Search results for: particle matter (PM)
3239 Structural Characterization and Application of Tio2 Nano-Partical
Authors: Maru Chetan, Desai Abhilash
Abstract:
The structural characteristics & application of TiO2 powder with different phases are study by various techniques in this paper. TTIP, EG and citric acid use as Ti source and catalyst respectively synthesis for sol gel synthesis of TiO2 powder. To replace sol gel method we develop the new method of making nano particle of TiO2 powder. It is two route method one is physical and second one is chemical route. Specific aim to this process is to minimize the production cost and the large scale production of nano particle The synthesis product work characterize by EDAX, SEM, XRD tests.Keywords: mortal and pestle, nano particle , TiO2, TTIP
Procedia PDF Downloads 3243238 [Keynote Talk]: Monitoring of Ultrafine Particle Number and Size Distribution at One Urban Background Site in Leicester
Authors: Sarkawt M. Hama, Paul S. Monks, Rebecca L. Cordell
Abstract:
Within the Joaquin project, ultrafine particles (UFP) are continuously measured at one urban background site in Leicester. The main aims are to examine the temporal and seasonal variations in UFP number concentration and size distribution in an urban environment, and to try to assess the added value of continuous UFP measurements. In addition, relations of UFP with more commonly monitored pollutants such as black carbon (BC), nitrogen oxides (NOX), particulate matter (PM2.5), and the lung deposited surface area(LDSA) were evaluated. The effects of meteorological conditions, particularly wind speed and direction, and also temperature on the observed distribution of ultrafine particles will be detailed. The study presents the results from an experimental investigation into the particle number concentration size distribution of UFP, BC, and NOX with measurements taken at the Automatic Urban and Rural Network (AURN) monitoring site in Leicester. The monitoring was performed as part of the EU project JOAQUIN (Joint Air Quality Initiative) supported by the INTERREG IVB NWE program. The total number concentrations (TNC) were measured by a water-based condensation particle counter (W-CPC) (TSI model 3783), the particle number concentrations (PNC) and size distributions were measured by an ultrafine particle monitor (UFP TSI model 3031), the BC by MAAP (Thermo-5012), the NOX by NO-NO2-NOx monitor (Thermos Scientific 42i), and a Nanoparticle Surface Area Monitor (NSAM, TSI 3550) was used to measure the LDSA (reported as μm2 cm−3) corresponding to the alveolar region of the lung between November 2013 and November 2015. The average concentrations of particle number concentrations were observed in summer with lower absolute values of PNC than in winter might be related mainly to particles directly emitted by traffic and to the more favorable conditions of atmospheric dispersion. Results showed a traffic-related diurnal variation of UFP, BC, NOX and LDSA with clear morning and evening rush hour peaks on weekdays, only an evening peak at the weekends. Correlation coefficients were calculated between UFP and other pollutants (BC and NOX). The highest correlation between them was found in winter months. Overall, the results support the notion that local traffic emissions were a major contributor of the atmospheric particles pollution and a clear seasonal pattern was found, with higher values during the cold season.Keywords: size distribution, traffic emissions, UFP, urban area
Procedia PDF Downloads 3303237 The Theory of the Mystery: Unifying the Quantum and Cosmic Worlds
Authors: Md. Najiur Rahman
Abstract:
This hypothesis reveals a profound and symmetrical connection that goes beyond the boundaries of quantum physics and cosmology, revolutionizing our understanding of the fundamental building blocks of the cosmos, given its name ‘The Theory of the Mystery’. This theory has an elegantly simple equation, “R = ∆r / √∆m” which establishes a beautiful and well-crafted relationship between the radius (R) of an elementary particle or galaxy, the relative change in radius (∆r), and the mass difference (∆m) between related entities. It is fascinating to note that this formula presents a super synchronization, one which involves the convergence of every basic particle and any single celestial entity into perfect alignment with its respective mass and radius. In addition, we have a Supporting equation that defines the mass-radius connection of an entity by the equation: R=√m/N, where N is an empirically established constant, determined to be approximately 42.86 kg/m, representing the proportionality between mass and radius. It provides precise predictions, collects empirical evidence, and explores the far-reaching consequences of theories such as General Relativity. This elegant symmetry reveals a fundamental principle that underpins the cosmos: each component, whether small or large, follows a precise mass-radius relationship to exert gravity by a universal law. This hypothesis represents a transformative process towards a unified theory of physics, and the pursuit of experimental verification will show that each particle and galaxy is bound by gravity and plays a unique but harmonious role in shaping the universe. It promises to reveal the great symphony of the mighty cosmos. The predictive power of our hypothesis invites the exploration of entities at the farthest reaches of the cosmos, providing a bridge between the known and the unknown.Keywords: unified theory, quantum gravity, mass-radius relationship, dark matter, uniform gravity
Procedia PDF Downloads 1073236 Particle Size Distribution Estimation of a Mixture of Regular and Irregular Sized Particles Using Acoustic Emissions
Authors: Ejay Nsugbe, Andrew Starr, Ian Jennions, Cristobal Ruiz-Carcel
Abstract:
This works investigates the possibility of using Acoustic Emissions (AE) to estimate the Particle Size Distribution (PSD) of a mixture of particles that comprise of particles of different densities and geometry. The experiments carried out involved the mixture of a set of glass and polyethylene particles that ranged from 150-212 microns and 150-250 microns respectively and an experimental rig that allowed the free fall of a continuous stream of particles on a target plate which the AE sensor was placed. By using a time domain based multiple threshold method, it was observed that the PSD of the particles in the mixture could be estimated.Keywords: acoustic emissions, particle sizing, process monitoring, signal processing
Procedia PDF Downloads 3533235 Self-Compacting White Concrete Mix Design Using the Particle Matrix Model
Authors: Samindi Samarakoon, Ørjan Sletbakk Vie, Remi Kleiven Fjelldal
Abstract:
White concrete facade elements are widely used in construction industry. It is challenging to achieve the desired workability in casting of white concrete elements. Particle Matrix model was used for proportioning the self-compacting white concrete (SCWC) to control segregation and bleeding and to improve workability. The paper presents how to reach the target slump flow while controlling bleeding and segregation in SCWC. The amount of aggregates, binders and mixing water, as well as type and dosage of superplasticizer (SP) to be used are the major factors influencing the properties of SCWC. Slump flow and compressive strength tests were carried out to examine the performance of SCWC, and the results indicate that the particle matrix model could produce successfully SCWC controlling segregation and bleeding.Keywords: white concrete, particle matrix model, mix design, construction industry
Procedia PDF Downloads 2703234 Scale Effects on the Wake Airflow of a Heavy Truck
Authors: Aude Pérard Lecomte, Georges Fokoua, Amine Mehel, Anne Tanière
Abstract:
Air quality in urban areas is deteriorated by pollution, mainly due to the constant increase of the traffic of different types of ground vehicles. In particular, particulate matter pollution with important concentrations in urban areas can cause serious health issues. Characterizing and understanding particle dynamics is therefore essential to establish recommendations to improve air quality in urban areas. To analyze the effects of turbulence on particulate pollutants dispersion, the first step is to focus on the single-phase flow structure and turbulence characteristics in the wake of a heavy truck model. To achieve this, Computational Fluid Dynamics (CFD) simulations were conducted with the aim of modeling the wake airflow of a full- and reduced-scale heavy truck. The Reynolds Average Navier-Stokes (RANS) approach with the Reynolds Stress Model (RSM)as the turbulence model closure was used. The simulations highlight the apparition of a large vortex coming from the under trailer. This vortex belongs to the recirculation region, located in the near-wake of the heavy truck. These vortical structures are expected to have a strong influence on particle dynamics that are emitted by the truck.Keywords: CDF, heavy truck, recirculation region, reduced scale
Procedia PDF Downloads 2193233 Optimization of Cloud Classification Using Particle Swarm Algorithm
Authors: Riffi Mohammed Amine
Abstract:
A cloud is made up of small particles of liquid water or ice suspended in the atmosphere, which generally do not reach the ground. Various methods are used to classify clouds. This article focuses specifically on a technique known as particle swarm optimization (PSO), an AI approach inspired by the collective behaviors of animals living in groups, such as schools of fish and flocks of birds, and a method used to solve complex classification and optimization problems with approximate solutions. The proposed technique was evaluated using a series of second-generation METOSAT images taken by the MSG satellite. The acquired results indicate that the proposed method gave acceptable results.Keywords: remote sensing, particle swarm optimization, clouds, meteorological image
Procedia PDF Downloads 193232 Analysis of Lift Force in Hydrodynamic Transport of a Finite Sized Particle in Inertial Microfluidics with a Rectangular Microchannel
Authors: Xinghui Wu, Chun Yang
Abstract:
Inertial microfluidics is a competitive fluidic method with applications in separation of particles, cells and bacteria. In contrast to traditional microfluidic devices with low Reynolds number, inertial microfluidics works in the intermediate Re number range which brings about several intriguing inertial effects on particle separation/focusing to meet the throughput requirement in the real-world. Geometric modifications to make channels become irregular shapes can leverage fluid inertia to create complex secondary flow for adjusting the particle equilibrium positions and thus enhance the separation resolution and throughput. Although inertial microfluidics has been extensively studied by experiments, our current understanding of its mechanisms is poor, making it extremely difficult to build rational-design guidelines for the particle focusing locations, especially for irregularly shaped microfluidic channels. Inertial particle microfluidics in irregularly shaped channels were investigated in our group. There are several fundamental issues that require us to address. One of them is about the balance between the inertial lift forces and the secondary drag forces. Also, it is critical to quantitatively describe the dependence of the life forces on particle-particle interactions in irregularly shaped channels, such as a rectangular one. To provide physical insights into the inertial microfluidics in channels of irregular shapes, in this work the immersed boundary-lattice Boltzmann method (IB-LBM) was introduced and validated to explore the transport characteristics and the underlying mechanisms of an inertial focusing single particle in a rectangular microchannel. The transport dynamics of a finitesized particle were investigated over wide ranges of Reynolds number (20 < Re < 500) and particle size. The results show that the inner equilibrium positions are more difficult to occur in the rectangular channel, which can be explained by the secondary flow caused by the presence of a finite-sized particle. Furthermore, force decoupling analysis was utilized to study the effect of each type of lift force on the inertia migration, and a theoretical model for the lateral lift force of a finite-sized particle in the rectangular channel was established. Such theoretical model can be used to provide theoretical guidance for the design and operation of inertial microfluidics.Keywords: inertial microfluidics, particle focuse, life force, IB-LBM
Procedia PDF Downloads 723231 Measuring the Effect of Ventilation on Cooking in Indoor Air Quality by Low-Cost Air Sensors
Authors: Andres Gonzalez, Adam Boies, Jacob Swanson, David Kittelson
Abstract:
The concern of the indoor air quality (IAQ) has been increasing due to its risk to human health. The smoking, sweeping, and stove and stovetop use are the activities that have a major contribution to the indoor air pollution. Outdoor air pollution also affects IAQ. The most important factors over IAQ from cooking activities are the materials, fuels, foods, and ventilation. The low-cost, mobile air quality monitoring (LCMAQM) sensors, is reachable technology to assess the IAQ. This is because of the lower cost of LCMAQM compared to conventional instruments. The IAQ was assessed, using LCMAQM, during cooking activities in a University of Minnesota graduate-housing evaluating different ventilation systems. The gases measured are carbon monoxide (CO) and carbon dioxide (CO2). The particles measured are particle matter (PM) 2.5 micrometer (µm) and lung deposited surface area (LDSA). The measurements are being conducted during April 2019 in Como Student Community Cooperative (CSCC) that is a graduate housing at the University of Minnesota. The measurements are conducted using an electric stove for cooking. The amount and type of food and oil using for cooking are the same for each measurement. There are six measurements: two experiments measure air quality without any ventilation, two using an extractor as mechanical ventilation, and two using the extractor and windows open as mechanical and natural ventilation. 3The results of experiments show that natural ventilation is most efficient system to control particles and CO2. The natural ventilation reduces the concentration in 79% for LDSA and 55% for PM2.5, compared to the no ventilation. In the same way, CO2 reduces its concentration in 35%. A well-mixed vessel model was implemented to assess particle the formation and decay rates. Removal rates by the extractor were significantly higher for LDSA, which is dominated by smaller particles, than for PM2.5, but in both cases much lower compared to the natural ventilation. There was significant day to day variation in particle concentrations under nominally identical conditions. This may be related to the fat content of the food. Further research is needed to assess the impact of the fat in food on particle generations.Keywords: cooking, indoor air quality, low-cost sensor, ventilation
Procedia PDF Downloads 1133230 The Experimental Investigation of Temperature Influence on the Oscillations of Particles on Liquid Surfaces
Authors: Sathish K. Gurupatham, Farhad Sayedzada, Naji Dauk, Valmiki Sooklal, Laura Ruhala
Abstract:
It was shown recently that small particles and powders spontaneously disperse on liquid surfaces when they come into contact with the interface for the first time. This happens due to the combined effect of the capillary force, buoyant weight of the particle and the viscous drag that the particle experiences in the liquid. The particle undergoes oscillations normal to the interface before it comes to rest on the interface. These oscillations, in turn, induce a flow on the interface which disperses the particles radially outward. This phenomenon has a significant role in the pollination of sea plants such as Ruppia in which the formation of ‘pollen rafts’ is the first step. This paper investigates, experimentally, the influence of the temperature of the liquid on which this dispersion occurs. It was observed that the frequency of oscillations of the particles decreased with the increase in the temperature of the liquid. It is because the magnitude of capillary force also decreased when the temperature of the liquid increased.Keywords: particle dispersion, capillary force, viscous drag, oscillations
Procedia PDF Downloads 3723229 Fire Effects on Soil Properties of Meshchera Plain, Russia
Authors: Anna Tsibart, Timur Koshovskii
Abstract:
The properties of soils affected by the wildfires of 2002, 2010, and 2012 in Meshchera plain (Moscow region, Russia) were considered in a current research. The formation of ash horizons instead of organic peat horizons was detected both in histosols and histic podzols. The increase of pH and magnetic susceptibility was observed in soil profiles. Significant burning out of organic matter was observed, but already two years after the fire the new stage of organic matter accumulation started.Keywords: wildfires, peat soils, organic matter, Meshchera plain
Procedia PDF Downloads 6563228 The Utilization of FSI Technique and Two-Way Particle Coupling System on Particle Dynamics in the Human Alveoli
Authors: Hassan Athari, Abdurrahim Bolukbasi, Dogan Ciloglu
Abstract:
This study represented the respiratory alveoli system, and determined the trajectory of inhaled particles more accurately using the modified three-dimensional model with deformable walls of alveoli. The study also considered the tissue tension in the model to demonstrate the effect of lung. Tissue tensions are transferred by the lung parenchyma and produce the pressure gradient. This load expands the alveoli and establishes a sub-ambient (vacuum) pressure within the lungs. Thus, at the alveolar level, the flow field and movement of alveoli wall lead to an integrated effect. In this research, we assume that the three-dimensional alveolus has a visco-elastic tissue (walls). For accurate investigation of pulmonary tissue mechanical properties on particle transport and alveolar flow field, the actual relevance between tissue movement and airflow is solved by two-way FSI (Fluid Structure Interaction) simulation technique in the alveolus. Therefore, the essence of real simulation of pulmonary breathing mechanics can be achieved by developing a coupled FSI computational model. We, therefore conduct a series of FSI simulations over a range of tissue models and breathing rates. As a result, the fluid flows and streamlines have changed during present flexible model against the rigid models and also the two-way coupling particle trajectories have changed against the one-way particle coupling.Keywords: FSI, two-way particle coupling, alveoli, CDF
Procedia PDF Downloads 2603227 Towards a Rigorous Analysis for a Supercritical Particulate Process
Authors: Yousef Bakhbakhi
Abstract:
Crystallization with supercritical fluids (SCFs), as a developed technology to produce particles of micron and sub-micron size with narrow size distribution, has found appreciable importance as an environmentally friendly technology. Particle synthesis using SCFs can be achieved employing a number of special processes involving solvent and antisolvent mechanisms. In this study, the compressed antisolvent (PCA) process is utilized as a model to analyze the theoretical complexity of crystallization with supercritical fluids. The population balance approach has proven to be an effectual technique to simulate and predict the particle size and size distribution. The nucleation and growth mechanisms of the particles formation in the PCA process is investigated using the population balance equation, which describes the evolution of the particle through coalescence and breakup levels with time. The employed mathematical population balance model contains a set of the partial differential equation with algebraic constraints, which demands a rigorous numerical approach. The combined Collocation and Galerkin finite element method are proposed as a high-resolution technique to solve the dynamics of the PCA process.Keywords: particle formation, particle size and size distribution, PCA, supercritical carbon dioxide
Procedia PDF Downloads 1973226 Alexandrium pacificum Cysts Distribution in One North African Lagoon Ecosystem
Authors: M. Fertouna Bellakhal, M. Bellakhal, A. Dhib, A. Fathalli, S. Turki, L. Aleya
Abstract:
Study of dinoflagellate cysts is a precious tool to get information about environment and water quality in many aquatic ecosystems. The distribution of Alexandrium pacificum cysts, in Bizerta lagoon located in North of Tunisia, was made based on sediment samples analysis from 123 equidistant stations delimiting 125 km² surfaces. Sediment characteristics such as percentage of water, organic matter, and particle size were analyzed to determine the factors that influence the distribution of this dinoflagellate. In addition, morphological examination and ribotyping of vegetative forms from microalgal cultures made from cyst germination confirmed the identity of the species attributed to A. pacificum. A correlation between the abundance of A. pacificum cysts and the percentage of water and sediment organic matter was recorded. In addition, the sedimentary fraction < 63μm was found to be potentially favorable for the installation and initiation of the Alexandrium pacificum efflorescence at the Bizerte lagoon. The mapping of cysts in this aquatic ecosystem has also allowed us to define distinct areas with specific abundance with closed relationship with shellfish aquaculture stations located within the lagoon.Keywords: Alexandrium pacificum, cysts, Dinoflagellate, microalgal culture
Procedia PDF Downloads 1493225 Motion of a Dust Grain Type Particle in Binary Stellar Systems
Authors: Rajib Mia, Badam Singh Kushvah
Abstract:
In this present paper, we use the photogravitational version of the restricted three body problem (RTBP) in binary systems. In the photogravitational RTBP, an infinitesimal particle (dust grain) is moving under the gravitational attraction and radiation pressure from the two bigger primaries. The third particle does not affect the motion of two bigger primaries. The zero-velocity curves, zero-velocity surfaces and their projections on the plane are studied. We have used existing analytical method to solve the equations of motion. We have obtained the Lagrangian points in some binary stellar systems. It is found that mass reduction factor affects the Lagrangian points. The linear stability of Lagrangian points is studied and found that these points are unstable. Moreover, trajectories of the infinitesimal particle at the triangular points are studied.Keywords: binary systems, Lagrangian points, linear stability, photogravitational RTBP, trajectories
Procedia PDF Downloads 2563224 Particle Dust Layer Density and the Optical Wavelength Absorption Relationship in Photovoltaic Module
Authors: M. Mesrouk, A. Hadj Arab
Abstract:
This work allows highlight the effect of dust on the absorption of the optical spectrum on the photovoltaic module, the effect of the particles dust presence on the photovoltaic modules have been a microscopic scale studied with COMSOL Multi-physic software simulation. In this paper, we have supposed the dust layer as a diffraction network repetitive optical structure characterized by the spacing between particle which represented by 'd' and the simulated structure (air-dust particle-glass). In this study we can observe the relationship between the wavelength and the particle spacing, the simulation shows us that the maximum wavelength transmission value corresponding, λ0 = 400nm, which represent the spacing value between the particles dust, d = 400 nm. In fact, we can observe that while increase dust layer density the wavelength transmission value decrease, there is a relationship between the density and wavelength value which can be absorbed in a dusty photovoltaic panel.Keywords: dust effect, photovoltaic module, spectral absorption, wavelength transmission
Procedia PDF Downloads 4633223 Influence of the Compression Force and Powder Particle Size on Some Physical Properties of Date (Phoenix dactylifera) Tablets
Authors: Djemaa Megdoud, Messaoud Boudaa, Fatima Ouamrane, Salem Benamara
Abstract:
In recent years, the compression of date (Phoenix dactylifera L.) fruit powders (DP) to obtain date tablets (DT) has been suggested as a promising form of valorization of non commercial valuable date fruit (DF) varieties. To further improve and characterize DT, the present study aims to investigate the influence of the DP particle size and compression force on some physical properties of DT. The results show that independently of particle size, the hardness (y) of tablets increases with the increase of the compression force (x) following a logarithmic law (y = a ln (bx) where a and b are the constants of model). Further, a full factorial design (FFD) at two levels, applied to investigate the erosion %, reveals that the effects of time and particle size are the same in absolute value and they are beyond the effect of the compression. Regarding the disintegration time, the obtained results also by means of a FFD show that the effect of the compression force exceeds 4 times that of the DP particle size. As final stage, the color parameters in the CIELab system of DT immediately after their obtaining are differently influenced by the size of the initial powder.Keywords: powder, tablets, date (Phoenix dactylifera L.), hardness, erosion, disintegration time, color
Procedia PDF Downloads 4323222 Picture of the World by the Second Law of Thermodynamic
Authors: Igor V. Kuzminov
Abstract:
According to its content, the proposed article is a collection of articles with comments and additions. All articles, in one way or another, have a connection with the Second Law of Thermodynamics. The content of the articles is given in a concise form. The articles were published in different journals at different times. Main topics are presented: gravity, biography of the Earth, physics of global warming-cooling cycles, multiverse. The articles are based on the laws of classical physics. Along the way, it should be noted that the Second Law of thermodynamics can be formulated as the Law of Matter Cooling. As it cools down, the processes of condensation, separation, and changes in the aggregate states of matter occur. In accordance with these changes, a picture of the world is being formed. Also, the main driving force of these processes is the inverse temperature dependence of the forces of gravity. As matter cools, the forces of gravity increase. The actions of these phenomena in the compartment form a picture of the world.Keywords: gravitational forces, cooling of matter, inverse temperature dependence of gravitational forces, planetary model of the atom
Procedia PDF Downloads 2443221 Preparation and Characterization of Diclofenac Sodium Loaded Solid Lipid Nanoparticle
Authors: Oktavia Eka Puspita
Abstract:
The possibility of using Solid Lipid Nanoparticles (SLN) for topical use is an interesting feature concerning this system has occlusive properties on the skin surface therefore enhance the penetration of drugs through the stratum corneum by increased hydration. This advantage can be used to enhance the drug penetration of topical delivery such as Diclofenac sodium for the relief of signs and symptoms of osteoarthritis, rheumatoid arthritis and ankylosing spondylitis. The purpose of this study was focused on the preparation and physical characterization of Diclofenac sodium loaded SLN (D-SLN). D loaded SLN were prepared by hot homogenization followed by ultrasonication technique. Since the occlusion factor of SLN is related to its particle size the formulation of D-SLN in present study two formulations different in its surfactant contents were prepared to investigate the difference of the particle size resulted. Surfactants selected for preparation of formulation A (FA) were lecithin soya and Tween 80 whereas formulation B (FB) were lecithin soya, Tween 80, and Sodium Lauryl Sulphate. D-SLN were characterized for particle size and distribution, polydispersity index (PI), zeta potential using Beckman-Coulter Delsa™ Nano. Overall, the particle size obtained from FA was larger than FB. FA has 90% of the particles were above 1000 nm, while FB has 90% were below 100 nm.Keywords: solid lipid nanoparticles, hot homogenization technique, particle size analysis, topical administration
Procedia PDF Downloads 5013220 Exploring White-Matter Hyperintensities in Patients with Psychiatric Disorders and Their Clinical Relevance
Authors: Ubaid Ullah Kamgar, Ajaz Ahmed Suhaff, Mohammad Maqbool Dar
Abstract:
Objective: The aim is to study the association of MRI findings of T₂/FLAIR white matter hyperintensities among patients with psychiatric disorders. Background and Rationale: MRI findings in psychiatric disorders can vary widely depending on specific disorders and individual differences. However, some general patterns have been observed, such as, in Depression - reduced volume in areas such as the prefrontal cortex and hippocampus; in Schizophrenia - enlarged ventricles, abnormalities in frontal and temporal lobes, as well as hippocampus and thalamus; in Bipolar Disorder – reduced volume in the prefrontal cortex and hippocampus and abnormalities in the amygdala; in OCD – abnormalities in the orbitofrontal cortex, anterior cingulate cortex and striatum. However, many patients show findings of white-matter hyper-intensities, which are usually considered non-specific in psychiatry. These hyperintensities are low attenuation in the deep and white matter. The pathogenic mechanisms of white matter hyperintensities are not well-understood and have been attributed to cerebral small vessel disease. The aim of the study is to study the association of the above MRI findings in patients with psychiatric disorders after ruling out neurological disorders (if any are found). Methodology: Patients admitted to psychiatric hospitals or presenting to OPDs with underlying psychiatric disorders, having undergone MRI Brain as part of investigations, and having T₂/FLAIR white-matter hyperintensities on MRI were taken to study the association of the above MRI findings with different psychiatric disorders. Results: Out of the 22 patients having MRI findings of T₂/FLAIR white-matter hyper-intensities, the underlying psychiatric comorbidities were: Major Depressive Disorder in 7 pts; Obsessive Compulsive Disorder in 5 pts; Bipolar Disorder in 5 pts; Dementia (vascular type) in 5pts. Discussion and conclusion: In our study, the white matter hyper-intensities were found mostly in MDD (32%), OCD (22.7%), Bipolar Disorder (22.7%) and Dementia in 22.7% of patients. In conclusion, the presence of white-matter hyperintensities in psychiatric disorders underscores the complex interplay between vascular, neurobiological and psychosocial factors. Further research with a large sample size is needed to fully elucidate their clinical significance.Keywords: white-matter hyperintensities, OCD, MDD, dementia, bipolar disorder.
Procedia PDF Downloads 643219 Evaluation of Erodibility Status of Soils in Some Areas of Imo and Abia States of Nigeria
Authors: Andy Obinna Ibeje
Abstract:
In this study, the erodibility indices and some soil properties of some cassava farms in selected areas of Abia and Imo States were investigated. This study involves taking measurements of some soil parameters such as permeability, soil texture and particle size analysis from which the erodibility indices were compared. Results showed that soils of the areas are very sandy. The results showed that Isiukwuato with index of 72 has the highest erodibility index. The results also showed that Arondizuogu with index of 34 has the least erodibility index. The results revealed that soil erodibility (k) values varied from 34 to 72. Nkporo has the highest sand content; Inyishie has the least silt content. The result indicates that there were respectively strong inverse relationship between clay and silt contents and erodibility index. On the other hand, sand, organic matter and moisture contents as well as soil permeability has significantly high positive correlation with soil erodibility and it can be concluded that particle size distribution is a major finger print on the erodibility index of soil in the study area. It is recommended that safe cultural practices like crop rotation, matching and adoption of organic farming techniques be incorporated into farming communities of Abia and Imo States in order to stem the advances of erosion in the study area.Keywords: erodibility, indices, soil, sand
Procedia PDF Downloads 3503218 Heating Behavior of Ni-Embedded Thermoplastic Polyurethane Adhesive Film by Induction Heating
Authors: DuckHwan Bae, YongSung Kwon, Min Young Shon, SanTaek Oh, GuNi Kim
Abstract:
The heating behavior of nanometer and micrometer sized Nickel particle-imbedded thermoplastic polyurethane adhesive (TPU) under induction heating is examined in present study. The effects of particle size and content, TPU film thickness on heating behaviors were examined. The correlation between heating behavior and magnetic properties of Nickel particles were also studied. From the results, heat generation increased with increase of Nickel content and film thickness. However, in terms of particle sizes, heat generation of Nickel-imbedded TPU film were in order of 70nm>1µm>20 µm>70 µm and this results can explain by increasing ration of eddy heating to hysteresis heating with increase of particle size.Keywords: induction heating, thermoplastic polyurethane, nickel, composite, hysteresis loss, eddy current loss, curie temperature
Procedia PDF Downloads 3623217 Intensity-Enhanced Super-Resolution Amplitude Apodization Effect on the Non-Spherical Near-Field Particle-Lenses
Authors: Liyang Yue, Bing Yan, James N. Monks, Rakesh Dhama, Zengbo Wang, Oleg V. Minin, Igor V. Minin
Abstract:
A particle can function as a refractive lens to focus a plane wave, generating a narrow, high intensive, weak-diverging beam within a sub-wavelength volume, known as the ‘photonic jet’. Refractive index contrast (particle to background media) and scaling effect of the dielectric particle (relative-to-wavelength size) play key roles in photonic jet formation, rather than the shape of particle-lens. Waist (full width of half maximum, FWHM) of a photonic jet could be beyond the diffraction limit and smaller than the Airy disk, which defines the minimum distance between two objects to be imaged as two instead of one. Many important applications for imaging and sensing have been afforded based upon the super-resolution characteristic of the photonic jet. It is known that apodization method, in the form of an amplitude pupil-mask centrally situated on a particle-lens, can further reduce the waist of a photonic nanojet, however, usually lower its intensity at the focus due to blocking of the incident light. In this paper, the anomalously intensity-enhanced apodization effect was discovered in the near-field via numerical simulation. It was also experimentally verified by a scale model using a copper-masked Teflon cuboid solid immersion lens (SIL) with 22 mm side length under radiation of a plane wave with 8 mm wavelength. Peak intensity enhancement and the lateral resolution of the produced photonic jet increased by about 36.0 % and 36.4 % in this approach, respectively. This phenomenon may possess the scale effect and would be valid in multiple frequency bands.Keywords: apodization, particle-lens, scattering, near-field optics
Procedia PDF Downloads 1923216 Investigation of a Single Feedstock Particle during Pyrolysis in Fluidized Bed Reactors via X-Ray Imaging Technique
Authors: Stefano Iannello, Massimiliano Materazzi
Abstract:
Fluidized bed reactor technologies are one of the most valuable pathways for thermochemical conversions of biogenic fuels due to their good operating flexibility. Nevertheless, there are still issues related to the mixing and separation of heterogeneous phases during operation with highly volatile feedstocks, including biomass and waste. At high temperatures, the volatile content of the feedstock is released in the form of the so-called endogenous bubbles, which generally exert a “lift” effect on the particle itself by dragging it up to the bed surface. Such phenomenon leads to high release of volatile matter into the freeboard and limited mass and heat transfer with particles of the bed inventory. The aim of this work is to get a better understanding of the behaviour of a single reacting particle in a hot fluidized bed reactor during the devolatilization stage. The analysis has been undertaken at different fluidization regimes and temperatures to closely mirror the operating conditions of waste-to-energy processes. Beechwood and polypropylene particles were used to resemble the biomass and plastic fractions present in waste materials, respectively. The non-invasive X-ray technique was coupled to particle tracking algorithms to characterize the motion of a single feedstock particle during the devolatilization with high resolution. A high-energy X-ray beam passes through the vessel where absorption occurs, depending on the distribution and amount of solids and fluids along the beam path. A high-speed video camera is synchronised to the beam and provides frame-by-frame imaging of the flow patterns of fluids and solids within the fluidized bed up to 72 fps (frames per second). A comprehensive mathematical model has been developed in order to validate the experimental results. Beech wood and polypropylene particles have shown a very different dynamic behaviour during the pyrolysis stage. When the feedstock is fed from the bottom, the plastic material tends to spend more time within the bed than the biomass. This behaviour can be attributed to the presence of the endogenous bubbles, which drag effect is more pronounced during the devolatilization of biomass, resulting in a lower residence time of the particle within the bed. At the typical operating temperatures of thermochemical conversions, the synthetic polymer softens and melts, and the bed particles attach on its outer surface, generating a wet plastic-sand agglomerate. Consequently, this additional layer of sand may hinder the rapid evolution of volatiles in the form of endogenous bubbles, and therefore the establishment of a poor drag effect acting on the feedstock itself. Information about the mixing and segregation of solid feedstock is of prime importance for the design and development of more efficient industrial-scale operations.Keywords: fluidized bed, pyrolysis, waste feedstock, X-ray
Procedia PDF Downloads 1723215 Depositional Environment and Source Potential of Devonian Source Rock, Ghadames Basin, Southern Tunisia
Authors: S. Mahmoudi, A. Belhaj Mohamed, M. Saidi, F. Rezgui
Abstract:
Depositional environment and source potential of the different organic rich levels of Devonian age (up to 990m thick) from the onshore EC-1 well (Southern Tunisia) were investigated using different geochemical techniques (Rock-Eval pyrolysis, GC-MS) of over than 130 cutting samples. The obtained results including Rock Eval Pyrolysis data and biomarker distribution (terpanes, steranes and aromatics) have been used to describe the depositional environment and to assess the thermal maturity of the Devonian organic matter. These results show that the Emsian deposits exhibit poor to fair TOC contents. The associated organic matter is composed of mixed kerogen (type II/III), as indicated by the predominance of C29 steranes over C27 and C28 homologous, that was deposited in a slightly reduced environment favoring organic matter preservation. Thermal maturity assessed from Tmax, TNR and MPI-1 values shows a mature stage of organic matter. The Middle Devonian (Eifelian) shales are rich in type II organic matter that was deposited in an open marine depositional environment. The TOC values are high and vary between 2 and 7 % indicating good to excellent source rock. The relatively high IH values (reaching 547 mg HC/g TOC) and the low values of t19/t23 ratio (down to 0.2) confirm the marine origin of the organic matter (type II). During the Upper Devonian, the organic matter was deposited under variable redox conditions, oxic to suboxic which is clearly indicated by the low C35/C34 hopanes ratio, immature to marginally mature with the vitrinite reflectance ranging from 0.5 to 0.7 Ro and Tmax value of 426°C-436 °C and the TOC values range between 0.8% to 4%.Keywords: biomarker, depositional environment, devonian, source rock
Procedia PDF Downloads 4773214 Calculating All Dark Energy and Dark Matter Effects Through Dynamic Gravity Theory
Authors: Sean Kinney
Abstract:
In 1666, Newton created the Law of Universal Gravitation. And in 1915, Einstein improved it to incorporate factors such as time dilation and gravitational lensing. But currently, there is a problem with this “universal” law. The math doesn’t work outside the confines of our solar system. And something is missing; any evidence of what gravity actually is and how it manifest. This paper explores the notion that gravity must obey the law of conservation of energy as all other forces in this universe have been shown to do. Explaining exactly what gravity is and how it manifests itself. And looking at many different implications that would be created are explained. And finally, using the math of Dynamic Gravity to calculate Dark Energy and Dark Matter effects to explain all observations without the need of exotic measures.Keywords: gravity, dynamic gravity, dark matter, dark energy
Procedia PDF Downloads 1063213 Lexical Knowledge of Verb Particle Constructions with the Particle on by Mexican English Learners
Authors: Sarai Alvarado Pineda, Ricardo Maldonado Soto
Abstract:
The acquisition of Verb Particle Constructions is a challenge for Spanish speakers learning English. The acquisition is particularly difficult for speakers of languages with no verb particle constructions. The purpose of the current study is to define the procedural steps in the acquisition of constructions with the particle on. There are three outstanding meanings for the particle on; Surface: The movie is based on a true story, Activation: John turn on the light, Continuity: The band played on all night. The central aim of this study is to measure how Mexican Spanish participants respond to both the three meanings mentioned above and the degree of meaning transparency/opacity of on verb particle constructions. Forty Mexican Spanish learners of English (20 basic and 20 advanced) are compared against a control group of 20 American native English speakers through a reaction time test (PsychoPy2 2015). The participants were asked to discriminate 90 items based on their knowledge of these constructions. There are 30 items per meaning divided into two groups of transparent and opaque meaning. Results revealed three major findings: Advanced students have a reaction time similar to that of native speakers (advanced 4.5s versus native 3.7s), while students with a lower level of English proficiency, show a high reaction time (7s). Likewise, there is a shorter reaction time in constructions with lower opacity in the three groups of participants, with differences between each level (basic 6.7s, advanced 4.3s, and native 3.4s). Finally, a difference in reaction time can be identified according to the meaning provided by the construction. The reaction time for the activation category (5.27s) is greater than continuity (5.04s), and this category is also slower than the surface (4.94s). The study shows that the level of sensitivity of English learners increases significantly aiming towards native speaker patterns as determined by the level of transparency of meaning of each construction as well as the degree of entrenchment of each constructional meaning.Keywords: meaning of the particle, opacity, reaction time, verb particle constructions
Procedia PDF Downloads 2653212 Effect of Boundary Condition on Granular Pressure of Gas-Solid Flow in a Rotating Drum
Authors: Rezwana Rahman
Abstract:
Various simulations have been conducted to understand the particle's macroscopic behavior in the solid-gas multiphase flow in rotating drums in the past. In these studies, the particle-wall no-slip boundary condition was usually adopted. However, the non-slip boundary condition is rarely encountered in real systems. A little effort has been made to investigate the particle behavior at slip boundary conditions. The paper represents a study of the gas-solid flow in a horizontal rotating drum at a slip boundary wall condition. Two different sizes of particles with the same density have been considered. The Eulerian–Eulerian multiphase model with the kinetic theory of granular flow was used in the simulations. The granular pressure at the rolling flow regime with specularity coefficient 1 was examined and compared with that obtained based on the no-slip boundary condition. The results reveal that the profiles of granular pressure distribution on the transverse plane of the drum are similar for both boundary conditions. But, overall, compared with those for the no-slip boundary condition, the values of granular pressure for specularity coefficient 1 are larger for the larger particle and smaller for the smaller particle.Keywords: boundary condition, eulerian–eulerian, multiphase, specularity coefficient, transverse plane
Procedia PDF Downloads 2203211 The Experimental Study on Reducing and Carbonizing Titanium-Containing Slag by Iron-Containing Coke
Authors: Yadong Liu
Abstract:
The experimental study on reduction carbonization of coke containing iron respectively with the particle size of <0.3mm, 0.3-0.6mm and 0.6-0.9mm and synthetic sea sand ore smelting reduction titanium-bearing slag as material were studied under the conditions of holding 6h at most at 1500℃. The effects of coke containing iron particle size and heat preservation time on the formation of TiC and the size of TiC crystal were studied by XRD, SEM and EDS. The results show that it is not good for the formation, concentration and growth of TiC crystal when the particle size of coke containing iron is too small or too large. The suitable particle size is 0.3~0.6mm. The heat preservation time of 2h basically ensures that all the component TiO2 in the slag are reduced and carbonized and converted to TiC. The size of TiC crystal will increase with the prolongation of heat preservation time. The thickness of the TiC layer can reach 20μm when the heat preservation time is 6h.Keywords: coke containing iron, formation and concentration and growth of TiC, reduction and carbonization, titanium-bearing slag
Procedia PDF Downloads 1493210 Carbonaceous Monolithic Multi-Channel Denuders as a Gas-Particle Partitioning Tool for the Occupational Sampling of Aerosols from Semi-Volatile Organic Compounds
Authors: Vesta Kohlmeier, George C. Dragan, Juergen Orasche, Juergen Schnelle-Kreis, Dietmar Breuer, Ralf Zimmermann
Abstract:
Aerosols from hazardous semi-volatile organic compounds (SVOC) may occur in workplace air and can simultaneously be found as particle and gas phase. For health risk assessment, it is necessary to collect particles and gases separately. This can be achieved by using a denuder for the gas phase collection, combined with a filter and an adsorber for particle collection. The study focused on the suitability of carbonaceous monolithic multi-channel denuders, so-called Novacarb™-Denuders (MastCarbon International Ltd., Guilford, UK), to achieve gas-particle separation. Particle transmission efficiency experiments were performed with polystyrene latex (PSL) particles (size range 0.51-3 µm), while the time dependent gas phase collection efficiency was analysed for polar and nonpolar SVOC (mass concentrations 7-10 mg/m3) over 2 h at 5 or 10 l/min. The experimental gas phase collection efficiency was also compared with theoretical predictions. For n-hexadecane (C16), the gas phase collection efficiency was max. 91 % for one denuder and max. 98 % for two denuders, while for diethylene glycol (DEG), a maximal gas phase collection efficiency of 93 % for one denuder and 97 % for two denuders was observed. At 5 l/min higher gas phase collection efficiencies were achieved than at 10 l/min. The deviations between the theoretical and experimental gas phase collection efficiencies were up to 5 % for C16 and 23 % for DEG. Since the theoretical efficiency depends on the geometric shape and length of the denuder, flow rate and diffusion coefficients of the tested substances, the obtained values define an upper limit which could be reached. Regarding the particle transmission through the denuders, the use of one denuder showed transmission efficiencies around 98 % for 1-3 µm particle diameters. The use of three denuders resulted in transmission efficiencies from 93-97 % for the same particle sizes. In summary, NovaCarb™-Denuders are well applicable for sampling aerosols of polar/nonpolar substances with particle diameters ≤3 µm and flow rates of 5 l/min or lower. These properties and their compact size make them suitable for use in personal aerosol samplers. This work is supported by the German Social Accident Insurance (DGUV), research contract FP371.Keywords: gas phase collection efficiency, particle transmission, personal aerosol sampler, SVOC
Procedia PDF Downloads 176