Search results for: pulmonary ventilation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 603

Search results for: pulmonary ventilation

513 An Overview of Heating and Cooling Techniques Used in Green Buildings

Authors: Umesh Kumar Soni, Suresh Kumar Soni, S. R. Awasthi

Abstract:

Worldwide biggest difficulties are climate change, future availability of fossil fuels, and economical feasibility of renewable energy. They force us to use to a greater extent renewable energy and develop suitable hybrid renewable systems. Building heating/cooling consumes significant amount of energy. It can be conserved by use of proper heating/cooling techniques. This paper reviews and critically analyzes various active, passive and hybrid heating/cooling techniques used in green buildings.

Keywords: natural ventilation, energy conservation, hybrid ventilation techniques, climate change

Procedia PDF Downloads 575
512 Rotor Concepts for the Counter Flow Heat Recovery Fan

Authors: Christoph Speer

Abstract:

Decentralized ventilation systems should combine a small and economical design with high aerodynamic and thermal efficiency. The Counter Flow Heat Recovery Fan (CHRF) provides the ability to meet these requirements by using only one cross flow fan with a large number of blades to generate both airflows and which simultaneously acts as a regenerative counter flow heat exchanger. The successful development of the first laboratory prototype has shown the potential of this ventilation system. Occurring condensate on the surfaces of the fan blades during the cold and dry season can be recovered through the characteristic mode of operation. Hence the CHRF provides the possibility to avoid the need for frost protection and condensate drain. Through the implementation of system-specific solutions for flow balancing and summer bypass the required functionality is assured. The scalability of the CHRF concept allows the use in renovation as well as in new buildings from single-room devices through to systems for office buildings. High aerodynamic and thermal efficiency and the lower number of required mechatronic components should enable a reduction in investment as well as operating costs. The rotor is the key component of the system, the requirements and possible implementation variants are presented.

Keywords: CHRF, counter flow heat recovery fan, decentralized ventilation system, renovation

Procedia PDF Downloads 329
511 Early versus Late Percutaneous Tracheostomy in Critically Ill Adult Mechanically Ventilated Patients

Authors: Kamel Abd Elaziz Mohamed, Ahmed Yehia Mousa, Ahmed Samir ElSawy, Adel Mohamed Saleem

Abstract:

Introduction: Critically ill patients frequently require tracheostomy to simplify long term air way management. While tracheostomy indications have remained unchanged, the timing of elective tracheostomy for the ventilated patient has been questioned. Aim of the work: This study was performed to compare the differences between early and late percutaneous dilatational tracheostomy (PDT) regarding, mechanical ventilation duration (MVD), length of ICU stay, length of hospital stay, incidence of ventilator associated pneumonia and hospital outcome. Patients and methods: Forty patients who met the inclusion criteria were randomly divided into early PDT who had the tracheostomy within the first 10 days of mechanical ventilation (MV) and the late PDT who had the tracheostomy after 10 days of MV. On admission, demographic data and Acute Physiology and Chronic ill Health II and GCS were collected. The duration of mechanical ventilation, ICU length of stay (LOS) and hospital LOS were all calculated. Results: Total of 40 patients were randomized to either early PDT (n= 20) or late PDT (n= 20). There were no significant differences between both groups regarding demographic data or the scores: APACHE II (22.75± 7 vs 24.35 ± 8) and GCS (6.10 ±2 vs 7.10 ± 2.71). An early PDT showed fewer complications vs late procedure, however it was insignificant. There were significant differences between the two groups regarding mean (MVD) which was shorter in early PDT than the late PDT group (32.2± 10.5) vs (20.6 ± 13 days; p= 0.004). Mean ICU stay was shorter in early PDT than late PDT (21 .0± 513.4) vs (40.15 ±12.7 days; p 6 0.001). Mean hospital stay was shorter in early PDT than late PDT (34.60± 18.37) vs (55.60± 25.73 days; p=0.005). Patients with early PDT suffered less sepsis and VAP than late PDT, there was no difference regarding the mortality rate between the two groups. Conclusion: Early PDT is recommended for patients who require prolonged tracheal intubation in the ICU as outcomes like the duration of mechanical ventilation length of ICU stay and hospital stay were significantly shorter in early tracheostomy.

Keywords: intensive care unit, early PDT, late PDT, intubation

Procedia PDF Downloads 563
510 Computational Fluid Dynamics Analysis for Radon Dispersion Study and Mitigation

Authors: A. K. Visnuprasad, P. J. Jojo, Reshma Bhaskaran

Abstract:

Computational fluid dynamics (CFD) is used to simulate the distribution of indoor radon concentration in a living room with elevated levels of radon concentration which varies from 22 Bqm-3 to 1533 Bqm-3 in 24 hours. Finite volume method (FVM) was used for the simulation. The simulation results were experimentally validated at 16 points in two horizontal planes (y=1.4m & y=2.0m) using pin-hole dosimeters and at 3 points using scintillation radon monitor (SRM). Passive measurement using pin-hole dosimeters were performed in all seasons. Another simulation was done to find a suitable position for a passive ventilation system for the effective mitigation of radon.

Keywords: indoor radon, computational fluid dynamics, radon flux, ventilation rate, pin-hole dosimeter

Procedia PDF Downloads 386
509 Fuzzy Logic for Control and Automatic Operation of Natural Ventilation in Buildings

Authors: Ekpeti Bukola Grace, Mahmoudi Sabar Esmail, Chaer Issa

Abstract:

Global energy consumption has been increasing steadily over the last half - century, and this trend is projected to continue. As energy demand rises in many countries throughout the world due to population growth, natural ventilation in buildings has been identified as a viable option for lowering these demands, saving costs, and also lowering CO2 emissions. However, natural ventilation is driven by forces that are generally unpredictable in nature thus, it is important to manage the resulting airflow in order to maintain pleasant indoor conditions, making it a complex system that necessitates specific control approaches. The effective application of fuzzy logic technique amidst other intelligent systems is one of the best ways to bridge this gap, as its control dynamics relates more to human reasoning and linguistic descriptions. This article reviewed existing literature and presented practical solutions by applying fuzzy logic control with optimized techniques, selected input parameters, and expert rules to design a more effective control system. The control monitors used indoor temperature, outdoor temperature, carbon-dioxide levels, wind velocity, and rain as input variables to the system, while the output variable remains the control of window opening. This is achieved through the use of fuzzy logic control tool box in MATLAB and running simulations on SIMULINK to validate the effectiveness of the proposed system. Comparison analysis model via simulation is carried out, and with the data obtained, an improvement in control actions and energy savings was recorded.

Keywords: fuzzy logic, intelligent control systems, natural ventilation, optimization

Procedia PDF Downloads 97
508 Traditional Values and Their Adaptation in Social Housing Design: Towards a New Typology and Establishment of 'Airhouse' Standard in Malaysia

Authors: Mohd Firrdhaus Mohd Sahabuddin, Cristina Gonzalez-Longo

Abstract:

Large migration from rural areas to urban areas like Kuala Lumpur has led to some implications for economic, social and cultural development. This high population has placed enormous demand on the existing housing stocks, especially for low-income groups. However, some issues arise, one of which is overheated indoor air temperature. This problem contributes to the high-energy usage that forces huge sums of money to be spent on cooling the house by using mechanical equipment. Therefore, this study focuses on thermal comfort in social housing, and incorporates traditional values into its design to achieve a certain measurement of natural ventilation in a house. From the study, the carbon emission and energy consumption for an air-conditioned house is 67%, 66% higher than a naturally ventilated house. Therefore, this research has come up with a new typology design, which has a large exposed wall area and full-length openings on the opposite walls to increase cross ventilation. At the end of this research, the measurement of thermal comfort for a naturally ventilated building called ‘AirHouse’ has been identified.

Keywords: tropical architecture, natural ventilation, passive design, AirHouse, social housing design

Procedia PDF Downloads 652
507 Early Versus Delayed Antiretroviral Therapy in HIV‐positive People with Tuberculosis

Authors: Mohhamed El Habib Labdouni

Abstract:

Introduction: Co-infection with VIH and tuberculosis poses one of the major ongoing challenges for global TB and AIDS prevention and control. The objective of this study is to raise the issue of the resurgence of TB, in People living with VIH supported in a referent center in western Algeria. Its epidemiological, clinical, biological and radiological new trends, and to compare the mortality rate between early and delayed ART. Methods: It was a prospective study, during 36 months from the 01st/01/2012 to 31st/12/2014, by identifying and analyzing cases of TB-VIH co-infection. Our population was devised in two groups/ early ART and delayed ART. The primary and secondary endpoints were analyzed with Kaplan-Meier curves and log-rank test the period of follow up, which was fixed at 300 weeks. Results: Sixty cases of co-infection TB -VIH were enrolled in our study: 78.3% had pulmonary tuberculosis associated with extra-pulmonary, 13.3% had only pulmonary tuberculosis and 08.3% presented strictly extra-pulmonary TB. The clinical particularity of this co-infection is the frequency of serious localization such us: pleural 23.3%, peritoneal 31.7%, and meningeal suffusion 13.3%.y-.biologicaly we notice the predominance both of pancytopenia and leucoanemia, hyponatremia in 38,6% and hypokalemia in 19,3%. By analyzing Kaplan-Meier survival curves, we notice that early ART initiation is associated with a significant reduction of all-cause mortality (p = 0,000), and we have identified several prognostic factors such as hypokalemia hyponatremia, leukocytosis thrombopenemia leucothrombopenia (p = 0,005). Conclusion: Our study confirms most of the results reported in the literature. Early ART initiation reduces the rate of all-cause mortality, despite the probability of the occurrence of TB-IRIS.

Keywords: TB-HIV co-infection, early ART, hyponatremia, extrapulmonary tuberculosis

Procedia PDF Downloads 160
506 A Study of New Window Typology for Palestinian Residential Building for More Sustainable Building

Authors: Nisreen Ardda

Abstract:

Fenestrations are one of the main building envelope elements that play an important role in home social-ecological l factors. They play a vital role in providing natural lighting and ventilation, visual, thermal, and acoustical comfort, and also provide weather-tightness, privacy, a feeling of openness. In most home buildings, fenestrations are controlled manually by the occupants, which significantly impacts occupants' comfort and energy use. Culture plays a central role in the Palestinians window operation behavior. Improved windows design that provides the desired privacy while maintaining the appropriate function of fenestration (natural lighting, thermal comfort, and visual openness) is becoming a necessity. Therefore, this paper proposes a window typology to achieve the social and environmental factors in residential buildings in the West Bank. The window typology and reference building were designed in Rivet 2021, and natural ventilation was carried out in Design Builder 4.3.0.039. The results showed that the proposed typology provides the desired privacy and the feeling of openness without compromising natural ventilation as the existing window did.

Keywords: window design, passive design, sustainable built environment, building material

Procedia PDF Downloads 164
505 The Application of FSI Techniques in Modeling of Realist Pulmonary Systems

Authors: Abdurrahim Bolukbasi, Hassan Athari, Dogan Ciloglu

Abstract:

The modeling lung respiratory system which has complex anatomy and biophysics presents several challenges including tissue-driven flow patterns and wall motion. Also, the lung pulmonary system because of that they stretch and recoil with each breath, has not static walls and structures. The direct relationship between air flow and tissue motion in the lung structures naturally prefers an FSI simulation technique. Therefore, in order to toward the realistic simulation of pulmonary breathing mechanics the development of a coupled FSI computational model is an important step. A simple but physiologically-relevant three dimensional deep long geometry is designed and fluid-structure interaction (FSI) coupling technique is utilized for simulating the deformation of the lung parenchyma tissue which produces airflow fields. The real understanding of respiratory tissue system as a complex phenomenon have been investigated with respect to respiratory patterns, fluid dynamics and tissue visco-elasticity and tidal breathing period.

Keywords: lung deformation and mechanics; Tissue mechanics; Viscoelasticity; Fluid-structure interactions; ANSYS

Procedia PDF Downloads 292
504 Performance Assessment of Ventilation Systems for Operating Theatres

Authors: Clemens Bulitta, Sasan Sadrizadeh, Sebastian Buhl

Abstract:

Introduction: Ventilation technology in operating theatres (OT)is internationally regulated by dif-ferent standards, which define basic specifications for technical equipment and many times also the necessary operating and performance parameters. This confronts the operators of healthcare facilities with the question of finding the best ventilation and air conditioning system for the OT in order to achieve the goal of a large and robust surgicalworkzone with appropriate air quality and climate for patient safety and occupational health. Additionally, energy consumption and the potential need for clothing that limits transmission of bacteria must be considered as well as the total life cycle cost. However, the evaluation methodology of ventilation systems regarding these matters are still a topic of discussion. To date, there are neither any uniform standardized specifications nor any common validation criteria established. Thus, this study aimed to review data in the literature and add ourown research results to compare and assess the performance of different ventilations systems regarding infection preventive effects, energy efficiency, and staff comfort. Methods: We have conducted a comprehensive literature review on OT ventilation-related topics to understand the strengths and limitations of different ventilation systems. Furthermore, data from experimental assessments on OT ventilation systems at the University of Amberg-Weidenin Germany were in-cluded to comparatively assess the performance of Laminar Airflow (LAF), Turbulent Mixing Air-flow(TMA), and Temperature-controlled Airflow (TcAF) with regards to patient and occupational safety as well as staff comfort including indoor climate.CFD simulations from the Royal Institute of Technology in Sweden (KTH) were also studied to visualize the differences between these three kinds of ventilation systems in terms of the size of the surgical workzone, resilience to obstacles in the airflow, and energy use. Results: A variety of ventilation concepts are in use in the OT today. Each has its advantages and disadvantages, and thus one may be better suited than another depend-ing on the built environment and clinical workflow. Moreover, the proper functioning of OT venti-lation is also affected by multiple external and internal interfering factors. Based on the available data TcAF and LAF seem to provide the greatest effects regarding infection control and minimizing airborne risks for surgical site infections without the need for very tight surgical clothing systems. Resilience to obstacles, staff comfort, and energy efficiency seem to be favourable with TcAF. Conclusion: Based on literature data in current publications and our studies at the Technical Uni-versity of Applied Sciences Amberg-Weidenand the Royal Institute of Technoclogy, LAF and TcAF are more suitable for minimizing the risk for surgical site infections leading to improved clin-ical outcomes. Nevertheless, regarding the best management of thermal loads, atmosphere, energy efficiency, and occupational safety, overall results and data suggest that TcAF systems could pro-vide the economically most efficient and clinically most effective solution under routine clinical conditions.

Keywords: ventilation systems, infection control, energy efficiency, operating theatre, airborne infection risks

Procedia PDF Downloads 76
503 The Effect of Gas Flare on the Health of Schoolchildren in the Niger Delta Area of Nigeria

Authors: Uche Joyce Ogbonda, Yingchun Ji, Paul Coates

Abstract:

The proximity of schools to gas flaring sites and the use of simple ventilation systems in school buildings with currently no regulation or laid down blueprint during design and construction in an environment prone to adverse environmental hazards caused by the continuous exploration of oil in the Niger Delta is worrisome. Although a wide health implication has been associated with inhalation of poor air, its effect on the performance of schoolchildren and staffs is poorly understood. Thus, the aim of this research is to explore from professionals around the region the issues surrounding the provision of clean air indoors even though, most developed and developing world are advancing in newer systems and technologies for clean indoor air. This study adopts both qualitative and quantitative approach using both open-ended and semi- structured interview techniques. This paper finds that indoor air quality is not considered during design, selection, and construction of schools. Analysis showed that rather than consider the health effect associated with the inhalation of ambient air by schoolchildren who spend 80% of their active time in schools due to the use of simple open windows and doors as source of breathable air. Advanced ventilation systems were therefore recommended to ensure supplying clean air for school buildings.

Keywords: air quality, gas flare, health implication, schools, ventilation system

Procedia PDF Downloads 271
502 Wood as a Climate Buffer in a Supermarket

Authors: Kristine Nore, Alexander Severnisen, Petter Arnestad, Dimitris Kraniotis, Roy Rossebø

Abstract:

Natural materials like wood, absorb and release moisture. Thus wood can buffer indoor climate. When used wisely, this buffer potential can be used to counteract the outer climate influence on the building. The mass of moisture used in the buffer is defined as the potential hygrothermal mass, which can be an energy storage in a building. This works like a natural heat pump, where the moisture is active in damping the diurnal changes. In Norway, the ability of wood as a material used for climate buffering is tested in several buildings with the extensive use of wood, including supermarkets. This paper defines the potential of hygrothermal mass in a supermarket building. This includes the chosen ventilation strategy, and how the climate impact of the building is reduced. The building is located above the arctic circle, 50m from the coastline, in Valnesfjord. It was built in 2015, has a shopping area, including toilet and entrance, of 975 m². The climate of the area is polar according to the Köppen classification, but the supermarket still needs cooling on hot summer days. In order to contribute to the total energy balance, wood needs dynamic influence to activate its hygrothermal mass. Drying and moistening of the wood are energy intensive, and this energy potential can be exploited. Examples are to use solar heat for drying instead of heating the indoor air, and raw air with high enthalpy that allow dry wooden surfaces to absorb moisture and release latent heat. Weather forecasts are used to define the need for future cooling or heating. Thus, the potential energy buffering of the wood can be optimized with intelligent ventilation control. The ventilation control in Valnesfjord includes the weather forecast and historical data. That is a five-day forecast and a two-day history. This is to prevent adjustments to smaller weather changes. The ventilation control has three zones. During summer, the moisture is retained to dampen for solar radiation through drying. In the winter time, moist air let into the shopping area to contribute to the heating. When letting the temperature down during the night, the moisture absorbed in the wood slow down the cooling. The ventilation system is shut down during closing hours of the supermarket in this period. During the autumn and spring, a regime of either storing the moisture or drying out to according to the weather prognoses is defined. To ensure indoor climate quality, measurements of CO₂ and VOC overrule the low energy control if needed. Verified simulations of the Valnesfjord building will build a basic model for investigating wood as a climate regulating material also in other climates. Future knowledge on hygrothermal mass potential in materials is promising. When including the time-dependent buffer capacity of materials, building operators can achieve optimal efficiency of their ventilation systems. The use of wood as a climate regulating material, through its potential hygrothermal mass and connected to weather prognoses, may provide up to 25% energy savings related to heating, cooling, and ventilation of a building.

Keywords: climate buffer, energy, hygrothermal mass, ventilation, wood, weather forecast

Procedia PDF Downloads 187
501 Operating Model of Obstructive Sleep Apnea Patients in North Karelia Central Hospital

Authors: L. Korpinen, T. Kava, I. Salmi

Abstract:

This study aimed to describe the operating model of obstructive sleep apnea. Due to the large number of patients, the role of nurses in the diagnosis and treatment of sleep apnea was important. Pulmonary physicians met only a minority of the patients. The sleep apnea study in 2018 included about 800 patients, of which about 28% were normal and 180 patients were classified as severe (apnea-hypopnea index [AHI] over 30). The operating model has proven to be workable and appropriate. The patients understand well that they may not be referred to a pulmonary doctor. However, specialized medical follow-up on professional drivers continues every year.

Keywords: sleep, apnea patient, operating model, hospital

Procedia PDF Downloads 103
500 The Role of Semi Open Spaces on Exploitation of Wind-Driven Ventilation

Authors: Paria Saadatjoo

Abstract:

Given that HVAC systems are the main sources of carbon dioxide producers, developing ways to reduce dependence on these systems and making use of natural resources is too important to achieve environmentally friendly buildings. A major part of building potential in terms of using natural energy resources depends on its physical features. So architectural decisions at the first step of the design process can influence the building's energy efficiency significantly. Implementation of semi-open spaces into solid apartment blocks inspired by the concept of courtyard in ancient buildings as a passive cooling strategy is currently enjoying great popularity. However, the analysis of these features and their effect on wind behavior at initial design steps is a difficult task for architects. The main objective of this research was to investigate the influence of semi-open to closed space ratio on airflow patterns in and around midrise buildings and introduce the best ratio in terms of harnessing natural ventilation. The main strategy of this paper was semi-experimental, and the research methodology was descriptive statistics. At the first step, by changing the terrace area, 6 models with various open to closed space ratios were created. These forms were then transferred to CFD software to calculate the primary indicators of natural ventilation potentials such as wind force coefficient, air flow rate, age of air distribution, etc. Investigations indicated that modifying the terrace area and, in other words, the open to closed space ratio influenced the wind force coefficient, airflow rate, and age of air distribution.

Keywords: natural ventilation, wind, midrise, open space, energy

Procedia PDF Downloads 146
499 A Study on the Effectiveness of Alternative Commercial Ventilation Inlets That Improve Energy Efficiency of Building Ventilation Systems

Authors: Brian Considine, Aonghus McNabola, John Gallagher, Prashant Kumar

Abstract:

Passive air pollution control devices known as aspiration efficiency reducers (AER) have been developed using aspiration efficiency (AE) concepts. Their purpose is to reduce the concentration of particulate matter (PM) drawn into a building air handling unit (AHU) through alterations in the inlet design improving energy consumption. In this paper an examination is conducted into the effect of installing a deflector system around an AER-AHU inlet for both a forward and rear-facing orientations relative to the wind. The results of the study found that these deflectors are an effective passive control method for reducing AE at various ambient wind speeds over a range of microparticles of varying diameter. The deflector system was found to induce a large wake zone at low ambient wind speeds for a rear-facing AER-AHU, resulting in significantly lower AE in comparison to without. As the wind speed increased, both contained a wake zone but have much lower concentration gradients with the deflectors. For the forward-facing models, the deflector system at low ambient wind speed was preferred at higher Stokes numbers but there was negligible difference as the Stokes number decreased. Similarly, there was no significant difference at higher wind speeds across the Stokes number range tested. The results demonstrate that a deflector system is a viable passive control method for the reduction of ventilation energy consumption.

Keywords: air handling unit, air pollution, aspiration efficiency, energy efficiency, particulate matter, ventilation

Procedia PDF Downloads 100
498 Effect of Inspiratory Muscle Training on Diaphragmatic Strength Following Coronary Revascularization

Authors: Abeer Ahmed Abdelhamed

Abstract:

Introduction: Postoperative pulmonary complications (PPCs) are the most common complications observed and managed after abdominal or cardiothoracic surgery. Hypoxemia, atelectasis, pleural effusion, or diaphragmatic dysfunction, are often a source of morbidity in cardiac surgery patients, and are more common in patients receiving unilateral or bilateral internal mammary artery (IMT) grafts than patients receiving saphenous vein (SV) grafts alone. Purpose: The aim of this work was to investigate the effect of Threshold load inspiratory muscle training on pulmonary gas exchange and maximum inspiratory pressure (MIP) in patient undergoing coronary revascularization. Subject: Thirty three male patients eligible for coronary revascularization were selected to participate in the study. Method: They were divided into two groups(17 patients in the intervention group and 16 patients in the control group), the interventional group received inspiratory muscle training at 30% of their maximum inspiratory pressure throughout the hospitalization period in addition to routine post operative care. Result: The results of this study showed a significant improvement on maximum inspiratory pressure(MIP), Arterial-alveolar pressure gradient (A-a gradient) and oxygen saturation in the intervention group. Conclusion: Inspiratory muscle training using threshold mode significantly improves maximum inspiratory pressure, pulmonary gas exchange tested by alveolar-arterial gradient and oxygen saturation in Patients undergoing coronary revascularization.

Keywords: coronary revascularization, inspiratory muscle training, maximum inspiratory pressure, pulmonary gas exchange

Procedia PDF Downloads 277
497 Effect of Family-Based DOTS Support Program on Adherence to Health Behaviors among Patients with Pulmonary Tuberculosis in Bandung, Indonesia

Authors: D. I. Yani, S. Isaramalai, C. Kritpracha

Abstract:

Adherence to health behaviors is essential to achieve successful TB treatment. This study aimed to examine the effect of a family-based DOTS support program on adherence to health behaviors in patients with pulmonary TB. Sixty TB patients and their families were selected using cluster randomization of community health centers. The subjects were assigned into a control group, who received the routine care, and an experimental group, who received both routine care and care from the family-based DOTS support program. Paired t-test and the independent t-test were applied. The total score of adherence to health behaviors in the experimental group was significantly higher after receiving care from the family-based DOTS support program than the pretest score (t = -10.34, p < .001). Suggestions were made to expand the application of this program in various contexts and to extend knowledge for nursing practices and research.

Keywords: self-care deficit nursing theory, family-based DOTS program, pulmonary tuberculosis, adherence, health behaviors

Procedia PDF Downloads 436
496 Computational Fluid Dynamics Simulation to Study the Effect of Ambient Temperature on the Ventilation in a Metro Tunnel

Authors: Yousef Almutairi, Yajue Wu

Abstract:

Various large-scale trends have characterized the current century thus far, including increasing shifts towards urbanization and greater movement. It is predicted that there will be 9.3 billion people on Earth in 2050 and that over two-thirds of this population will be city dwellers. Moreover, in larger cities worldwide, mass transportation systems, including underground systems, have grown to account for the majority of travel in those settings. Underground networks are vulnerable to fires, however, endangering travellers’ safety, with various examples of fire outbreaks in this setting. This study aims to increase knowledge of the impacts of extreme climatic conditions on fires, including the role of the high ambient temperatures experienced in Middle Eastern countries and specifically in Saudi Arabia. This is an element that is not always included when assessments of fire safety are made (considering visibility, temperatures, and flows of smoke). This paper focuses on a tunnel within Riyadh’s underground system as a case study and includes simulations based on computational fluid dynamics using ANSYS Fluent, which investigates the impact of various ventilation systems while identifying smoke density, speed, pressure and temperatures within this tunnel.

Keywords: fire, subway tunnel, CFD, mechanical ventilation, smoke, temperature, harsh weather

Procedia PDF Downloads 84
495 Evaluation of Heating/Cooling Potential of a Passive Building

Authors: M. Jamil Ahmad

Abstract:

In this paper, the heating/cooling potential of a passive building (mosque) of Prof. K. A. Nizami center for Quranic studies at AMU Aligarh, has been evaluated on the basis of energy balance under quasi-steady state condition by incorporating the effect of ventilation. The study has been carried out for composite climate of Aligarh. The performance of the above mentioned building has been presented in this study. It is observed that the premises of the mosque are cooler than the outside ambient temperature by an average of 2°C and 4°C during the month of March and April respectively. Provision of excellent ventilation, high amount of thermal mass, high ceilings and circulation of cool natural air helps in maintaining an optimal thermal comfort temperature in the passive building.

Keywords: heating/cooling potential, passive building, ambient temperatures

Procedia PDF Downloads 364
494 Strap Tension Adjusting Device for Non-Invasive Positive Pressure Ventilation Mask Fitting

Authors: Yoshie Asahara, Hidekuni Takao

Abstract:

Non-invasive positive pressure ventilation (NPPV), a type of ventilation therapy, is a treatment in which a mask is attached to the patient's face and delivers gas into the mask to support breathing. The NPPV mask uses a strap, which is necessary to attach and secure the mask in the appropriate facial position, but the tensile strength of the strap is adjusted by the sensation of the hands. The strap uniformity and fine-tuning strap tension are judged by the skill of the operator and the amount felt by the finger. In the future, additional strap operation and adjustment methods will be required to meet the needs for reducing the burden on the patient’s face. In this study, we fabricated a mechanism that can measure, adjust and fix the tension of the straps. A small amount of strap tension can be adjusted by rotating the shaft. This makes it possible to control the slight strap tension that is difficult to grasp with the sense of the operator's hand. In addition, this mechanism allows the operator to control the strap while controlling the movement of the mask body. This leads to the establishment of a suitable mask fitting method for each patient. The developed mechanism enables the operation and fine reproducible adjustment of the strap tension and the mask balance, reducing the burden on the face.

Keywords: balance of the mask strap, fine adjustment, film sensor, mask fitting technique, mask strap tension

Procedia PDF Downloads 206
493 Efficacy and Safety of Inhaled Nebulized Chemotherapy in Treatment of Patients with Newly Diagnosed Pulmonary Tuberculosis in Comparison to Standard Antimycobacterial Therapy

Authors: M. Kuzhko, M. Gumeniuk, D. Butov, T. Tlustova, O. Denysov, T. Sprynsian

Abstract:

Abstract: The objective of this work was to study the efficacy and safety of inhaled nebulized chemotherapy in the treatment of patients with newly diagnosed pulmonary tuberculosis in comparison with standard antimycobacterial therapy. Materials and methods: The study involved 68 patients aged between 20 and 70 years with newly diagnosed pulmonary tuberculosis. Patients were allocated to two groups. The first (main, n=21) group of patients received standard chemotherapy and further 0.15 g of isoniazid and rifampicin 0.15 g inhaled through a nebulizer, also they received salmeterol 50 mcg + fluticasone propionate 250 mcg at 2 breaths twice a day for 2 months. The second (control, n=47) group of patients received standard chemotherapy, consisting of orally administered isoniazid (0.3 g), rifampicin (0.6 g), pyrazinamide (2 g), ethambutol (1.2 g) with a dose reduction after the intensive phase of the therapy. The anti-TB drugs were procured through the Ukraine’s centralized national supply system. Results: Intoxication symptoms in the first group reduced following 1.39±0.18 months, whereas in the second group, intoxication symptoms reduced following 2.7±0.1 months, p<.001. Moreover, respiratory symptoms regression in the first group was observed following 1.6±0.2 months, whereas in the second group – following 2.5±0.2 months, p<0.05. Bacillary excretion period evaluated within 1 month was reduced, as it was shown by 66.6±10.5% in the main group compared to 27.6±6.5%, p<0.05, in the control group. In addition, period of cavities healing was reduced to 2.9±0.2 months in the main group compared to 3.7±0.1 months, p<0.05, in the control group. Residual radiological lung damage findings (large residual changes) were observed in 22 (23.8±9.5 %) patients of the main group versus 24 (51.0±7.2 %) patients in the control group, p<0.05. After completion of treatment scar stenosis of the bronchi II-III art. diagnosed in 3 (14.2±7.8%) patients in main group and 17 (68.0±6.8%) - control group, p<0.05. The duration of hospital treatment was 2.4±0.4 months in main group and 4.1±0.4 months in control group, p<0.05. Conclusion: Administration of of inhaled nebulized chemotherapy in patients with newly diagnosed pulmonary tuberculosis resulted in a comparatively quick reduction of disease manifestation.

Keywords: inhaled nebulized chemotherapy, pulmonary tuberculosis, tuberculosis, treatment of tuberculosis

Procedia PDF Downloads 171
492 Numerical Study of Fire Propagation in Confined and Open Area

Authors: Hadj Miloua, Abbes Azzi

Abstract:

The objective of the present paper is to understand, predict and modeled the fire behavior in confined and open area in different conditions and diverse fuels such as liquid pool fire and the vegetative materials. The distinctive problems are a ventilated road tunnel used for urban transport, by the characterization installations of ventilation and his influence in the mode of smoke dispersion and the flame shape. A general investigation is relatively traditional, based on the modeling and simulation the scenario of the pool fire interacted with wind ventilation by the use of numerical software fire dynamic simulator FDS ver.5 to simulate the fire in ventilated tunnel. The second simulation by WFDS.5 is Wildland fire which is always occurs in forest and rangeland fire environments and will thus have an impact on people, property and resources.

Keywords: fire, road tunnel, simulation, vegetation, wildland

Procedia PDF Downloads 484
491 Failure Probability Assessment of Concrete Spherical Domes Subjected to Ventilation Controlled Fires Using BIM Tools

Authors: A. T. Kassem

Abstract:

Fires areconsidered a common hazardous action that any building may face. Most buildings’ structural elements are designed, taking into consideration precautions for fire safety, using deterministic design approaches. Public and highly important buildings are commonly designed considering standard fire rating and, in many cases, contain large compartments with central domes. Real fire scenarios are not commonly brought into action in structural design of buildings because of complexities in both scenarios and analysis tools. This paper presents a modern approach towards analysis of spherical domes in real fire condition via implementation of building information modelling, and adopting a probabilistic approach. BIMhas been implemented to bridge the gap between various software packages enabling them to function interactively to model both real fire and corresponding structural response. Ventilation controlled fires scenarios have been modeled using both “Revit” and “Pyrosim”. Monte Carlo simulation has been adopted to engage the probabilistic analysis approach in dealing with various parameters. Conclusions regarding failure probability and fire endurance, in addition to the effects of various parameters, have been extracted.

Keywords: concrete, spherical domes, ventilation controlled fires, BIM, monte carlo simulation, pyrosim, revit

Procedia PDF Downloads 70
490 CFD Analysis of Passive Cooling Building by Using Solar Chimney for Mild or Warm Climates

Authors: Naci Kalkan, Ihsan Dagtekin

Abstract:

This research presents the design and analysis of solar air-conditioning systems particularly solar chimney which is a passive strategy for natural ventilation, and demonstrates the structures of these systems’ using Computational Fluid Dynamic (CFD) and finally compares the results with several examples, which have been studied experimentally and carried out previously. In order to improve the performance of solar chimney system, highly efficient sub-system components are considered for the design. The general purpose of the research is to understand how efficiently solar chimney systems generate cooling, and is to improve the efficient of such systems for integration with existing and future domestic buildings.

Keywords: active and passive solar technologies, solar cooling system, solar chimney, natural ventilation, cavity depth, CFD models for solar chimney

Procedia PDF Downloads 542
489 Pulmonary Hydatid Cyst in a 13-Year-Old Child: A Case Report

Authors: Ghada Esheba, Bayan Hafiz, Ashwaq Al-Qarni, Abdulelah AlMalki, Esraa Kaheel

Abstract:

Hydatid disease is caused by genus Echinococcus, it is transmitted to human through sheep and cattle. People who lived in an endemic area should be suspected to have the disease. Pulmonary hydatid disease can be presented by respiratory manifestations as in our case. We report a case of child, 13 years old, who was presented by shortness of breath and non-productive cough 2 months ago. The patient had an attack of hemoptysis 3 months ago but there is no history of fever, other constitutional symptoms or any medical illness. The patient has had a close contact with a horse. On examination, the patient was oriented and vitally stable. Both side of chest were moving equally with decrease air entry on the left side of the chest. Cervical lymph node enlargement was also detected. The case was provisionally diagnosed as tuberculosis. The x-ray was normal, while CT scan showed two cysts in the left side. The patient was treated surgically with resection of both cysts without lobectomy. Broncho-alveolar lavage was done and together with plural effusion and both cysts were sent for histopathology. The patient received the following medication: albendazole 200MG/BID/Orally for 30 days and Cefuroxime 250MG/Q12H/Orally for 10 days.

Keywords: Echinococcus granulosus, hydatid disease, pediatrics, pulmonary hydatid cyst

Procedia PDF Downloads 246
488 An Exploratory Investigation into the Quality of Life of People with Multi-Drug Resistant Pulmonary Tuberculosis (MDR-PTB) Using the ICF Core Sets: A Preliminary Investigation

Authors: Shamila Manie, Soraya Maart, Ayesha Osman

Abstract:

Introduction: People diagnosed with multidrug resistant pulmonary tuberculosis (MDR-PTB) is subjected to prolonged hospitalization in South Africa. It has thus become essential for research to shift its focus from a purely medical approach, but to include social and environmental factors when looking at the impact of the disease on those affected. Aim: To explore the factors affecting individuals with multi-drug resistant pulmonary tuberculosis during long-term hospitalization using the comprehensive ICF core-sets for obstructive pulmonary disease (OPD) and cardiopulmonary (CPR) conditions at Brooklyn Chest Hospital (BCH). Methods: A quantitative descriptive, cross-sectional study design was utilized. A convenient sample of 19 adults at Brooklyn Chest Hospital were interviewed. Results: Most participants reported a decrease in exercise tolerance levels (b455: n=11). However it did not limit participation. Participants reported that a lack of privacy in the environment (e155) was a barrier to health. The presence of health professionals (e355) and the provision of skills development services (e585) are facilitators to health and well-being. No differences exist in the functional ability of HIV positive and negative participants in this sample. Conclusion: The ICF Core Sets appeared valid in identifying the barriers and facilitators experienced by individuals with MDR-PTB admitted to BCH. The hospital environment must be improved to add to the QoL of those admitted, especially improving privacy within the wards. Although the social grant is seen as a facilitator, greater emphasis must be placed on preparing individuals to be economically active in the labour for when they are discharged.

Keywords: multidrug resistant tuberculosis, MDR ICF core sets, health-related quality of life (HRQoL), hospitalization

Procedia PDF Downloads 318
487 Risk Factors of Hospital Acquired Infection Mortality in a Tunisian Intensive Care Unit

Authors: Ben Cheikh Asma, Bouafia Nabiha, Ammar Asma, Ezzi Olfa, Meddeb Khaoula, Chouchène Imed, Boussarsar Hamadi, Njah Mansour

Abstract:

Background: Hospital Acquired Infection (HAI) constitutes an important worldwide health problem. It was associated with high mortality rate in intensive care units (ICU). This study aimed to determine HAI mortality rate in Tunisian intensive care units and identify its risk factors. Methods: We conducted a prospective observational cohort study over a 12 months period (September 15th 2015 to September 15 th 2016) in the adult medical ICU of University Hospital-Farhat Hached (Sousse-Tunisia). All patients admitted in the ICU for more than 48 hours were included in the study. We used an anonymous standardized survey record form to collect data by a medical hygienist assisted by an intensivist. We adopted definitions of Center for Diseases Control and prevention of Atlanta to detect HAI, Kaplan Meier survival analysis and Cox proportional hazard regression to identify independent risk factor of HAI mortality. Results: Of 171 patients, 67 developed ICU-acquired infection (global incidence rate=39.2%). The mean age of patients was 59 ± 21.2 years and 60.8% were male. The most frequently identified infections were pulmonary acquired infection (ventilator associated pneumonia (VAP) and infected atelectasis with density rates 21.4 VAP/1000 days of mechanical ventilation and 9.4 infected atelectasis /1000 days of mechanical ventilation; respectively) and central venous catheter associated infection (CVC - AI) with density rate 28.4 CVC-AI / 1000 CVC-days). HAI mortality rate was 66.7% (n=44). The median survival was 20 days 3.36, 95% Confidential Interval [13.39 – 26.60]. Specific mortality rates according to infectious site were 65.5%, 36.4% and 4.5% respectively for VAP, CVC associated infection and infected atelectasis. In univariate analysis, a significant associations between mortality and cardiovascular history (p=0.04) tracheotomy (p=0.00), peripheral venous catheterization (p=0.04), VAP (p=0.04) and infected atelectasis (p=0.04) were detected. Independent risk factors for HAI mortality were VAP with Hazard Ratio = 3.14, 95% Confidential Interval [1.63 – 6.05] (p=0.001) and tracheotomy (Hazard Ratio=0.22, 95% Confidential Interval [0.10 – 0.44], p=0.000). Conclusions: In the present study, hospital acquired infection mortality rate was relatively high. We need to intensify the fight against these infections especially ventilator-associated pneumonia that is associated with higher risk of mortality in many studies. Thus, more effective infection control interventions were necessary in our hospital.

Keywords: hospital acquired infection, intensive care unit, mortality, risk factors

Procedia PDF Downloads 458
486 The Impact of Lipids on Lung Fibrosis

Authors: G. Wojcik, J. Gindlhuber, A. Syarif, K. Hoetzenecker, P. Bohm, P. Vesely, V. Biasin, G. Kwapiszewska

Abstract:

Pulmonary fibrosis is a rare disease where uncontrolled wound healing processes damage the lung structure. Intensive changes within the extracellular matrix (ECM) and its interaction with fibroblasts have a major role in pulmonary fibrosis development. Among others, collagen is one of the main components of the ECM, and it is important for lung structure. In IPF, constant production of collagen by fibroblast, through TGFβ1-SMAD2/3 pathways, leads to an uncontrolled deposition of matrix and hence lung remodeling. Abnormal changes in lipid production, alterations in fatty acids (FAs) metabolism, enhanced oxidative stress, and lipid peroxidation in fibrotic lung and fibrotic fibroblasts have been reported; however, the interplay between the collagen and lipids is not yet established. One of the FAs influx regulators is Angiopoietin-like 4 (ANGPTL4), which inhibits lipoprotein lipase work, decreasing the availability of FAs. We hypothesized that altered lipid composition or availability could have the capability to influence the phenotype of different fibroblast populations in the lung and hence influence lung fibrosis. To prove our hypothesis, we aim to investigate lipids and their influence on human, animal, and in vitro levels. In the bleomycin model, treatment with the well-known metabolic drugs Rosiglitazone or Metformin significantly lower collagen production. Similar results were noticed in ANGPTL4 KO animals, where the KO of ANGPTL4 leads to an increase of FAs availability and lower collagen deposition after the bleomycin challenge. Currently, we study the treatment of different FAs on human lung para fibroblasts (hPF) isolated from donors. To understand the lipid composition, we are collecting human lung tissue from donors and pulmonary fibrosis patients for Liquid chromatography-mass spectrometry. In conclusion, our results suggest the lipid influence on collagen deposition during lung fibrosis, but further research needs to be conducted to understand the matter of this relationship.

Keywords: collagen, fibroblasts, lipidomics, lung, pulmonary fibrosis

Procedia PDF Downloads 59
485 Association of Hypoxia-Inducible Factor-1α in Patients with Chronic Obstructive Pulmonary Diseases

Authors: Kriti Upadhyay, Ashraf Ali, Puja Sohal, Randeep Guleria

Abstract:

Background: In Chronic Obstructive Pulmonary diseases (COPD) pathogenesis oxidative stress plays an important role. Hypoxia-Inducible factor (HIF-1α) is a dimeric protein complex which Functions as a master transcriptional regulator of the adaptive response to hypoxiaand is a risk factor that increases when oxidative stress triggers. The role ofHIF-1αin COPD due to smoking is lacking. Aim: This study aims to evaluate the role of HIF-1α in smoker COPD patients comparing its association with diseases severity. Method: In this cross-sectional study, we recruited 87 subjects, 57 were smokers with COPD,15 were smokers without COPD and other 15 were non-smoker healthy controls. The mean age was 54.6± 9.32 (cases 57.08±8.15; controls 50.0± 9.8). There were 62%smokers, 25% non-smokers,7% tobacco chewers and 6% ex-smokers. Enzyme-linked immune sorbent assay (ELISA) method was used for analyzing serum samples wherein HIF-1α was analyzed by Sandwich-ELISA. Results: In smoker COPD patients, a significantly higher HIF-1α level showed positive association with hypoxia, smoking status and severity of disease (p=0.03). The mean value of HIF-1α was not significantly different in smokers without COPD and healthy controls. Conclusion: It is found that HIF-1α level was increased in smoker COPD, but not in smokers without COPD. This suggests that development of COPD drive the HIF-1α pathway and it correlates with the severity of diseases.

Keywords: COPD, chronic obstructive pulmonary diseases, smokers, nonsmokers, hypoxia

Procedia PDF Downloads 119
484 Reduced Lung Volume: A Possible Cause of Stuttering

Authors: Shantanu Arya, Sachin Sakhuja, Gunjan Mehta, Sanjay Munjal

Abstract:

Stuttering may be defined as a speech disorder affecting the fluency domain of speech and characterized by covert features like word substitution, omittance and circumlocution and overt features like prolongation of sound, syllables and blocks etc. Many etiologies have been postulated to explain stuttering based on various experiments and research. Moreover, Breathlessness has also been reported by many individuals with stuttering for which breathing exercises are generally advised. However, no studies reporting objective evaluation of the pulmonary capacity and further objective assessment of the efficacy of breathing exercises have been conducted. Pulmonary Function Test which evaluates parameters like Forced Vital Capacity, Peak Expiratory Flow Rate, Forced expiratory flow Rate can be used to study the pulmonary behavior of individuals with stuttering. The study aimed: a) To identify speech motor & physiologic behaviours associated with stuttering by administering PFT. b) To recognize possible reasons for an association between speech motor behaviour & stuttering severity. In this regard, PFT tests were administered on individuals who reported signs and symptoms of stuttering and showed abnormal scores on Stuttering Severity Index. Parameters like Forced Vital Capacity, Forced Expiratory Volume, Peak Expiratory Flow Rate (L/min), Forced Expiratory Flow Rate (L/min) were evaluated and correlated with scores of Stuttering Severity Index. Results showed significant decrease in the parameters (lower than normal scores) in individuals with established stuttering. Strong correlation was also found between degree of stuttering and the degree of decrease in the pulmonary volumes. Thus, it is evident that fluent speech requires strong support of lung pressure and requisite volumes. Further research in demonstrating the efficacy of abdominal breathing exercises in this regard is needed.

Keywords: forced expiratory flow rate, forced expiratory volume, forced vital capacity, peak expiratory flow rate, stuttering

Procedia PDF Downloads 245