications in NASA’s Deep Space Large Antenna Arrays, Satellite Image Reconstruction, Cancer Detection with DNA Microarray Data, Maximizing Stock Return, and Medical Imaging.Keywords: reduced-order methods, principal component analysis, cancer detection, image reconstruction, stock portfolios
Procedia PDF Downloads 84543 The Concept of Art: A Redefinition or Reconstruction
Authors: Patricia Agboro
Abstract:
The definition of a concept is quite important in any philosophical discourse as it serves as a guide in the analysis of that concept. In the sciences, arriving at a consensus regarding concepts is quite easily achievable due to the nature of the discipline. Problem arises when one delves into the realm of the humanities. Discourses in the humanities are largely perspectival because the question of values come into play. Defining the concept of Art is no different as it has yielded unresolved and problematic issues arising from attempts at definition. A major problem arising from such attempt is that of exclusion of other art forms. In this paper therefore, we call for the rejection of an attempt at providing a comprehensive definition for Art since it is clear that the collection of definitions provided so far, has failed in capturing the nuances and intricacies of the infinite varieties of the art forms that there are. Rather, a more fruitful approach to philosophical discourses on Art is not to construe the theories of Art per-se but to reconstruct them as a collection of criteria for determining artistic excellence.Keywords: art, creativity, definition, reconstruction
Procedia PDF Downloads 175542 Modeling Visual Memorability Assessment with Autoencoders Reveals Characteristics of Memorable Images
Authors: Elham Bagheri, Yalda Mohsenzadeh
Abstract:
Image memorability refers to the phenomenon where certain images are more likely to be remembered by humans than others. It is a quantifiable and intrinsic attribute of an image. Understanding how visual perception and memory interact is important in both cognitive science and artificial intelligence. It reveals the complex processes that support human cognition and helps to improve machine learning algorithms by mimicking the brain's efficient data processing and storage mechanisms. To explore the computational underpinnings of image memorability, this study examines the relationship between an image's reconstruction error, distinctiveness in latent space, and its memorability score. A trained autoencoder is used to replicate human-like memorability assessment inspired by the visual memory game employed in memorability estimations. This study leverages a VGG-based autoencoder that is pre-trained on the vast ImageNet dataset, enabling it to recognize patterns and features that are common to a wide and diverse range of images. An empirical analysis is conducted using the MemCat dataset, which includes 10,000 images from five broad categories: animals, sports, food, landscapes, and vehicles, along with their corresponding memorability scores. The memorability score assigned to each image represents the probability of that image being remembered by participants after a single exposure. The autoencoder is finetuned for one epoch with a batch size of one, attempting to create a scenario similar to human memorability experiments where memorability is quantified by the likelihood of an image being remembered after being seen only once. The reconstruction error, which is quantified as the difference between the original and reconstructed images, serves as a measure of how well the autoencoder has learned to represent the data. The reconstruction error of each image, the error reduction, and its distinctiveness in latent space are calculated and correlated with the memorability score. Distinctiveness is measured as the Euclidean distance between each image's latent representation and its nearest neighbor within the autoencoder's latent space. Different structural and perceptual loss functions are considered to quantify the reconstruction error. The results indicate that there is a strong correlation between the reconstruction error and the distinctiveness of images and their memorability scores. This suggests that images with more unique distinct features that challenge the autoencoder's compressive capacities are inherently more memorable. There is also a negative correlation between the reduction in reconstruction error compared to the autoencoder pre-trained on ImageNet, which suggests that highly memorable images are harder to reconstruct, probably due to having features that are more difficult to learn by the autoencoder. These insights suggest a new pathway for evaluating image memorability, which could potentially impact industries reliant on visual content and mark a step forward in merging the fields of artificial intelligence and cognitive science. The current research opens avenues for utilizing neural representations as instruments for understanding and predicting visual memory.Keywords: autoencoder, computational vision, image memorability, image reconstruction, memory retention, reconstruction error, visual perception
Procedia PDF Downloads 90541 Off-Grid Sparse Inverse Synthetic Aperture Imaging by Basis Shift Algorithm
Authors: Mengjun Yang, Zhulin Zong, Jie Gao
Abstract:
In this paper, a new and robust algorithm is proposed to achieve high resolution for inverse synthetic aperture radar (ISAR) imaging in the compressive sensing (CS) framework. Traditional CS based methods have to assume that unknown scatters exactly lie on the pre-divided grids; otherwise, their reconstruction performance dropped significantly. In this processing algorithm, several basis shifts are utilized to achieve the same effect as grid refinement does. The detailed implementation of the basis shift algorithm is presented in this paper. From the simulation we can see that using the basis shift algorithm, imaging precision can be improved. The effectiveness and feasibility of the proposed method are investigated by the simulation results.Keywords: ISAR imaging, sparse reconstruction, off-grid, basis shift
Procedia PDF Downloads 265540 Reconstruction of Wujiaochang Plaza: A Potential Avenue Towards Sustainability
Authors: Caiwei Chen, Jianhao Li, Jiasong Zhu
Abstract:
The reform and opening-up stimulated economic and technological take-off in China while resulting in massive urbanization and motorization. Wujiaochang area was set as a secondary business district in Shanghai to meet the growing demand, with the reconstruction of Wujiaochang Plaza in 2005 being a milestone of this intended urban renewal. Wujiaochang is now an economically dynamic area providing much larger traffic and transit capacity transportation-wise. However, this rebuilding has completely changed the face of the district. It is, therefore, appropriate to evaluate its impact on neighborhoods and communities while assessing the overall sustainability of such an operation. In this study, via an online questionnaire survey among local residents and daily visitors, we assess the perceptions and the estimated impact of Wujiaochang Plaza's reconstruction. We then confront these results to the 62 answers from local residents to a questionnaire collected on paper. The analysis of our data, along with observation and other forms of information -such as maps analysis or online applications (Dianping)- demonstrate major improvement in economic sustainability but also significant losses in environmental sustainability, especially in terms of active transportation. As for the social viewpoint, local residents' opinions tend to be rather positive, especially regarding traffic safety and access to consumption, despite the lack of connectivity and radical changes induced by Wujiaochang massive transformations. In general, our investigation exposes the overall positive outcomes of Wujiaochang Plaza reconstruction but also unveils major drawbacks, especially in terms of soft mobility and traffic fluidity. We gather that our approach could be of tremendous help for future major urban interventions, as such approaches in municipal regeneration are widely implemented in Chinese cities and yet still need to be thoroughly assessed in terms of sustainability.Keywords: China's reform and opening-up, economical revitalization, neighborhood identity, sustainability assessment, urban renewal
Procedia PDF Downloads 237539 Tornado Disaster Impacts and Management: Learning from the 2016 Tornado Catastrophe in Jiangsu Province, China
Authors: Huicong Jia, Donghua Pan
Abstract:
As a key component of disaster reduction management, disaster emergency relief and reconstruction is an important process. Based on disaster system theory, this study analyzed the Jiangsu tornado from the formation mechanism of disasters, through to the economic losses, loss of life, and social infrastructure losses along the tornado disaster chain. The study then assessed the emergency relief and reconstruction efforts, based on an analytic hierarchy process method. The results were as follows: (1) An unstable weather system was the root cause of the tornado. The potentially hazardous local environment, acting in concert with the terrain and the river network, was able to gather energy from the unstable atmosphere. The wind belt passed through a densely populated district, with vulnerable infrastructure and other hazard-prone elements, which led to an accumulative disaster situation and the triggering of a catastrophe. (2) The tornado was accompanied by a hailstorm, which is an important triggering factor for a tornado catastrophe chain reaction. (3) The evaluation index (EI) of the emergency relief and reconstruction effect for the ‘‘6.23’’ tornado disaster in Yancheng was 91.5. Compared to other relief work in areas affected by disasters of the same magnitude, there was a more successful response than has previously been experienced. The results provide new insights for studies of disaster systems and the recovery measures in response to tornado catastrophe in China.Keywords: China, disaster system, emergency relief, tornado catastrophe
Procedia PDF Downloads 270538 Entropy Analysis in a Bubble Column Based on Ultrafast X-Ray Tomography Data
Authors: Stoyan Nedeltchev, Markus Schubert
Abstract:
By means of the ultrafast X-ray tomography facility, data were obtained at different superficial gas velocities UG in a bubble column (0.1 m in ID) operated with an air-deionized water system at ambient conditions. Raw reconstructed images were treated by both the information entropy (IE) and the reconstruction entropy (RE) algorithms in order to identify the main transition velocities in a bubble column. The IE values exhibited two well-pronounced minima at UG=0.025 m/s and UG=0.085 m/s identifying the boundaries of the homogeneous, transition and heterogeneous regimes. The RE extracted from the central region of the column’s cross-section exhibited only one characteristic peak at UG=0.03 m/s, which was attributed to the transition from the homogeneous to the heterogeneous flow regime. This result implies that the transition regime is non-existent in the core of the column.Keywords: bubble column, ultrafast X-ray tomography, information entropy, reconstruction entropy
Procedia PDF Downloads 391537 Applied Actuator Fault Accommodation in Flight Control Systems Using Fault Reconstruction Based FDD and SMC Reconfiguration
Authors: A. Ghodbane, M. Saad, J. F. Boland, C. Thibeault
Abstract:
Historically, actuators’ redundancy was used to deal with faults occurring suddenly in flight systems. This technique was generally expensive, time consuming and involves increased weight and space in the system. Therefore, nowadays, the on-line fault diagnosis of actuators and accommodation plays a major role in the design of avionic systems. These approaches, known as Fault Tolerant Flight Control systems (FTFCs) are able to adapt to such sudden faults while keeping avionics systems lighter and less expensive. In this paper, a (FTFC) system based on the Geometric Approach and a Reconfigurable Flight Control (RFC) are presented. The Geometric approach is used for cosmic ray fault reconstruction, while Sliding Mode Control (SMC) based on Lyapunov stability theory is designed for the reconfiguration of the controller in order to compensate the fault effect. Matlab®/Simulink® simulations are performed to illustrate the effectiveness and robustness of the proposed flight control system against actuators’ faulty signal caused by cosmic rays. The results demonstrate the successful real-time implementation of the proposed FTFC system on a non-linear 6 DOF aircraft model.Keywords: actuators’ faults, fault detection and diagnosis, fault tolerant flight control, sliding mode control, geometric approach for fault reconstruction, Lyapunov stability
Procedia PDF Downloads 418536 Arthroscopic Assisted Fibertape Technique For Recurrent MPFL Reconstruction - Case Series Done In The UK Population
Authors: Naufal Ahmed, Michael Lwin
Abstract:
Background: MPFL reconstructions are ideally performed with au-tografts like gracilis semitendinosus tendon, which may be associated with donor site morbidity and complications. In this case series, we have tried to use fiber tape, which avoids the above complications and also keeps the graft virgin. This kind of synthetic graft has been used successfully in rotator cuffs and ACJ reconstructions with good results. Materials and methods: It was a retrospective data analysis of 45 patients who underwent this procedure from 2014-2020 under a single consultant in a DGH . These patiens have been followed up at 6 weeks, 6 months, 1 year, and 1 ½ years with clinical assessment and KOOS scores. We compared the results with the NJR and also with the Belgium report and was found to be satisfactory and comparable with them. Surgical technique : We used Arthrex fiber tape for the reconstruction of MPFL . Initially, two parallel holes drilled over sup aspect of the patella with help of an image intensifier, and then fiber wire passed through them from the medial to the lateral side and back to the medial side. The fiber wire was attached to the schottle point on the femoral side, giving a good extra articular internal brac-ing to the MPFL. All patients were scoped before the procedure, and the final tightening over the femoral side was done directly under vision to see the position of the patella. Results: We had 45 MPFL reconstructions along with 4 additional procedures 1 ACLR, 2 ACL REPAIR, 1 TTT advancement ( revision MPFL ). There were 14 males and 31 females, and their average age was 25 (13-55 ). We did not have any donor site morbidity, no infection, no fractures, no recurrent dislocations, no reoperations yet. Conclusion: Fiber tape is a feasible and appropriate option for MPFL reconstruction. We haven’t seen any re -operation in our 5 year follow up. This technique avoids the use of autograft, which can be used in the future if needed for revision surgeries. We don’t lose anything by following this simple novel technique.Keywords: arthroscopy, fibertape, MPFL reconstruction, recurrent patella dislocation
Procedia PDF Downloads 139535 Multidisciplinary Approach for a Tsunami Reconstruction Plan in Coquimbo, Chile
Authors: Ileen Van den Berg, Reinier J. Daals, Chris E. M. Heuberger, Sven P. Hildering, Bob E. Van Maris, Carla M. Smulders, Rafael Aránguiz
Abstract:
Chile is located along the subduction zone of the Nazca plate beneath the South American plate, where large earthquakes and tsunamis have taken place throughout history. The last significant earthquake (Mw 8.2) occurred in September 2015 and generated a destructive tsunami, which mainly affected the city of Coquimbo (71.33°W, 29.96°S). The inundation area consisted of a beach, damaged seawall, damaged railway, wetland and old neighborhood; therefore, local authorities started a reconstruction process immediately after the event. Moreover, a seismic gap has been identified in the same area, and another large event could take place in the near future. The present work proposed an integrated tsunami reconstruction plan for the city of Coquimbo that considered several variables such as safety, nature & recreation, neighborhood welfare, visual obstruction, infrastructure, construction process, and durability & maintenance. Possible future tsunami scenarios are simulated by means of the Non-hydrostatic Evolution of Ocean WAVEs (NEOWAVE) model with 5 nested grids and a higher grid resolution of ~10 m. Based on the score from a multi-criteria analysis, the costs of the alternatives and a preference for a multifunctional solution, the alternative that includes an elevated coastal road with floodgates to reduce tsunami overtopping and control the return flow of a tsunami was selected as the best solution. It was also observed that the wetlands are significantly restored to their former configuration; moreover, the dynamic behavior of the wetlands is stimulated. The numerical simulation showed that the new coastal protection decreases damage and the probability of loss of life by delaying tsunami arrival time. In addition, new evacuation routes and a smaller inundation zone in the city increase safety for the area.Keywords: tsunami, Coquimbo, Chile, reconstruction, numerical simulation
Procedia PDF Downloads 240534 Risk Factors and Outcome of Free Tissue Transfer at a Tertiary Care Referral Center
Authors: Majid Khan
Abstract:
Introduction: In this era of microsurgery, free flap holds a remarkable spot in reconstructive surgery. A free flap is well suited for composite defects as it provides sufficient and well-vascularized tissue for coverage. We report our experience with the use of the free flaps for the reconstruction of composite defects. Methods: This is a retrospective case series (chart review) of patients who underwent reconstruction of composite defects with a free flap at Aga Khan University Hospital, Karachi (Pakistan) from January 01, 2015, to December 31, 2019. Data were collected for patient demographics, size of the defect, size of flap, recipient vessels, postoperative complications, and outcome of the free flap. Results: Over this period, 532 free flaps are included in this study. The overall success rate is 95.5%. The mean age of the patient was 44.86 years. In 532 procedures, there were 448 defects from tumor ablation of head and neck cancer. The most frequent free flap was the anterolateral thigh flap in 232 procedures. In this study, the risk factor hypertension (p=0.004) was found significant for wound dehiscence, preop radiation/chemotherapy (p=0.003), and malnutrition (p=0.005) were found significant for fistula formation. Malnutrition (p=0.02) and use of vein grafts (p=0.025) were significant factors for flap failure. Conclusion: Free tissue transfer is a reliable option for the reconstruction of large and composite defects. Hypertension, malnutrition, and preoperative radiotherapy can cause significant morbidity.Keywords: free flap, free flap failure, risk factors for flap failure, free flap outcome
Procedia PDF Downloads 113533 A Study on Accident Result Contribution of Individual Major Variables Using Multi-Body System of Accident Reconstruction Program
Authors: Donghun Jeong, Somyoung Shin, Yeoil Yun
Abstract:
A large-scale traffic accident refers to an accident in which more than three people die or more than thirty people are dead or injured. In order to prevent a large-scale traffic accident from causing a big loss of lives or establish effective improvement measures, it is important to analyze accident situations in-depth and understand the effects of major accident variables on an accident. This study aims to analyze the contribution of individual accident variables to accident results, based on the accurate reconstruction of traffic accidents using PC-Crash’s Multi-Body, which is an accident reconstruction program, and simulation of each scenario. Multi-Body system of PC-Crash accident reconstruction program is used for multi-body accident reconstruction that shows motions in diverse directions that were not approached previously. MB System is to design and reproduce a form of body, which shows realistic motions, using several bodies. Targeting the 'freight truck cargo drop accident around the Changwon Tunnel' that happened in November 2017, this study conducted a simulation of the freight truck cargo drop accident and analyzed the contribution of individual accident majors. Then on the basis of the driving speed, cargo load, and stacking method, six scenarios were devised. The simulation analysis result displayed that the freight car was driven at a speed of 118km/h(speed limit: 70km/h) right before the accident, carried 196 oil containers with a weight of 7,880kg (maximum load: 4,600kg) and was not fully equipped with anchoring equipment that could prevent a drop of cargo. The vehicle speed, cargo load, and cargo anchoring equipment were major accident variables, and the accident contribution analysis results of individual variables are as follows. When the freight car only obeyed the speed limit, the scattering distance of oil containers decreased by 15%, and the number of dropped oil containers decreased by 39%. When the freight car only obeyed the cargo load, the scattering distance of oil containers decreased by 5%, and the number of dropped oil containers decreased by 34%. When the freight car obeyed both the speed limit and cargo load, the scattering distance of oil containers fell by 38%, and the number of dropped oil containers fell by 64%. The analysis result of each scenario revealed that the overspeed and excessive cargo load of the freight car contributed to the dispersion of accident damage; in the case of a truck, which did not allow a fall of cargo, there was a different type of accident when driven too fast and carrying excessive cargo load, and when the freight car obeyed the speed limit and cargo load, there was the lowest possibility of causing an accident.Keywords: accident reconstruction, large-scale traffic accident, PC-Crash, MB system
Procedia PDF Downloads 200532 Density-based Denoising of Point Cloud
Authors: Faisal Zaman, Ya Ping Wong, Boon Yian Ng
Abstract:
Point cloud source data for surface reconstruction is usually contaminated with noise and outliers. To overcome this, we present a novel approach using modified kernel density estimation (KDE) technique with bilateral filtering to remove noisy points and outliers. First we present a method for estimating optimal bandwidth of multivariate KDE using particle swarm optimization technique which ensures the robust performance of density estimation. Then we use mean-shift algorithm to find the local maxima of the density estimation which gives the centroid of the clusters. Then we compute the distance of a certain point from the centroid. Points belong to outliers then removed by automatic thresholding scheme which yields an accurate and economical point surface. The experimental results show that our approach comparably robust and efficient.Keywords: point preprocessing, outlier removal, surface reconstruction, kernel density estimation
Procedia PDF Downloads 344531 Existence of Financial Service Authority Prior to 2045
Authors: Syafril Hendrik Hutabarat, Hartiwiningsih, Pujiyono Suwadi
Abstract:
The Financial Service Authority (FSA) was formed as a response to the 1997 monetary crisis and the 2008 financial crisis so that it was more defensive in nature while developments in information and communication technology have required state policies to be more offensive to keep up with times. Reconstruction of Authorities of the FSA's Investigator is intended to keep the agency worthy to be part of an integrated criminal justice system in Indonesia which has implications for expanding its authority in line with efforts to protect and increase the welfare of the people. The results show that internal synergy between sub-sectors in the financial services sector is not optimised, some are even left behind so that the FSA is not truly an authority in the financial services sector. This research method is empirical. The goal of synergy must begin with internal synergy which has its moment when Indonesia gets a demographic bonus in the 2030s and becomes an international logistics hub supported by the national financial services sector.Keywords: reconstruction, authorities, FSA investigators, synergy, demography
Procedia PDF Downloads 76530 Meta-Analysis Comparing the Femoral Tunnel Length, Femoral Tunnel Position and Graft Bending Angle of Transtibial, Anteromedial and Outside-In Techniques for Single-Bundle Anterior Cruciate Ligament Reconstruction
Authors: Andrew Tan Hwee Chye, Yeo Zhen Ning
Abstract:
This study aims to meta-analyse clinical studies comparing femoral tunnel position (FTP), femoral tunnel length (FTL) and graft bending angle (GBA) of single-bundle Anterior Cruciate Ligament (ACL) reconstruction using Transtibial (TT), Anteromedial (AM) and Outside-in (OI) techniques. A meta-analysis comparing the FTP, FTL and GBA of single-bundle ACL reconstruction utilising the TT, AM and OI was performed. Prospective Comparative Studies (PCS) and Retrospective Comparative Studies (RCS) from PubMed, Cochrane Library, and Embase were included. A total of 17 studies were included in this study. TT had the longest FTL, when compared to AM (Mean difference = 7.38, 95% CI: 3.76 to 11.00, P < 0.001) and OI (Mean difference = 9.47, 95% CI: 4.89 to 14.05, P < 0.001). In the deep-to-shallow direction, the OI resulted in a significantly deeper femoral tunnel as compared to the TT (Mean difference = 4.36, 95% CI: 1.39 to 7.33, P = 0.004) (Figure 6B). The AM technique also contributed to a significantly lower tunnel position as compared to the OI technique (Mean difference = 2.34, 95% CI: 0.76 to 3.92, P = 0.004). There were no significant differences in the graft bending angle between TT, AM and OI techniques. AM and OI techniques provide a more anatomical position as compared to the TT. Although FTL in the TT is longer than the AM and OI, all three techniques exceed the critical length of 25mm. There are no differences in the GBA between the three techniques.Keywords: femoral tunnel position, femoral tunnel length, anterior cruciate ligament, transtibial, graft bending angle, anteromedial, outside-in
Procedia PDF Downloads 126529 Hybrid Knowledge and Data-Driven Neural Networks for Diffuse Optical Tomography Reconstruction in Medical Imaging
Authors: Paola Causin, Andrea Aspri, Alessandro Benfenati
Abstract:
Diffuse Optical Tomography (DOT) is an emergent medical imaging technique which employs NIR light to estimate the spatial distribution of optical coefficients in biological tissues for diagnostic purposes, in a noninvasive and non-ionizing manner. DOT reconstruction is a severely ill-conditioned problem due to prevalent scattering of light in the tissue. In this contribution, we present our research in adopting hybrid knowledgedriven/data-driven approaches which exploit the existence of well assessed physical models and build upon them neural networks integrating the availability of data. Namely, since in this context regularization procedures are mandatory to obtain a reasonable reconstruction [1], we explore the use of neural networks as tools to include prior information on the solution. 2. Materials and Methods The idea underlying our approach is to leverage neural networks to solve PDE-constrained inverse problems of the form 𝒒 ∗ = 𝒂𝒓𝒈 𝒎𝒊𝒏𝒒 𝐃(𝒚, 𝒚̃), (1) where D is a loss function which typically contains a discrepancy measure (or data fidelity) term plus other possible ad-hoc designed terms enforcing specific constraints. In the context of inverse problems like (1), one seeks the optimal set of physical parameters q, given the set of observations y. Moreover, 𝑦̃ is the computable approximation of y, which may be as well obtained from a neural network but also in a classic way via the resolution of a PDE with given input coefficients (forward problem, Fig.1 box ). Due to the severe ill conditioning of the reconstruction problem, we adopt a two-fold approach: i) we restrict the solutions (optical coefficients) to lie in a lower-dimensional subspace generated by auto-decoder type networks. This procedure forms priors of the solution (Fig.1 box ); ii) we use regularization procedures of type 𝒒̂ ∗ = 𝒂𝒓𝒈𝒎𝒊𝒏𝒒 𝐃(𝒚, 𝒚̃)+ 𝑹(𝒒), where 𝑹(𝒒) is a regularization functional depending on regularization parameters which can be fixed a-priori or learned via a neural network in a data-driven modality. To further improve the generalizability of the proposed framework, we also infuse physics knowledge via soft penalty constraints (Fig.1 box ) in the overall optimization procedure (Fig.1 box ). 3. Discussion and Conclusion DOT reconstruction is severely hindered by ill-conditioning. The combined use of data-driven and knowledgedriven elements is beneficial and allows to obtain improved results, especially with a restricted dataset and in presence of variable sources of noise.Keywords: inverse problem in tomography, deep learning, diffuse optical tomography, regularization
Procedia PDF Downloads 74528 Time Efficient Color Coding for Structured-Light 3D Scanner
Authors: Po-Hao Huang, Pei-Ju Chiang
Abstract:
The structured light 3D scanner is commonly used for measuring the 3D shape of an object. Through projecting designed light patterns on the object, deformed patterns can be obtained and used for the geometric shape reconstruction. At present, Gray code is the most reliable and commonly used light pattern in the structured light 3D scanner. However, the trade-off between scanning efficiency and accuracy is a long-standing and challenging problem. The design of light patterns plays a significant role in the scanning efficiency and accuracy. Thereby, we proposed a novel encoding method integrating color information and Gray-code to improve the scanning efficiency. We will demonstrate that with the proposed method, the scanning time can be reduced to approximate half of the one needed by Gray-code without reduction of precision.Keywords: gray-code, structured light scanner, 3D shape acquisition, 3D reconstruction
Procedia PDF Downloads 457527 A Fast Version of the Generalized Multi-Directional Radon Transform
Authors: Ines Elouedi, Atef Hammouda
Abstract:
This paper presents a new fast version of the generalized Multi-Directional Radon Transform method. The new method uses the inverse Fast Fourier Transform to lead to a faster Generalized Radon projections. We prove in this paper that the fast algorithm leads to almost the same results of the eldest one but with a considerable lower time computation cost. The projection end result of the fast method is a parameterized Radon space where a high valued pixel allows the detection of a curve from the original image. The proposed fast inversion algorithm leads to an exact reconstruction of the initial image from the Radon space. We show examples of the impact of this algorithm on the pattern recognition domain.Keywords: fast generalized multi-directional Radon transform, curve, exact reconstruction, pattern recognition
Procedia PDF Downloads 277526 Sustainable Reconstruction: Towards Guidelines of Post-Disaster Vulnerability Reduction for Permanent Informal Housing in Malaysia Due to Flooding
Authors: Ruhizal Roosli, Julaihi Wahid, Abu Hassan Abu Bakar, Faizal Baharum
Abstract:
This paper reports on the progress of a study on the reconstruction project after the ‘Yellow Flood’ disaster in Kelantan, Malaysia. Malaysia still does not have guidelines to build housing after a disaster especially in disaster-prone areas. At the international level, many guidelines have been prepared that is found suitable for post-disaster housing. Which guidelines can be adapted that best describes the situation in Malaysia? It was reported that the houses should be built on stilts, which can withstand certain level of impact during flooding. Unfortunately, until today no specific guideline was available to assist homeowners to rebuild their homes after disaster. In addition, there is also no clear operational procedure to monitor the progress of this construction work. This research is an effort to promoting resilient housing; safety and security; and secure tenure in a prone area. At the end of this study, key lessons will be emerged from the review process and data analysis. These inputs will then have influenced to the content that will be developed and presented as guidelines. An overall objective is to support humanitarian responses to disaster and conflicts for resilience house construction to flood prone area. Interviews with the field based staff were from recent post-disaster housing workforce (disaster management mechanism in Malaysia especially in Kelantan). The respondents were selected based on their experiences in disaster response particularly related to housing provision. These key lessons are perhaps the best practical (operational and technical) guidelines comparing to other International cases to be adapted to the national situations.Keywords: disaster, guideline, housing, Malaysia, reconstruction
Procedia PDF Downloads 521525 Hardware Implementation for the Contact Force Reconstruction in Tactile Sensor Arrays
Authors: María-Luisa Pinto-Salamanca, Wilson-Javier Pérez-Holguín
Abstract:
Reconstruction of contact forces is a fundamental technique for analyzing the properties of a touched object and is essential for regulating the grip force in slip control loops. This is based on the processing of the distribution, intensity, and direction of the forces during the capture of the sensors. Currently, efficient hardware alternatives have been used more frequently in different fields of application, allowing the implementation of computationally complex algorithms, as is the case with tactile signal processing. The use of hardware for smart tactile sensing systems is a research area that promises to improve the processing time and portability requirements of applications such as artificial skin and robotics, among others. The literature review shows that hardware implementations are present today in almost all stages of smart tactile detection systems except in the force reconstruction process, a stage in which they have been less applied. This work presents a hardware implementation of a model-driven reported in the literature for the contact force reconstruction of flat and rigid tactile sensor arrays from normal stress data. From the analysis of a software implementation of such a model, this implementation proposes the parallelization of tasks that facilitate the execution of matrix operations and a two-dimensional optimization function to obtain a vector force by each taxel in the array. This work seeks to take advantage of the parallel hardware characteristics of Field Programmable Gate Arrays, FPGAs, and the possibility of applying appropriate techniques for algorithms parallelization using as a guide the rules of generalization, efficiency, and scalability in the tactile decoding process and considering the low latency, low power consumption, and real-time execution as the main parameters of design. The results show a maximum estimation error of 32% in the tangential forces and 22% in the normal forces with respect to the simulation by the Finite Element Modeling (FEM) technique of Hertzian and non-Hertzian contact events, over sensor arrays of 10×10 taxels of different sizes. The hardware implementation was carried out on an MPSoC XCZU9EG-2FFVB1156 platform of Xilinx® that allows the reconstruction of force vectors following a scalable approach, from the information captured by means of tactile sensor arrays composed of up to 48 × 48 taxels that use various transduction technologies. The proposed implementation demonstrates a reduction in estimation time of x / 180 compared to software implementations. Despite the relatively high values of the estimation errors, the information provided by this implementation on the tangential and normal tractions and the triaxial reconstruction of forces allows to adequately reconstruct the tactile properties of the touched object, which are similar to those obtained in the software implementation and in the two FEM simulations taken as reference. Although errors could be reduced, the proposed implementation is useful for decoding contact forces for portable tactile sensing systems, thus helping to expand electronic skin applications in robotic and biomedical contexts.Keywords: contact forces reconstruction, forces estimation, tactile sensor array, hardware implementation
Procedia PDF Downloads 195524 A Picture is worth a Billion Bits: Real-Time Image Reconstruction from Dense Binary Pixels
Authors: Tal Remez, Or Litany, Alex Bronstein
Abstract:
The pursuit of smaller pixel sizes at ever increasing resolution in digital image sensors is mainly driven by the stringent price and form-factor requirements of sensors and optics in the cellular phone market. Recently, Eric Fossum proposed a novel concept of an image sensor with dense sub-diffraction limit one-bit pixels (jots), which can be considered a digital emulation of silver halide photographic film. This idea has been recently embodied as the EPFL Gigavision camera. A major bottleneck in the design of such sensors is the image reconstruction process, producing a continuous high dynamic range image from oversampled binary measurements. The extreme quantization of the Poisson statistics is incompatible with the assumptions of most standard image processing and enhancement frameworks. The recently proposed maximum-likelihood (ML) approach addresses this difficulty, but suffers from image artifacts and has impractically high computational complexity. In this work, we study a variant of a sensor with binary threshold pixels and propose a reconstruction algorithm combining an ML data fitting term with a sparse synthesis prior. We also show an efficient hardware-friendly real-time approximation of this inverse operator. Promising results are shown on synthetic data as well as on HDR data emulated using multiple exposures of a regular CMOS sensor.Keywords: binary pixels, maximum likelihood, neural networks, sparse coding
Procedia PDF Downloads 201523 Thermal Analysis of Vertical Kiln Dryer for Drying Sunflower Seeds in the Oil Mill “Banat” Ad, Nova Crnja
Authors: Aleksandar Dedić, Duško Salemović, Matilda Lazić, Dragan Halas
Abstract:
The aim of the paper was the thermal balance control of vertical kiln dryer indirect type (VSU-36) for drying sunflower seed, produced by "Cer" - Cacak, capacity 39 [t/h]. The balance control was executed because the dryer was damaged by NATO bombing in 1999, and it was planned for its reconstruction. The structural and geometric characteristics of the dryer were known, and it was necessary to determine the parameters of wet air as a drying agent and the sunflower seeds. The thermal balance control was the basis for the replacement of damaged parts of the dryer during its reconstruction. After that, it was necessary to perform the subsequent calculation of strength. The accuracy of strength had a large influence on the cost-effectiveness and safety of a single drying chamber. Also, the work provides guidelines for the regimes of drying grain crops with an explanation of the specificity of drying sunflowers.Keywords: sunflower seeds, regimes of drying, vertical kiln dryer, thermal analysis
Procedia PDF Downloads 70522 Comparative Study of Mechanical and Physiological Gait Efficiency Following Anterior Cruciate Ligament Reconstruction
Authors: Radwa E. Sweif, Amira A. A. Abdallah
Abstract:
Background: Evaluation of gait efficiency is used to examine energy consumption especially in patients with movement disorders. Hypothesis/Purpose: This study compared the physiological and mechanical measures of gait efficiency between patients with ACL reconstruction (ACLR) and healthy controls and correlated among these measures. Methods: Seventeen patients with ACLR and sixteen healthy controls with mean ± SD age 23.06±4.76 vs 24.85±6.47 years, height 173.93±6.54 vs 175.64±7.37cm, and weight 74.25±12.1 vs 76.52±10.14 kg, respectively, participated in the study. The patients were operated on six months prior to testing. They should have completed their accelerated rehabilitation program during this period. A 3D motion analysis system was used for collecting the mechanical measures (Biomechanical Efficiency Quotient (BEQ), the maximum degree of knee internal rotation during stance phase and speed of walking). The physiological measures (Physiological Cost Index (PCI) and Rate of Perceived Exertion (RPE)) were collected after performing the 6- minute walking test. Results: MANOVA showed that the maximum degree of knee internal rotation, PCI, and RPE increased and the speed decreased significantly (p<0.05) in the patients compared with the controls with no significant difference for the BEQ. Finally, there were significant (p<0.05) positive correlations between each of the PCI & RPE and each of the BEQ, speed of walking and the maximum degree of knee internal rotation in each group. Conclusion: It was concluded that there are alterations in both mechanical and physiological measures of gait efficiency in patients with ACLR after being rehabilitated, clarifying the need for performing additional endurance as well as knee stability training programs. Moreover, the positive correlations indicate that using either of the mechanical or physiological measures for evaluating gait efficiency is acceptable.Keywords: ACL reconstruction, mechanical, physiological, gait efficiency
Procedia PDF Downloads 437521 Retrospective Analysis of Facial Skin Cancer Patients Treated in the Department of Oral and Maxillofacial Surgery Kiel
Authors: Abdullah Saeidi, Aydin Gülses, Christan Flörke
Abstract:
Skin cancer of the face region is the most common type of malignancy and surgical excision is the preferred approach. However, the clinical long term results reported in the literature are still controversial. Objectives: To describe; 1. Demographical characteristics 2. Affected site, distribution and TNM classification regarding tumor type 3. Surgical aspects • Surgical removal: excision principles, safety margins, the need for secondary resection, primary reconstruction/ defect closure, anesthesia protocol, duration of hospital stay (if any) • Secondary intervention for defect closure/reconstruction: Flap technique, anesthesia protocol, duration of hospital stay (if any), postoperative wound management etc. 4. Tumor recurrences 5. Clinical outcomes 6. Studying the possible therapy approach throw Biostatistical relation and correlation between multiple Histological, diagnostics and clinical Faktors. following surgical ablation of the skin cancer of the head and neck region. Methods: Selection and statistical analysis of medical records of patients who had admitted to the Department of Oral and Maxillofacial Surgery, Universitätsklinikum Schleswig Holstein, Campus Kiel during the period of 2015-2019 will be retrospectively evaluated. Data will be collected via ORBIS Information-Management-System (ORBIS AG, Saarbrücken, Germany).Keywords: non melanoma skin cancer, face skin cancer, skin reconstruction, non melanoma skin cancer recurrence, non melanoma skin cancer metastases
Procedia PDF Downloads 106520 Study on Pedestrian Street Reconstruction under Comfortable Continuous View: Take the Walking Streets of Zhengzhou City as an Example
Authors: Liu Mingxin
Abstract:
Streets act as the organizers of each image element on the urban spatial route, and the spatial continuity of urban streets is the basis for people to perceive the overall image of the city. This paper takes the walking space of Zhengzhou city as the research object, conducts investigation and analysis through questionnaire interviews, and selects typical walking space for in-depth study. Through the analysis of questionnaire data, the investigation and analysis of the current situation of walking space, and the analysis of pedestrian psychological behavior activities, the paper summarizes the construction suggestions of urban walking space continuity from the three aspects of the composition of walking street, the bottom interface and side interface, and the service facilities of walking space. The walking space is not only the traffic space but also the comfortable experience and the continuity of the space.Keywords: walking space, spatial continuity, walking psychology, space reconstruction
Procedia PDF Downloads 46519 Speckle-Based Phase Contrast Micro-Computed Tomography with Neural Network Reconstruction
Authors: Y. Zheng, M. Busi, A. F. Pedersen, M. A. Beltran, C. Gundlach
Abstract:
X-ray phase contrast imaging has shown to yield a better contrast compared to conventional attenuation X-ray imaging, especially for soft tissues in the medical imaging energy range. This can potentially lead to better diagnosis for patients. However, phase contrast imaging has mainly been performed using highly brilliant Synchrotron radiation, as it requires high coherence X-rays. Many research teams have demonstrated that it is also feasible using a laboratory source, bringing it one step closer to clinical use. Nevertheless, the requirement of fine gratings and high precision stepping motors when using a laboratory source prevents it from being widely used. Recently, a random phase object has been proposed as an analyzer. This method requires a much less robust experimental setup. However, previous studies were done using a particular X-ray source (liquid-metal jet micro-focus source) or high precision motors for stepping. We have been working on a much simpler setup with just small modification of a commercial bench-top micro-CT (computed tomography) scanner, by introducing a piece of sandpaper as the phase analyzer in front of the X-ray source. However, it needs a suitable algorithm for speckle tracking and 3D reconstructions. The precision and sensitivity of speckle tracking algorithm determine the resolution of the system, while the 3D reconstruction algorithm will affect the minimum number of projections required, thus limiting the temporal resolution. As phase contrast imaging methods usually require much longer exposure time than traditional absorption based X-ray imaging technologies, a dynamic phase contrast micro-CT with a high temporal resolution is particularly challenging. Different reconstruction methods, including neural network based techniques, will be evaluated in this project to increase the temporal resolution of the phase contrast micro-CT. A Monte Carlo ray tracing simulation (McXtrace) was used to generate a large dataset to train the neural network, in order to address the issue that neural networks require large amount of training data to get high-quality reconstructions.Keywords: micro-ct, neural networks, reconstruction, speckle-based x-ray phase contrast
Procedia PDF Downloads 257518 Finite Element Modelling and Analysis of Human Knee Joint
Authors: R. Ranjith Kumar
Abstract:
Computer modeling and simulation of human movement is playing an important role in sports and rehabilitation. Accurate modeling and analysis of human knee join is more complex because of complicated structure whose geometry is not easily to represent by a solid model. As part of this project, from the number of CT scan images of human knee join surface reconstruction is carried out using 3D slicer software, an open source software. From this surface reconstruction model, using mesh lab (another open source software) triangular meshes are created on reconstructed surface. This final triangular mesh model is imported to Solid Works, 3D mechanical CAD modeling software. Finally this CAD model is imported to ABAQUS, finite element analysis software for analyzing the knee joints. The results obtained are encouraging and provides an accurate way of modeling and analysis of biological parts without human intervention.Keywords: solid works, CATIA, Pro-e, CAD
Procedia PDF Downloads 124517 Frame Camera and Event Camera in Stereo Pair for High-Resolution Sensing
Authors: Khen Cohen, Daniel Yankelevich, David Mendlovic, Dan Raviv
Abstract:
We present a 3D stereo system for high-resolution sensing in both the spatial and the temporal domains by combining a frame-based camera and an event-based camera. We establish a method to merge both devices into one unite system and introduce a calibration process, followed by a correspondence technique and interpolation algorithm for 3D reconstruction. We further provide quantitative analysis about our system in terms of depth resolution and additional parameter analysis. We show experimentally how our system performs temporal super-resolution up to effectively 1ms and can detect fast-moving objects and human micro-movements that can be used for micro-expression analysis. We also demonstrate how our method can extract colored events for an event-based camera without any degradation in the spatial resolution, compared to a colored filter array.Keywords: DVS-CIS stereo vision, micro-movements, temporal super-resolution, 3D reconstruction
Procedia PDF Downloads 297