Search results for: motor vehicle accidents
2619 Casual Effects of Informal Care and Health on Falls and Other Accidents among the Elderly Population in China
Authors: Hong Wu, Naiji Lu, Chenguang Wang, Xinming Tu
Abstract:
This article analyzes the causal effects of informal care, mental health, and physical health on falls and other accidents (e.g. traffic accidents) among elderly people. To purge potential reversal causal effects, e.g., past accidents induce more future informal care, we use two-stage least squares to identify the impacts. By using longitudinal data from a representative national China Health and retirement longitudinal study of people aged 45 and older in China, our findings indicate that informal care decreases while poor health conditions increase the occurrence of accidents. We also find heterogeneous impacts on the occurrence of accidents, varying by gender, urban status, and past accident history. Our findings suggest the following three policy implications. First, policy makers who aim to decrease accidents should take informal care to elders into account. Second, ease of birth policy and postponed retirement policy are urgent to meet the demand of informal care. Third, medical policies should attach great importance to not only physical health but also mental health of elderly parents especially for older people with accident history.Keywords: accident, China, fall, informal care, mental health, physical health
Procedia PDF Downloads 4752618 Electrification Strategy of Hybrid Electric Vehicle as a Solution to Decrease CO2 Emission in Cities
Authors: M. Mourad, K. Mahmoud
Abstract:
Recently hybrid vehicles have become a major concern as one alternative vehicles. This type of hybrid vehicle contributes greatly to reducing pollution. Therefore, this work studies the influence of electrification phase of hybrid electric vehicle on emission of vehicle at different road conditions. To accomplish this investigation, a simulation model was used to evaluate the external characteristics of the hybrid electric vehicle according to variant conditions of road resistances. Therefore, this paper reports a methodology to decrease the vehicle emission especially greenhouse gas emission inside cities. The results show the effect of electrification on vehicle performance characteristics. The results show that CO2 emission of vehicle decreases up to 50.6% according to an urban driving cycle due to applying the electrification strategy for hybrid electric vehicle.Keywords: electrification strategy, hybrid electric vehicle, driving cycle, CO2 emission
Procedia PDF Downloads 4402617 Knowledge-Based Virtual Community System (KBVCS) for Enhancing Knowledge Sharing in Mechatronics System Diagnostic and Repair: A Case of Automobile
Authors: Adedeji W. Oyediran, Yekini N. Asafe
Abstract:
Mechatronics is synergistic integration of mechanical engineering, with electronics and intelligent computer control in the design and manufacturing of industrial products and processes. Automobile (auto car, motor car or car is a wheeled motor vehicle used for transporting passengers, which also carries its own engine or motor) is a mechatronic system which served as major means of transportation around the world. Virtually all community has a need for automobile. This makes automobile issues as related to diagnostic and repair interesting to all communities. Consequent to the diversification of skill in diagnosing automobile faults and approaches in solving some problems and innovation in automobile industry. It is appropriate to say that repair and diagnostic of automobile will be better enhanced if community has opportunity of sharing knowledge and idea globally. This paper discussed the desirable elements in automobile as mechatronics system and present conceptual framework of virtual community model for automobile users.Keywords: automobile, automobile users, knowledge sharing, mechatronics system, virtual community
Procedia PDF Downloads 5072616 Analyzing of Speed Disparity in Mixed Vehicle Technologies on Horizontal Curves
Authors: Tahmina Sultana, Yasser Hassan
Abstract:
Vehicle technologies rapidly evolving due to their multifaceted advantages. Adapted different vehicle technologies like connectivity and automation on the same roads with conventional vehicles controlled by human drivers may increase speed disparity in mixed vehicle technologies. Identifying relationships between speed distribution measures of different vehicles and road geometry can be an indicator of speed disparity in mixed technologies. Previous studies proved that speed disparity measures and traffic accidents are inextricably related. Horizontal curves from three geographic areas were selected based on relevant criteria, and speed data were collected at the midpoint of the preceding tangent and starting, ending, and middle point of the curve. Multiple linear mixed effect models (LME) were developed using the instantaneous speed measures representing the speed of vehicles at different points of horizontal curves to recognize relationships between speed variance (standard deviation) and road geometry. A simulation-based framework (Monte Carlo) was introduced to check the speed disparity on horizontal curves in mixed vehicle technologies when consideration is given to the interactions among connected vehicles (CVs), autonomous vehicles (AVs), and non-connected vehicles (NCVs) on horizontal curves. The Monte Carlo method was used in the simulation to randomly sample values for the various parameters from their respective distributions. Theresults show that NCVs had higher speed variation than CVs and AVs. In addition, AVs and CVs contributed to reduce speed disparity in the mixed vehicle technologies in any penetration rates.Keywords: autonomous vehicles, connected vehicles, non-connected vehicles, speed variance
Procedia PDF Downloads 1442615 Auto Rickshaw Impacts with Pedestrians: A Computational Analysis of Post-Collision Kinematics and Injury Mechanics
Authors: A. J. Al-Graitti, G. A. Khalid, P. Berthelson, A. Mason-Jones, R. Prabhu, M. D. Jones
Abstract:
Motor vehicle related pedestrian road traffic collisions are a major road safety challenge, since they are a leading cause of death and serious injury worldwide, contributing to a third of the global disease burden. The auto rickshaw, which is a common form of urban transport in many developing countries, plays a major transport role, both as a vehicle for hire and for private use. The most common auto rickshaws are quite unlike ‘typical’ four-wheel motor vehicle, being typically characterised by three wheels, a non-tilting sheet-metal body or open frame construction, a canvas roof and side curtains, a small drivers’ cabin, handlebar controls and a passenger space at the rear. Given the propensity, in developing countries, for auto rickshaws to be used in mixed cityscapes, where pedestrians and vehicles share the roadway, the potential for auto rickshaw impacts with pedestrians is relatively high. Whilst auto rickshaws are used in some Western countries, their limited number and spatial separation from pedestrian walkways, as a result of city planning, has not resulted in significant accident statistics. Thus, auto rickshaws have not been subject to the vehicle impact related pedestrian crash kinematic analyses and/or injury mechanics assessment, typically associated with motor vehicle development in Western Europe, North America and Japan. This study presents a parametric analysis of auto rickshaw related pedestrian impacts by computational simulation, using a Finite Element model of an auto rickshaw and an LS-DYNA 50th percentile male Hybrid III Anthropometric Test Device (dummy). Parametric variables include auto rickshaw impact velocity, auto rickshaw impact region (front, centre or offset) and relative pedestrian impact position (front, side and rear). The output data of each impact simulation was correlated against reported injury metrics, Head Injury Criterion (front, side and rear), Neck injury Criterion (front, side and rear), Abbreviated Injury Scale and reported risk level and adds greater understanding to the issue of auto rickshaw related pedestrian injury risk. The parametric analyses suggest that pedestrians are subject to a relatively high risk of injury during impacts with an auto rickshaw at velocities of 20 km/h or greater, which during some of the impact simulations may even risk fatalities. The present study provides valuable evidence for informing a series of recommendations and guidelines for making the auto rickshaw safer during collisions with pedestrians. Whilst it is acknowledged that the present research findings are based in the field of safety engineering and may over represent injury risk, compared to “Real World” accidents, many of the simulated interactions produced injury response values significantly greater than current threshold curves and thus, justify their inclusion in the study. To reduce the injury risk level and increase the safety of the auto rickshaw, there should be a reduction in the velocity of the auto rickshaw and, or, consideration of engineering solutions, such as retro fitting injury mitigation technologies to those auto rickshaw contact regions which are the subject of the greatest risk of producing pedestrian injury.Keywords: auto rickshaw, finite element analysis, injury risk level, LS-DYNA, pedestrian impact
Procedia PDF Downloads 1932614 The Gender Perspective Applied to the Analysis of Occupational Accidents
Authors: María Del Carmen Pardo Ferreira, Fernando Rodriguez Cortes, Juan Carlos Rubio Romero
Abstract:
According to the International Labor Organization, every day there is more presence of women in the labor market although inequality between women and men persists in world labor markets. In order to try to reduce this gender inequality in the work environment, the present study is proposed, which aims to analyze the occupational accidents suffered by women and occurred in Spain between 2015 and 2018. For this, the methodology used was based on a statistical analysis of the data provided by the Government of Spain. The results will allow to know in which jobs women suffer accidents, in what type of companies and the severity of the accident. Based on these results, specific intervention policies may be defined according to the needs detected in each sector.Keywords: Injured women, Gender perspective, Occupational accidents, Occupational health and safety
Procedia PDF Downloads 1742613 Analysis and Experimental Research on the Influence of Lubricating Oil on the Transmission Efficiency of New Energy Vehicle Gearbox
Authors: Chen Yong, Bi Wangyang, Zang Libin, Li Jinkai, Cheng Xiaowei, Liu Jinmin, Yu Miao
Abstract:
New energy vehicle power transmission systems continue to develop in the direction of high torque, high speed, and high efficiency. The cooling and lubrication of the motor and the transmission system are integrated, and new requirements are placed on the lubricants for the transmission system. The effects of traditional lubricants and special lubricants for new energy vehicles on transmission efficiency were studied through experiments and simulation methods. A mathematical model of the transmission efficiency of the lubricating oil in the gearbox was established. The power loss of each part was analyzed according to the working conditions. The relationship between the speed and the characteristics of different lubricating oil products on the power loss of the stirring oil was discussed. The minimum oil film thickness was required for the life of the gearbox. The accuracy of the calculation results was verified by the transmission efficiency test conducted on the two-motor integrated test bench. The results show that the efficiency increases first and then decreases with the increase of the speed and decreases with the increase of the kinematic viscosity of the lubricant. The increase of the kinematic viscosity amplifies the transmission power loss caused by the high speed. New energy vehicle special lubricants have less attenuation of transmission efficiency in the range above mid-speed. The research results provide a theoretical basis and guidance for the evaluation and selection of transmission efficiency of gearbox lubricants for new energy vehicles.Keywords: new energy vehicles, lubricants, transmission efficiency, kinematic viscosity, test and simulation
Procedia PDF Downloads 1302612 Marine Environmental Monitoring Using an Open Source Autonomous Marine Surface Vehicle
Authors: U. Pruthviraj, Praveen Kumar R. A. K. Athul, K. V. Gangadharan, S. Rao Shrikantha
Abstract:
An open source based autonomous unmanned marine surface vehicle (UMSV) is developed for some of the marine applications such as pollution control, environmental monitoring and thermal imaging. A double rotomoulded hull boat is deployed which is rugged, tough, quick to deploy and moves faster. It is suitable for environmental monitoring, and it is designed for easy maintenance. A 2HP electric outboard marine motor is used which is powered by a lithium-ion battery and can also be charged from a solar charger. All connections are completely waterproof to IP67 ratings. In full throttle speed, the marine motor is capable of up to 7 kmph. The motor is integrated with an open source based controller using cortex M4F for adjusting the direction of the motor. This UMSV can be operated by three modes: semi-autonomous, manual and fully automated. One of the channels of a 2.4GHz radio link 8 channel transmitter is used for toggling between different modes of the USMV. In this electric outboard marine motor an on board GPS system has been fitted to find the range and GPS positioning. The entire system can be assembled in the field in less than 10 minutes. A Flir Lepton thermal camera core, is integrated with a 64-bit quad-core Linux based open source processor, facilitating real-time capturing of thermal images and the results are stored in a micro SD card which is a data storage device for the system. The thermal camera is interfaced to an open source processor through SPI protocol. These thermal images are used for finding oil spills and to look for people who are drowning at low visibility during the night time. A Real Time clock (RTC) module is attached with the battery to provide the date and time of thermal images captured. For the live video feed, a 900MHz long range video transmitter and receiver is setup by which from a higher power output a longer range of 40miles has been achieved. A Multi-parameter probe is used to measure the following parameters: conductivity, salinity, resistivity, density, dissolved oxygen content, ORP (Oxidation-Reduction Potential), pH level, temperature, water level and pressure (absolute).The maximum pressure it can withstand 160 psi, up to 100m. This work represents a field demonstration of an open source based autonomous navigation system for a marine surface vehicle.Keywords: open source, autonomous navigation, environmental monitoring, UMSV, outboard motor, multi-parameter probe
Procedia PDF Downloads 2382611 Cellular Automata Model for Car Accidents at a Signalized Intersection
Authors: Rachid Marzoug, Noureddine Lakouari, Beatriz Castillo Téllez, Margarita Castillo Téllez, Gerardo Alberto Mejía Pérez
Abstract:
This paper developed a two-lane cellular automata model to explain the relationship between car accidents at a signalized intersection and traffic-related parameters. It is found that the increase of the lane-changing probability P?ₕ? increases the risk of accidents, besides, the inflow α and the probability of accidents Pₐ? exhibit a nonlinear relationship. Furthermore, depending on the inflow, Pₐ? exhibits three different phases. The transition from phase I to phase II is of first (second) order when P?ₕ?=0 (P?ₕ?>0). However, the system exhibits a second (first) order transition from phase II to phase III when P?ₕ?=0 (P?ₕ?>0). In addition, when the inflow is not very high, the green light length of one road should be increased to improve road safety. Finally, simulation results show that the traffic at the intersection is safer adopting symmetric lane-changing rules than asymmetric ones.Keywords: two-lane intersection, accidents, fatality risk, lane-changing, phase transition
Procedia PDF Downloads 2162610 Model for Calculating Traffic Mass and Deceleration Delays Based on Traffic Field Theory
Authors: Liu Canqi, Zeng Junsheng
Abstract:
This study identifies two typical bottlenecks that occur when a vehicle cannot change lanes: car following and car stopping. The ideas of traffic field and traffic mass are presented in this work. When there are other vehicles in front of the target vehicle within a particular distance, a force is created that affects the target vehicle's driving speed. The characteristics of the driver and the vehicle collectively determine the traffic mass; the driving speed of the vehicle and external variables have no bearing on this. From a physical level, this study examines the vehicle's bottleneck when following a car, identifies the outside factors that have an impact on how it drives, takes into account that the vehicle will transform kinetic energy into potential energy during deceleration, and builds a calculation model for traffic mass. The energy-time conversion coefficient is created from an economic standpoint utilizing the social average wage level and the average cost of motor fuel. Vissim simulation program measures the vehicle's deceleration distance and delays under the Wiedemann car-following model. The difference between the measured value of deceleration delay acquired by simulation and the theoretical value calculated by the model is compared using the conversion calculation model of traffic mass and deceleration delay. The experimental data demonstrate that the model is reliable since the error rate between the theoretical calculation value of the deceleration delay obtained by the model and the measured value of simulation results is less than 10%. The article's conclusion is that the traffic field has an impact on moving cars on the road and that physical and socioeconomic factors should be taken into account while studying vehicle-following behavior. The deceleration delay value of a vehicle's driving and traffic mass have a socioeconomic relationship that can be utilized to calculate the energy-time conversion coefficient when dealing with the bottleneck of cars stopping and starting.Keywords: traffic field, social economics, traffic mass, bottleneck, deceleration delay
Procedia PDF Downloads 662609 Variation of Inductance in a Switched-Reluctance Motor under Various Rotor Faults
Authors: Muhammad Asghar Saqib, Saad Saleem Khan, Syed Abdul Rahman Kashif
Abstract:
In order to have higher efficiency, performance and reliability the regular monitoring of an electrical motor is required. This article presents a novel view of the air-gap magnetic field analysis of a switched reluctance motor under rotor cracks and rotor tilt along its shaft axis. The fault diagnosis is illustrated on the basis of a 3-D model of the motor using finite element analysis (FEA). The analytical equations of flux linkages have been used to determine the inductance. The results of the 3-D finite element analysis on a 6/4 switched reluctance motor (SRM) shows the variation of mutual inductance with the tilting of the rotor shaft and cracked rotor conditions. These results present useful information regarding the detection of shaft tilting and cracked rotors.Keywords: switched reluctance motor, finite element analysis, cracked rotor, 3-D modelling of a srm
Procedia PDF Downloads 6612608 Optimization of Switched Reluctance Motor for Drive System in Automotive Applications
Authors: A. Peniak, J. Makarovič, P. Rafajdus, P. Dúbravka
Abstract:
The purpose of this work is to optimize a Switched Reluctance Motor (SRM) for an automotive application, specifically for a fully electric car. A new optimization approach is proposed. This unique approach transforms automotive customer requirements into an optimization problem, based on sound knowledge of a SRM theory. The approach combines an analytical and a finite element analysis of the motor to quantify static nonlinear and dynamic performance parameters, as phase currents and motor torque maps, an output power and power losses in order to find the optimal motor as close to the reality as possible, within reasonable time. The new approach yields the optimal motor which is competitive with other types of already proposed motors for automotive applications. This distinctive approach can also be used to optimize other types of electrical motors, when parts specifically related to the SRM are adjusted accordingly.Keywords: automotive, drive system, electric car, finite element method, hybrid car, optimization, switched reluctance motor
Procedia PDF Downloads 5192607 Analysis of Wheel Lock up Effects on Skidding Distance for Heavy Vehicles
Authors: Mahdieh Zamzamzadeh, Ahmad Abdullah Saifizul, Rahizar Ramli
Abstract:
The road accidents involving heavy vehicles have been showing worrying trends and, year after year, have increased the concern and awareness levels on safety of roads and transportations especially in developing countries like Malaysia. Statistics of road crashes continue to show that there are many contributing factors on the capability of a heavy vehicle to stop on safe distance and ultimately prevent traffic crashes. However, changes in the road condition due to weather variations and the vehicle dynamic specifications such as loading conditions and speed are the main risk factors because they will affect a heavy vehicle’s braking performance due to losing control and not being able to stop the vehicle, and in many cases will cause wheel lock up and accordingly skidding. Predicting heavy vehicle skidding distance is crucial for accident reconstruction and roadside safety engineers. Despite this, formal tools to study heavy vehicle skidding distance before stopping completely are totally limited, and most researchers have only considered braking distance in their studies. As a possible new tool, this work presents the iterative use of vehicle dynamic simulations to study heavy vehicle-roadway interaction in order to predict wheel lock up effects on skidding distance and safety. This research addresses the influence of the vehicle and road conditions on skidding distance after wheel lock up and presents a precise analysis of skidding phenomenon. The vehicle speed, vehicle loading condition and road friction parameters were all varied in a simulation-based analysis. In order to simulate the wheel lock up situation, a heavy vehicle model was constructed and simulated using multibody vehicle dynamics simulation software, and careful analysis was made on the conditions which caused the skidding distance to increase or decrease through a method using to predict skidding distance as part of braking distance. By applying many simulations, the results were quite revealing relation between the heavy vehicles loading condition, various sets of speed and road coefficient of friction and their interaction effect on the skidding distance. A number of results are presented which illustrate how the heavy vehicle overloading can seriously affect the skidding distance. Moreover, the results of simulation give the skid mark length, which is a necessary input data during accident reconstruction involving emergency braking.Keywords: accident reconstruction, Braking, heavy vehicle, skidding distance, skid mark, wheel lock up
Procedia PDF Downloads 4972606 Proposal for Knowledge-Based Virtual Community System (KBVCS) for Enhancing Knowledge Sharing in Mechatronics System Diagnostic and Repair
Authors: Adetoba B. Tiwalola, Adedeji W. Oyediran, Yekini N. Asafe, Akinwole A. Kikelomo
Abstract:
Mechatronics is synergistic integration of mechanical engineering, with electronics and intelligent computer control in the design and manufacturing of industrial products and processes. Automobile (auto car, motor car or car is a wheeled motor vehicle used for transporting passengers, which also carries its own engine or motor) is a mechatronic system which served as major means of transportation around the world. Virtually all community has a need for automobile. This makes automobile issues as related to diagnostic and repair interesting to all communities. Consequent to the diversification of skill in diagnosing automobile faults and approaches in solving some problems and innovation in automobile industry. It is appropriate to say that repair and diagnostic of automobile will be better enhanced if community has opportunity of sharing knowledge and idea globally. This paper discussed the desirable elements in automobile as mechatronics system and present conceptual framework of virtual community model for knowledge sharing among automobile users.Keywords: automobile, automobile users, knowledge sharing, mechatronics system, virtual community
Procedia PDF Downloads 4392605 Recommendations to Improve Classification of Grade Crossings in Urban Areas of Mexico
Authors: Javier Alfonso Bonilla-Chávez, Angélica Lozano
Abstract:
In North America, more than 2,000 people annually die in accidents related to railroad tracks. In 2020, collisions at grade crossings were the main cause of deaths related to railway accidents in Mexico. Railway networks have constant interaction with motor transport users, cyclists, and pedestrians, mainly in grade crossings, where is the greatest vulnerability and risk of accidents. Usually, accidents at grade crossings are directly related to risky behavior and non-compliance with regulations by motorists, cyclists, and pedestrians, especially in developing countries. Around the world, countries classify these crossings in different ways. In Mexico, according to their dangerousness (high, medium, or low), types A, B and C have been established, recommending for each one different type of auditive and visual signaling and gates, as well as horizontal and vertical signaling. This classification is based in a weighting, but regrettably, it is not explained how the weight values were obtained. A review of the variables and the current approach for the grade crossing classification is required, since it is inadequate for some crossings. In contrast, North America (USA and Canada) and European countries consider a broader classification so that attention to each crossing is addressed more precisely and equipment costs are adjusted. Lack of a proper classification, could lead to cost overruns in the equipment and a deficient operation. To exemplify the lack of a good classification, six crossings are studied, three located in the rural area of Mexico and three in Mexico City. These cases show the need of: improving the current regulations, improving the existing infrastructure, and implementing technological systems, including informative signals with nomenclature of the involved crossing and direct telephone line for reporting emergencies. This implementation is unaffordable for most municipal governments. Also, an inventory of the most dangerous grade crossings in urban and rural areas must be obtained. Then, an approach for improving the classification of grade crossings is suggested. This approach must be based on criteria design, characteristics of adjacent roads or intersections which can influence traffic flow through the crossing, accidents related to motorized and non-motorized vehicles, land use and land management, type of area, and services and economic activities in the zone where the grade crossings is located. An expanded classification of grade crossing in Mexico could reduce accidents and improve the efficiency of the railroad.Keywords: accidents, grade crossing, railroad, traffic safety
Procedia PDF Downloads 1062604 Internet of Things-Based Electric Vehicle Charging Notification
Authors: Nagarjuna Pitty
Abstract:
It is believed invention “Advanced Method and Process Quick Electric Vehicle Charging” is an Electric Vehicles (EVs) are quickly turning into the heralds of vehicle innovation. This study endeavors to address the inquiries of how module charging process correspondence has been performed between the EV and Electric Vehicle Supply Equipment (EVSE). The energy utilization of gas-powered motors is higher than that of electric engines. An invention is related to an Advanced Method and Process Quick Electric Vehicle Charging. In this research paper, readings on the electric vehicle charging approaches will be checked, and the module charging phases will be described comprehensively.Keywords: electric, vehicle, charging, notification, IoT, supply, equipment
Procedia PDF Downloads 692603 The Tendon Reflexes on the Performance of Flanker Task in the Subjects of Cerebrovascular Accidents
Authors: Harshdeep Singh, Kuljeet Singh Anand
Abstract:
Background: Cerebrovascular Accidents (CVA) cause abnormal or asymmetrical tendon reflexes contributing to motor impairments. Since the tendon reflexes are mediated by the spinal cord, their effects on cognitive performances are overlooked. This study aims to find the contributions of tendon reflexes on the performance of the Flanker task. Methods: A total population of 46 mixed subjects with movement disorders were recruited for the study. Deep tendon reflexes (DTR) of the biceps, triceps and brachioradialis were assessed for both upper extremities. Later, the Flanker task was performed on all the subjects, and the mean Reaction Time (RT) along with both the congruent and incongruent stimuli were evaluated. For the final analysis, the Kruskal Wallis test was performed to see the difference between the DTR and the performance of the Flanker Task. Results: The Kruskal Wallis test results showed a significant difference between the DTR scores, X²(2) = 11.328, p= 0.023 with the mean RT of the flanker task and X²(2) = 9.531, p= 0.049 with mean RT of the Incongruent Stimuli. Whereas the result found a non-significant difference in the mean RT of the Congruent Stimuli. Conclusion: Each DTR score is distributed differently with the mean RT of the flanker task and for the incongruent stimuli as well. Therefore, the tendon reflexes in PD may be contributing to the performance of the Flanker Task and may be an indicator of abnormal cognitive performance. Further research is needed to evaluate how the RTs are distributed with each DTR score.Keywords: cerebrovascular accidents, deep tendon reflexes, flanker task, reaction time, congruent stimuli, incongruent stimuli
Procedia PDF Downloads 982602 Design and Optimization of Spoke Rotor Type Brushless Direct Current Motor for Electric Vehicles Using Different Flux Barriers
Authors: Ismail Kurt, Necibe Fusun Oyman Serteller
Abstract:
Today, with the reduction in semiconductor system costs, Brushless Direct Current (BLDC) motors have become widely preferred. Based on rotor architecture, BLDC structures are divided into internal permanent magnet (IPM) and surface permanent magnet (SPM). However, permanent magnet (PM) motors in electric vehicles (EVs) are still predominantly based on interior permanent magnet (IPM) motors, as the rotors do not require sleeves, the PMs are better protected by the rotor cores, and the air-gap lengths can be much smaller. This study discusses the IPM rotor structure in detail, highlighting its higher torque levels, reluctance torque, wide speed range operation, and production advantages. IPM rotor structures are particularly preferred in EVs due to their high-speed capabilities, torque density and field weakening (FW) features. In FW applications, the motor becomes more suitable for operation at torques lower than the rated torque but at speeds above the rated speed. Although V-type and triangular IPM rotor structures are generally preferred in EV applications, the spoke-type rotor structure offers distinct advantages, making it a competitive option for these systems. The flux barriers in the rotor significantly affect motor performance, providing notable benefits in both motor efficiency and cost. This study utilizes ANSYS/Maxwell simulation software to analyze the spoke-type IPM motor and examine its key design parameters. Through analytical and 2D analysis, preliminary motor design and parameter optimization have been carried out. During the parameter optimization phase, torque ripple a common issue, especially for IPM motors has been investigated, along with the associated changes in motor parameters.Keywords: electric vehicle, field weakening, flux barrier, spoke rotor.
Procedia PDF Downloads 52601 Using of Particle Swarm Optimization for Loss Minimization of Vector-Controlled Induction Motors
Authors: V. Rashtchi, H. Bizhani, F. R. Tatari
Abstract:
This paper presents a new online loss minimization for an induction motor drive. Among the many loss minimization algorithms (LMAs) for an induction motor, a particle swarm optimization (PSO) has the advantages of fast response and high accuracy. However, the performance of the PSO and other optimization algorithms depend on the accuracy of the modeling of the motor drive and losses. In the development of the loss model, there is always a trade off between accuracy and complexity. This paper presents a new online optimization to determine an optimum flux level for the efficiency optimization of the vector-controlled induction motor drive. An induction motor (IM) model in d-q coordinates is referenced to the rotor magnetizing current. This transformation results in no leakage inductance on the rotor side, thus the decomposition into d-q components in the steady-state motor model can be utilized in deriving the motor loss model. The suggested algorithm is simple for implementation.Keywords: induction machine, loss minimization, magnetizing current, particle swarm optimization
Procedia PDF Downloads 6302600 A Review of In-Vehicle Network for Cloud Connected Vehicle
Authors: Hanbhin Ryu, Ilkwon Yun
Abstract:
Automotive industry targets to provide an improvement in safety and convenience through realizing fully autonomous vehicle. For partially realizing fully automated driving, Current vehicles already feature varieties of advanced driver assistance system (ADAS) for safety and infotainment systems for the driver’s convenience. This paper presents Cloud Connected Vehicle (CCV) which connected vehicles with cloud data center via the access network to control the vehicle for achieving next autonomous driving form and describes its features. This paper also describes the shortcoming of the existing In-Vehicle Network (IVN) to be a next generation IVN of CCV and organize the 802.3 Ethernet, the next generation of IVN, related research issue to verify the feasibility of using Ethernet. At last, this paper refers to additional considerations to adopting Ethernet-based IVN for CCV.Keywords: autonomous vehicle, cloud connected vehicle, ethernet, in-vehicle network
Procedia PDF Downloads 4762599 Modeling and Optimal Control of Hybrid Unmanned Aerial Vehicles with Wind Disturbance
Authors: Sunsoo Kim, Niladri Das, Raktim Bhattacharya
Abstract:
This paper addresses modeling and control of a six-degree-of-freedom unmanned aerial vehicle capable of vertical take-off and landing in the presence of wind disturbances. We design a hybrid vehicle that combines the benefits of both the fixed-wing and the rotary-wing UAVs. A non-linear model for the hybrid vehicle is rapidly built, combining rigid body dynamics, aerodynamics of wing, and dynamics of the motor and propeller. Further, we design a H₂ optimal controller to make the UAV robust to wind disturbances. We compare its results against that of proportional-integral-derivative and linear-quadratic regulator based control. Our proposed controller results in better performance in terms of root mean squared errors and time responses during two scenarios: hover and level- flight.Keywords: hybrid UAVs, VTOL, aircraft modeling, H2 optimal control, wind disturbances
Procedia PDF Downloads 1512598 Variable Frequency Converter Fed Induction Motors
Authors: Abdulatif Abdulsalam Mohamed Shaban
Abstract:
A.C motors, in general, have superior performance characteristics to their d.c. counterparts. However, despite these advantage a.c. motors lack the controllability and simplicity and so d.c. motors retain a competitive edge where precise control is required. As part of an overall project to develop an improved cycloconverter control strategy for induction motors. Simulation and modelling techniques have been developed. This contribution describes a method used to simulate an induction motor drive using the SIMULINK toolbox within MATLAB software. The cycloconverter fed induction motor is principally modelled using the d-q axis equations. Results of the simulation for a given set of induction motor parameters are also presented.Keywords: simulation, converter, motor, cycloconverter
Procedia PDF Downloads 6072597 Formula Student Car: Design, Analysis and Lap Time Simulation
Authors: Rachit Ahuja, Ayush Chugh
Abstract:
Aerodynamic forces and moments, as well as tire-road forces largely affects the maneuverability of the vehicle. Car manufacturers are largely fascinated and influenced by various aerodynamic improvements made in formula cars. There is constant effort of applying these aerodynamic improvements in road vehicles. In motor racing, the key differentiating factor in a high performance car is its ability to maintain highest possible acceleration in appropriate direction. One of the main areas of concern in motor racing is balance of aerodynamic forces and stream line the flow of air across the body of the vehicle. At present, formula racing cars are regulated by stringent FIA norms, there are constrains for dimensions of the vehicle, engine capacity etc. So one of the fields in which there is a large scope of improvement is aerodynamics of the vehicle. In this project work, an attempt has been made to design a formula- student (FS) car, improve its aerodynamic characteristics through steady state CFD simulations and simultaneously calculate its lap time. Initially, a CAD model of a formula student car is made using SOLIDWORKS as per the given dimensions and a steady-state external air-flow simulation is performed on the baseline model of the formula student car without any add on device to evaluate and analyze the air-flow pattern around the car and aerodynamic forces using FLUENT Solver. A detailed survey on different add-on devices used in racing application like: - front wing, diffuser, shark pin, T- wing etc. is made and geometric model of these add-on devices are created. These add-on devices are assembled with the baseline model. Steady state CFD simulations are done on the modified car to evaluate the aerodynamic effects of these add-on devices on the car. Later comparison of lap time simulation of the formula student car with and without the add-on devices is done with the help of MATLAB. Aerodynamic performances like: - lift, drag and their coefficients are evaluated for different configuration and design of the add-on devices at different speed of the vehicle. From parametric CFD simulations on formula student car attached with add-on devices, there is a considerable amount of drag and lift force reduction besides streamlining the airflow across the car. The best possible configuration of these add-on devices is obtained from these CFD simulations and also use of these add-on devices have shown an improvement in performance of the car which can be compared by various lap time simulations of the car.Keywords: aerodynamic performance, front wing, laptime simulation, t-wing
Procedia PDF Downloads 1962596 Transportation Accidents Mortality Modeling in Thailand
Authors: W. Sriwattanapongse, S. Prasitwattanaseree, S. Wongtrangan
Abstract:
The transportation accidents mortality is a major problem that leads to loss of human lives, and economic. The objective was to identify patterns of statistical modeling for estimating mortality rates due to transportation accidents in Thailand by using data from 2000 to 2009. The data was taken from the death certificate, vital registration database. The number of deaths and mortality rates were computed classifying by gender, age, year and region. There were 114,790 cases of transportation accidents deaths. The highest average age-specific transport accident mortality rate is 3.11 per 100,000 per year in males, Southern region and the lowest average age-specific transport accident mortality rate is 1.79 per 100,000 per year in females, North-East region. Linear, poisson and negative binomial models were chosen for fitting statistical model. Among the models fitted, the best was chosen based on the analysis of deviance and AIC. The negative binomial model was clearly appropriate fitted.Keywords: transportation accidents, mortality, modeling, analysis of deviance
Procedia PDF Downloads 2442595 Thermal Network Model for a Large Scale AC Induction Motor
Authors: Sushil Kumar, M. Dakshina Murty
Abstract:
Thermal network modelling has proven to be important tool for thermal analysis of electrical machine. This article investigates numerical thermal network model and experimental performance of a large-scale AC motor. Experimental temperatures were measured using RTD in the stator which have been compared with the numerical data. Thermal network modelling fairly predicts the temperature of various components inside the large-scale AC motor. Results of stator winding temperature is compared with experimental results which are in close agreement with accuracy of 6-10%. This method of predicting hot spots within AC motors can be readily used by the motor designers for estimating the thermal hot spots of the machine.Keywords: AC motor, thermal network, heat transfer, modelling
Procedia PDF Downloads 3242594 Road Traffic Accidents Analysis in Mexico City through Crowdsourcing Data and Data Mining Techniques
Authors: Gabriela V. Angeles Perez, Jose Castillejos Lopez, Araceli L. Reyes Cabello, Emilio Bravo Grajales, Adriana Perez Espinosa, Jose L. Quiroz Fabian
Abstract:
Road traffic accidents are among the principal causes of traffic congestion, causing human losses, damages to health and the environment, economic losses and material damages. Studies about traditional road traffic accidents in urban zones represents very high inversion of time and money, additionally, the result are not current. However, nowadays in many countries, the crowdsourced GPS based traffic and navigation apps have emerged as an important source of information to low cost to studies of road traffic accidents and urban congestion caused by them. In this article we identified the zones, roads and specific time in the CDMX in which the largest number of road traffic accidents are concentrated during 2016. We built a database compiling information obtained from the social network known as Waze. The methodology employed was Discovery of knowledge in the database (KDD) for the discovery of patterns in the accidents reports. Furthermore, using data mining techniques with the help of Weka. The selected algorithms was the Maximization of Expectations (EM) to obtain the number ideal of clusters for the data and k-means as a grouping method. Finally, the results were visualized with the Geographic Information System QGIS.Keywords: data mining, k-means, road traffic accidents, Waze, Weka
Procedia PDF Downloads 4152593 Artificial Neural Network Speed Controller for Excited DC Motor
Authors: Elabed Saud
Abstract:
This paper introduces the new ability of Artificial Neural Networks (ANNs) in estimating speed and controlling the separately excited DC motor. The neural control scheme consists of two parts. One is the neural estimator which is used to estimate the motor speed. The other is the neural controller which is used to generate a control signal for a converter. These two neutrals are training by Levenberg-Marquardt back-propagation algorithm. ANNs are the standard three layers feed-forward neural network with sigmoid activation functions in the input and hidden layers and purelin in the output layer. Simulation results are presented to demonstrate the effectiveness of this neural and advantage of the control system DC motor with ANNs in comparison with the conventional scheme without ANNs.Keywords: Artificial Neural Network (ANNs), excited DC motor, convenional controller, speed Controller
Procedia PDF Downloads 7232592 Fingers Exergames to Improve Fine Motor Skill in Autistic Children
Authors: Zulhisyam Salleh, Fizatul Aini Patakor, Rosilah Wahab, Awangku Khairul Ridzwan Awangku Jaya
Abstract:
Autism is a lifelong developmental disability that affects how people perceive the world and interact with others. Most of these children have difficulty with fine motor skills which typically struggle with handwriting and fine activities in their routine life such as getting dressed and controlled use of the everyday tool. Because fine motor activities encompass so many routine functions, a fine motor delay can have a measurable negative impact on a person's ability to handle daily practical tasks. This project proposed a simple fine motor exercise aid plus the game (exergame) for autistic children who discover from fine motor difficulties. The proposed exergame will be blinking randomly and user needs to bend their finger accordingly. It will notify the user, whether they bend the right finger or not. The system is realized using Arduino, which is programmed to control all the operated circuit. The feasibility studies with six autistic children were conducted and found the child interested in using exergame and could quickly get used to it. This study provides important guidance for future investigations of the exergame potential for accessing and improving fine motor skill among autistic children.Keywords: autism children, Arduino project, fine motor skill, finger exergame
Procedia PDF Downloads 1452591 Road Accidents in Urban and Rural Areas in Dar Es Salaam, Tanzania
Authors: Bruno Kinyaga
Abstract:
Motorcycles transport commonly known as (Boda boda) in Tanzania has been growing up in the recent years in both urban and rural areas. Since motorcycles have been authorized to carry passengers in Tanzania they have been associated with many accidents resulting in large number of deaths and injuries in the country. Most of the road traffic injury victims are passengers, motorcyclists and pedestrians. Males are over represented in all cases. Most of the deceased were 18-29 years old. The increase of motorcycles has been accompanied with the increase of motorcycle crashes causing deaths and injuries to passengers as well as riders. According to the data collected, the statistics shows that from January to December 2015, the total number of 4079 motorcycles was involved in accidents in the country, causing 1747 deaths and 4826 injuries. Compares to the report of January to December 2014 whereby the total number of motorcycles involved in accidents were 3710, causing 1423 deaths and 3622 injuries. This is according to the report provided by the Road safety Chief Commander in Tanzania.Keywords: accidents, road, safety, Tanzania
Procedia PDF Downloads 1662590 Optimum Design of Photovoltaic Water Pumping System Application
Authors: Sarah Abdourraziq, Rachid El Bachtiri
Abstract:
The solar power source for pumping water is one of the most promising areas in photovoltaic applications. The implementation of these systems allows to protect the environment and reduce the CO2 gas emission compared to systems trained by diesel generators. This paper presents a comparative study between the photovoltaic pumping system driven by DC motor, and AC motor to define the optimum design of this application. The studied system consists of PV array, DC-DC Boost Converter, inverter, motor-pump set and storage tank. The comparison was carried out to define the characteristics and the performance of each system. Each subsystem is modeled in order to simulate the whole system in MATLAB/ Simulink. The results show the efficiency of the proposed technique.Keywords: photovoltaic water pumping system, DC motor-pump, AC motor-pump, DC-DC boost converter
Procedia PDF Downloads 325