Search results for: low voltage trigger silicon controlled rectifier (LVTSCR)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4219

Search results for: low voltage trigger silicon controlled rectifier (LVTSCR)

4129 Development of 420 mm Diameter Silicon Crystal Growth Using Continuous Czochralski Process

Authors: Ilsun Pang, Kwanghun Kim, Sungsun Baik

Abstract:

Large diameter Si wafer is used as semiconductor substrate. Large diameter Si crystal ingot should be needed in order to increase wafer size. To make convection of large silicon melt stable, magnetic field is normally applied, but magnetic field is expensive and it is not proper to stabilize the large Si melt. To solve the problem, we propose a continuous Czochralski process which can be applied to small melt without magnetic field. We used granule poly, which has size distribution of 1~3 mm and is easily supplied in double crucible during silicon ingot growth. As the result, we produced 420 mm diameter ingot. In this paper, we describe an experimental study on crystal growth of large diameter silicon by Continuous Czochralski process.

Keywords: Czochralski, ingot, silicon crystal, wafer

Procedia PDF Downloads 422
4128 Processes for Valorization of Valuable Products from Kerf Slurry Waste

Authors: Nadjib Drouiche, Abdenour Lami, Salaheddine Aoudj, Tarik Ouslimane

Abstract:

Although solar cells manufacturing is a conservative industry, economics drivers continue to encourage innovation, feedstock savings and cost reduction. Kerf slurry waste is a complex product containing both valuable substances as well as contaminants. The valuable substances are: i) high purity silicon, ii) polyethylene glycol, and iii) silicon carbide. The contaminants mainly include metal fragments and organics. Therefore, recycling of the kerf slurry waste is an important subject not only from the treatment of waste but also from the recovery of valuable products. The present paper relates to processes for the recovery of valuable products from the kerf slurry waste in which they are contained, such products comprising nanoparticles, polyethylene glycol, high purity silicon, and silicon carbide.

Keywords: photovoltaic cell, Kerf slurry waste, recycling, silicon carbide

Procedia PDF Downloads 304
4127 Crystalline Silicon Optical Whispering Gallery Mode (WGM) Resonators for Precision Measurements

Authors: Igor Bilenko, Artem Shitikov, Michael Gorodetsky

Abstract:

Optical whispering gallery mode (WGM) resonators combine very high optical quality factor (Q) with small size. Resonators made from low loss crystalline fluorites (CaF2, MgF2) may have Q as high as 1010 that make them unique devices for modern applications including ultrasensitive sensors, frequency control, and precision spectroscopy. While silicon is a promising material transparent from near infrared to terahertz frequencies, fundamental limit for Si WGM quality factor was not reached yet. In our paper, we presented experimental results on the preparation and testing of resonators at 1550 nm wavelength made from crystalline silicon grown and treated by different techniques. Q as high as 3x107 was demonstrated. Future steps need to reach a higher value and possible applications are discussed.

Keywords: optical quality factor, silicon optical losses, silicon optical resonator, whispering gallery modes

Procedia PDF Downloads 474
4126 Noise and Thermal Analyses of Memristor-Based Phase Locked Loop Integrated Circuit

Authors: Naheem Olakunle Adesina

Abstract:

The memristor is considered as one of the promising candidates for mamoelectronic engineering and applications. Owing to its high compatibility with CMOS, nanoscale size, and low power consumption, memristor has been employed in the design of commonly used circuits such as phase-locked loop (PLL). In this paper, we designed a memristor-based loop filter (LF) together with other components of PLL. Following this, we evaluated the noise-rejection feature of loop filter by comparing the noise levels of input and output signals of the filter. Our SPICE simulation results showed that memristor behaves like a linear resistor at high frequencies. The result also showed that loop filter blocks the high-frequency components from phase frequency detector so as to provide a stable control voltage to the voltage controlled oscillator (VCO). In addition, we examined the effects of temperature on the performance of the designed phase locked loop circuit. A critical temperature, where there is frequency drift of VCO as a result of variations in control voltage, is identified. In conclusion, the memristor is a suitable choice for nanoelectronic systems owing to a small area, low power consumption, dense nature, high switching speed, and endurance. The proposed memristor-based loop filter, together with other components of the phase locked loop, can be designed using memristive emulator and EDA tools in current CMOS technology and simulated.

Keywords: Fast Fourier Transform, hysteresis curve, loop filter, memristor, noise, phase locked loop, voltage controlled oscillator

Procedia PDF Downloads 158
4125 Voltage Stability Assessment and Enhancement Using STATCOM -A Case Study

Authors: Puneet Chawla, Balwinder Singh

Abstract:

Recently, increased attention has been devoted to the voltage instability phenomenon in power systems. Many techniques have been proposed in the literature for evaluating and predicting voltage stability using steady state analysis methods. In this paper, P-V and Q-V curves have been generated for a 57 bus Patiala Rajpura circle of India. The power-flow program is developed in MATLAB using Newton-Raphson method. Using Q-V curves, the weakest bus of the power system and the maximum reactive power change permissible on that bus is calculated. STATCOMs are placed on the weakest bus to improve the voltage and hence voltage stability and also the power transmission capability of the line.

Keywords: voltage stability, reactive power, power flow, weakest bus, STATCOM

Procedia PDF Downloads 487
4124 Silicon Surface Treatment Effect on the Structural, Optical, and Optoelectronic Properties for Solar Cell Applications

Authors: Lotfi Hedi Khezami, Mohamed Ben Rabha, N. Sboui, Mounir Gaidi, B. Bessais

Abstract:

Metal-nano particle-assisted Chemical Etching is an extraordinary developed wet etching method of producing uniform semiconductor nano structure (nano wires) from patterned metallic film on crystalline silicon surface. The metal films facilitate the etching in HF and H2O2 solution and produce silicon nanowires (SiNWs). Creation of different SiNWs morphologies by changing the etching time and its effects on optical and opto electronic properties was investigated. Combination effect of formed SiNWs and stain etching treatment in acid (HF/HNO3/H2O) solution on the surface morphology of Si wafers as well as on the optical and opto electronic properties are presented in this paper.

Keywords: stain etching, porous silicon, silicon nanowires, reflectivity, lifetime, solar cells

Procedia PDF Downloads 417
4123 BOX Effect Sensitivity to Fin Width in SOI-Multi-FinFETs

Authors: A. N. Moulai Khatir

Abstract:

SOI-Multifin-FETs are placed to be the workhorse of the industry for the coming few generations, and thus, in a few years because their excellent transistor characteristics, ideal sub-threshold swing, low drain induced barrier lowering (DIBL) without pocket implantation, and negligible body bias dependency. The corner effect may also exist in the two lower corners; this effect is called the BOX effect, which can also occur in the direction X-Z. The electric field lines from the source and drain cross the bottom oxide and arrive in the silicon. This effect is also called DIVSB (Drain Induced Virtual Substrate Basing). The potential in the silicon film in particular near the drain is increased by the drain bias. It is similar to DIBL and result in a decrease of the threshold voltage. This work provides an understanding of the limitation of this effect by reducing the fin width for components with increased fin number.

Keywords: SOI, finFET, corner effect, dual-gate, tri-gate, BOX, multi-finFET

Procedia PDF Downloads 466
4122 Single-Inductor Multi-Output Converters with Four-Level Output Voltages

Authors: Yasunori Kobori, Murong Li, Feng Zhao, Shu Wu, Nobukazu Takai, Haruo Kobayashi

Abstract:

This paper proposes an electrolytic capacitor-less transformer-less AC-DC LED driver with a current ripple canceller. The proposed LED driver includes a diode bridge, a buck-boost converter, a negative feedback controller and a current ripple cancellation circuit. The current ripple canceller works as a bi-directional current converter using a sub-inductor, a sub-capacitor and two switches for controlling current flow. LED voltage is controlled in order to regulate LED current by the negative feedback controller using a current sense resistor. There are two capacitors with capacitance of 5 uF. We describe circuit topologies, operation principles and simulation results for our proposed circuit. In addition, we show the line regulation for input voltage variation from 85V to 130V. The output voltage ripple is 2V and the LED current ripple is 65 mA which is less than 20% of the average of LED current of 350 mA.

Keywords: DC-DC buck converter, four-level output voltage, single inductor multi output (SIMO), switching converter

Procedia PDF Downloads 528
4121 Carbon Coated Silicon Nanoparticles Embedded MWCNT/Graphene Matrix Anode Material for Li-Ion Batteries

Authors: Ubeyd Toçoğlu, Miraç Alaf, Hatem Akbulut

Abstract:

We present a work which was conducted in order to improve the cycle life of silicon based lithium ion battery anodes by utilizing novel composite structure. In this study, carbon coated nano sized (50-100 nm) silicon particles were embedded into Graphene/MWCNT silicon matrix to produce free standing silicon based electrodes. Also, conventional Si powder anodes were produced from Si powder slurry on copper current collectors in order to make comparison of composite and conventional anode structures. Free –standing composite anodes (binder-free) were produced via vacuum filtration from a well dispersion of Graphene, MWCNT and carbon coated silicon powders. Carbon coating process of silicon powders was carried out via microwave reaction system. The certain amount of silicon powder and glucose was mixed under ultrasonication and then coating was conducted at 200 °C for two hours in Teflon lined autoclave reaction chamber. Graphene which was used in this study was synthesized from well-known Hummers method and hydrazine reduction of graphene oxide. X-Ray diffraction analysis and RAMAN spectroscopy techniques were used for phase characterization of anodes. Scanning electron microscopy analyses were conducted for morphological characterization. The electrochemical performance tests were carried out by means of galvanostatic charge/discharge, cyclic voltammetry and electrochemical impedance spectroscopy.

Keywords: graphene, Li-Ion, MWCNT, silicon

Procedia PDF Downloads 229
4120 Study of Fast Etching of Silicon for the Fabrication of Bulk Micromachined MEMS Structures

Authors: V. Swarnalatha, A. V. Narasimha Rao, P. Pal

Abstract:

The present research reports the investigation of fast etching of silicon for the fabrication of microelectromechanical systems (MEMS) structures using silicon wet bulk micromachining. Low concentration tetramethyl-ammonium hydroxide (TMAH) and hydroxylamine (NH2OH) are used as main etchant and additive, respectively. The concentration of NH2OH is varied to optimize the composition to achieve best etching characteristics such as high etch rate, significantly high undercutting at convex corner for the fast release of the microstructures from the substrate, and improved etched surface morphology. These etching characteristics are studied on Si{100} and Si{110} wafers as they are most widely used in the fabrication of MEMS structures as wells diode, transistors and integrated circuits.

Keywords: KOH, MEMS, micromachining, silicon, TMAH, wet anisotropic etching

Procedia PDF Downloads 176
4119 Internal Node Stabilization for Voltage Sense Amplifiers in Multi-Channel Systems

Authors: Sanghoon Park, Ki-Jin Kim, Kwang-Ho Ahn

Abstract:

This paper discusses the undesirable charge transfer by the parasitic capacitances of the input transistors in a voltage sense amplifier. Due to its intrinsic rail-to-rail voltage transition, the input sides are inevitably disturbed. It can possible disturb the stabilities of the reference voltage levels. Moreover, it becomes serious in multi-channel systems by altering them for other channels, and so degrades the linearity of the systems. In order to alleviate the internal node voltage transition, the internal node stabilization technique is proposed by utilizing an additional biasing circuit. It achieves 47% and 43% improvements for node stabilization and input referred disturbance, respectively.

Keywords: voltage sense amplifier, voltage transition, node stabilization, biasing circuits

Procedia PDF Downloads 453
4118 A Neural Network Control for Voltage Balancing in Three-Phase Electric Power System

Authors: Dana M. Ragab, Jasim A. Ghaeb

Abstract:

The three-phase power system suffers from different challenging problems, e.g. voltage unbalance conditions at the load side. The voltage unbalance usually degrades the power quality of the electric power system. Several techniques can be considered for load balancing including load reconfiguration, static synchronous compensator and static reactive power compensator. In this work an efficient neural network is designed to control the unbalanced condition in the Aqaba-Qatrana-South Amman (AQSA) electric power system. It is designed for highly enhanced response time of the reactive compensator for voltage balancing. The neural network is developed to determine the appropriate set of firing angles required for the thyristor-controlled reactor to balance the three load voltages accurately and quickly. The parameters of AQSA power system are considered in the laboratory model, and several test cases have been conducted to test and validate the proposed technique capabilities. The results have shown a high performance of the proposed Neural Network Control (NNC) technique for correcting the voltage unbalance conditions at three-phase load based on accuracy and response time.

Keywords: three-phase power system, reactive power control, voltage unbalance factor, neural network, power quality

Procedia PDF Downloads 167
4117 Controlled Nano Texturing in Silicon Wafer for Excellent Optical and Photovoltaic Properties

Authors: Deb Kumar Shah, M. Shaheer Akhtar, Ha Ryeon Lee, O-Bong Yang, Chong Yeal Kim

Abstract:

The crystalline silicon (Si) solar cells are highly renowned photovoltaic technology and well-established as the commercial solar technology. Most of the solar panels are globally installed with the crystalline Si solar modules. At the present scenario, the major photovoltaic (PV) market is shared by c-Si solar cells, but the cost of c-Si panels are still very high as compared with the other PV technology. In order to reduce the cost of Si solar panels, few necessary steps such as low-cost Si manufacturing, cheap antireflection coating materials, inexpensive solar panel manufacturing are to be considered. It is known that the antireflection (AR) layer in c-Si solar cell is an important component to reduce Fresnel reflection for improving the overall conversion efficiency. Generally, Si wafer exhibits the 30% reflection because it normally poses the two major intrinsic drawbacks such as; the spectral mismatch loss and the high Fresnel reflection loss due to the high contrast of refractive indices between air and silicon wafer. In recent years, researchers and scientists are highly devoted to a lot of researches in the field of searching effective and low-cost AR materials. Silicon nitride (SiNx) is well-known AR materials in commercial c-Si solar cells due to its good deposition and interaction with passivated Si surfaces. However, the deposition of SiNx AR is usually performed by expensive plasma enhanced chemical vapor deposition (PECVD) process which could have several demerits like difficult handling and damaging the Si substrate by plasma when secondary electrons collide with the wafer surface for AR coating. It is very important to explore new, low cost and effective AR deposition process to cut the manufacturing cost of c-Si solar cells. One can also be realized that a nano-texturing process like the growth of nanowires, nanorods, nanopyramids, nanopillars, etc. on Si wafer can provide a low reflection on the surface of Si wafer based solar cells. The above nanostructures might be enhanced the antireflection property which provides the larger surface area and effective light trapping. In this work, we report on the development of crystalline Si solar cells without using the AR layer. The Silicon wafer was modified by growing nanowires like Si nanostructures using the wet controlled etching method and directly used for the fabrication of Si solar cell without AR. The nanostructures over Si wafer were optimized in terms of sizes, lengths, and densities by changing the etching conditions. Well-defined and aligned wires like structures were achieved when the etching time is 20 to 30 min. The prepared Si nanostructured displayed the minimum reflectance ~1.64% at 850 nm with the average reflectance of ~2.25% in the wavelength range from 400-1000 nm. The nanostructured Si wafer based solar cells achieved the comparable power conversion efficiency in comparison with c-Si solar cells with SiNx AR layer. From this study, it is confirmed that the reported method (controlled wet etching) is an easy, facile method for preparation of nanostructured like wires on Si wafer with low reflectance in the whole visible region, which has greater prospects in developing c-Si solar cells without AR layer at low cost.

Keywords: chemical etching, conversion efficiency, silicon nanostructures, silicon solar cells, surface modification

Procedia PDF Downloads 103
4116 Comparison of Sports Massage and Stretching along the Cold on Pain Intensity in Elite Female Volleyball Players with Trigger Points in Shoulder Girdle Region

Authors: Sahar Mohammadyari Ghareh Bolagh, Behnaz Seyedi Aghdam, Jalal Shamlou

Abstract:

This study was done to compare the effects of sports massage and stretching along the cold on pain intensity in elite female volleyball players with trigger points in shoulder girdle region. This study was conducted on 32 female volleyball players with latent trigger points in shoulder girdle region. Patients were randomly assigned to three groups: sports massage (n=11) stretching along the cold (n=11) and control group (n=10). One session treatment program during 15 minutes was performed. Pain intensity with VAS + algometer was assessed before and after intervention and improved in both of massage and cold groups. After treatment there were no significant difference between two treatment groups (P < 0. 050). Results of present research showed sports massage and stretching along the cold were effective on pain intensity of myofascial trigger points.

Keywords: sports massage، stretching along the cold، pain intensity، trigger points, elite, volleyball players, shoulder girdle region

Procedia PDF Downloads 343
4115 Efficient Utilization of Negative Half Wave of Regulator Rectifier Output to Drive Class D LED Headlamp

Authors: Lalit Ahuja, Nancy Das, Yashas Shetty

Abstract:

LED lighting has been increasingly adopted for vehicles in both domestic and foreign automotive markets. Although this miniaturized technology gives the best light output, low energy consumption, and cost-efficient solutions for driving, the same is the need of the hour. In this paper, we present a methodology for driving the highest class two-wheeler headlamp with regulator and rectifier (RR) output. Unlike usual LED headlamps, which are driven by a battery, regulator, and rectifier (RR) driven, a low-cost and highly efficient LED Driver Module (LDM) is proposed. The positive half of magneto output is regulated and used to charge batteries used for various peripherals. While conventionally, the negative half was used for operating bulb-based exterior lamps. But with advancements in LED-based headlamps, which are driven by a battery, this negative half pulse remained unused in most of the vehicles. Our system uses negative half-wave rectified DC output from RR to provide constant light output at all RPMs of the vehicle. With the negative rectified DC output of RR, we have the advantage of pulsating DC input which periodically goes to zero, thus helping us to generate a constant DC output equivalent to the required LED load, and with a change in RPM, additional active thermal bypass circuit help us to maintain the efficiency and thermal rise. The methodology uses the negative half wave output of the RR along with a linear constant current driver with significantly higher efficiency. Although RR output has varied frequency and duty cycles at different engine RPMs, the driver is designed such that it provides constant current to LEDs with minimal ripple. In LED Headlamps, a DC-DC switching regulator is usually used, which is usually bulky. But with linear regulators, we’re eliminating bulky components and improving the form factor. Hence, this is both cost-efficient and compact. Presently, output ripple-free amplitude drivers with fewer components and less complexity are limited to lower-power LED Lamps. The focus of current high-efficiency research is often on high LED power applications. This paper presents a method of driving LED load at both High Beam and Low Beam using the negative half wave rectified pulsating DC from RR with minimum components, maintaining high efficiency within the thermal limitations. Linear regulators are significantly inefficient, with efficiencies typically about 40% and reaching as low as 14%. This leads to poor thermal performance. Although they don’t require complex and bulky circuitry, powering high-power devices is difficult to realise with the same. But with the input being negative half wave rectified pulsating DC, this efficiency can be improved as this helps us to generate constant DC output equivalent to LED load minimising the voltage drop on the linear regulator. Hence, losses are significantly reduced, and efficiency as high as 75% is achieved. With a change in RPM, DC voltage increases, which can be managed by active thermal bypass circuitry, thus resulting in better thermal performance. Hence, the use of bulky and expensive heat sinks can be avoided. Hence, the methodology to utilize the unused negative pulsating DC output of RR to optimize the utilization of RR output power and provide a cost-efficient solution as compared to costly DC-DC drivers.

Keywords: class D LED headlamp, regulator and rectifier, pulsating DC, low cost and highly efficient, LED driver module

Procedia PDF Downloads 41
4114 Crops Cold Stress Alleviation by Silicon: Application on Turfgrass

Authors: Taoufik Bettaieb, Sihem Soufi

Abstract:

As a bioactive metalloid, silicon (Si) is an essential element for plant growth and development. It also plays a crucial role in enhancing plants’ resilience to different abiotic and biotic stresses. The morpho-physiological, biochemical, and molecular background of Si-mediated stress tolerance in plants were unraveled. Cold stress is a severe abiotic stress response to the decrease of plant growth and yield by affecting various physiological activities in plants. Several approaches have been used to alleviate the adverse effects generated from cold stress exposure, but the cost-effective, environmentally friendly, and defensible approach is the supply of silicon. Silicon has the ability to neutralize the harmful impacts of cold stress. Therefore, based on these hypotheses, this study was designed in order to investigate the morphological and physiological background of silicon effects applied at different concentrations on cold stress mitigation during early growth of a turfgrass, namely Paspalum vaginatum Sw. Results show that silicon applied at different concentrations improved the morphological development of Paspalum subjected to cold stress. It is also effective on the photosynthetic apparatus by maintaining stability the photochemical efficiency. As the primary component of cellular membranes, lipids play a critical function in maintaining the structural integrity of plant cells. Silicon application decreased membrane lipid peroxidation and kept on membrane frontline barrier relatively stable under cold stress.

Keywords: crops, cold stress, silicon, abiotic stress

Procedia PDF Downloads 93
4113 Fault Analysis of Ship Power System Comprising of Parallel Generators and Variable Frequency Drive

Authors: Umair Ashraf, Kjetil Uhlen, Sverre Eriksen, Nadeem Jelani

Abstract:

Although advancement in technology has increased the reliability and ease of work in ship power system, but these advancements are also adding complexities. Ever increasing non linear loads, like power electronics (PE) devices effect the stability of the system. Frequent load variations and complex load dynamics are due to the frequency converters and motor drives, these problem are more prominent when system is connected with the weak grid. In the ship power system major consumers are thruster motors for the propulsion. For the control operation of these motors variable frequency drives (VFD) are used, mostly VFDs operate on nominal voltage of the system. Some of the consumers in ship operate on lower voltage than nominal, these consumers got supply through step down transformers. In this paper the vector control scheme is used for the control of both rectifier and inverter, parallel operation of the synchronous generators is also demonstrated. The simulation have been performed with induction motor as load on VFD and parallel RLC load. Fault analysis has been performed first for the system which do not have VFD and then for the system with VFD. Three phase to the ground, single phase to the ground fault were implemented and behavior of the system in both the cases was observed.

Keywords: non-linear load, power electronics, parallel operating generators, pulse width modulation, variable frequency drives, voltage source converters, weak grid

Procedia PDF Downloads 548
4112 Voltage and Current Control of Microgrid in Grid Connected and Islanded Modes

Authors: Megha Chavda, Parth Thummar, Rahul Ghetia

Abstract:

This paper presents the voltage and current control of microgrid accompanied by the synchronization of microgrid with the main utility grid in both islanded and grid-connected modes. Distributed Energy Resources (DERs) satisfy the wide-spread power demand of consumer by behaving as a micro source for a low voltage (LV) grid or microgrid. Synchronization of the microgrid with the main utility grid is done using PLL and PWM gate pulse generation technique is used for the Voltage Source Converter. Potential Function method achieves the voltage and current control of this microgrid in both islanded and grid-connected modes. A low voltage grid consisting of three distributed generators (DG) is considered for the study and is simulated in time-domain using PSCAD/EMTDC software. The simulation results depict the appropriateness of voltage and current control of microgrid and synchronization of microgrid with the medium voltage (MV) grid.

Keywords: microgrid, distributed energy resources, voltage and current control, voltage source converter, pulse width modulation, phase locked loop

Procedia PDF Downloads 390
4111 Stabilization Technique for Multi-Inputs Voltage Sense Amplifiers in Node Sharing Converters

Authors: Sanghoon Park, Ki-Jin Kim, Kwang-Ho Ahn

Abstract:

This paper discusses the undesirable charge transfer through the parasitic capacitances of the input transistors in a multi-inputs voltage sense amplifier. Its intrinsic rail-to-rail voltage transitions at the output nodes inevitably disturb the input sides through the capacitive coupling between the outputs and inputs. Then, it can possible degrade the stabilities of the reference voltage levels. Moreover, it becomes more serious in multi-channel systems by altering them for other channels, and so degrades the linearity of the overall systems. In order to alleviate the internal node voltage transition, the internal node stabilization techniques are proposed. It achieves 45% and 40% improvements for node stabilization and input referred disturbance, respectively.

Keywords: voltage sense amplifier, multi-inputs, voltage transition, node stabilization, biasing circuits

Procedia PDF Downloads 531
4110 Reduction in Hot Metal Silicon through Statistical Analysis at G-Blast Furnace, Tata Steel Jamshedpur

Authors: Shoumodip Roy, Ankit Singhania, Santanu Mallick, Abhiram Jha, M. K. Agarwal, R. V. Ramna, Uttam Singh

Abstract:

The quality of hot metal at any blast furnace is judged by the silicon content in it. Lower hot metal silicon not only enhances process efficiency at steel melting shops but also reduces hot metal costs. The Hot metal produced at G-Blast furnace Tata Steel Jamshedpur has a significantly higher Si content than Benchmark Blast furnaces. The higher content of hot metal Si is mainly due to inferior raw material quality than those used in benchmark blast furnaces. With minimum control over raw material quality, the only option left to control hot metal Si is via optimizing the furnace parameters. Therefore, in order to identify the levers to reduce hot metal Si, Data mining was carried out, and multiple regression models were developed. The statistical analysis revealed that Slag B3{(CaO+MgO)/SiO2}, Slag Alumina and Hot metal temperature are key controllable parameters affecting hot metal silicon. Contour Plots were used to determine the optimum range of levels identified through statistical analysis. A trial plan was formulated to operate relevant parameters, at G blast furnace, in the identified range to reduce hot metal silicon. This paper details out the process followed and subsequent reduction in hot metal silicon by 15% at G blast furnace.

Keywords: blast furnace, optimization, silicon, statistical tools

Procedia PDF Downloads 199
4109 Antireflection Performance of Graphene Directly Deposited on Silicon Substrate by the Atmospheric Pressure Chemical Vapor Deposition Method

Authors: Samira Naghdi, Kyong Yop Rhee

Abstract:

Transfer-free synthesis of graphene on dielectric substrates is highly desirable but remains challenging. Here, by using a thin sacrificial platinum layer as a catalyst, graphene was deposited on a silicon substrate through a simple and transfer-free synthesis method. During graphene growth, the platinum layer evaporated, resulting in direct deposition of graphene on the silicon substrate. In this work, different growth conditions of graphene were optimized. Raman spectra of the produced graphene indicated that the obtained graphene was bilayer. The sheet resistance obtained from four-point probe measurements demonstrated that the deposited graphene had high conductivity. Reflectance spectroscopy of graphene-coated silicon showed a decrease in reflectance across the wavelength range of 200-800 nm, indicating that the graphene coating on the silicon surface had antireflection capabilities.

Keywords: antireflection coating, chemical vapor deposition, graphene, the sheet resistance

Procedia PDF Downloads 161
4108 Coordinated Voltage Control in a Radial Distribution System

Authors: Shivarudraswamy, Anubhav Shrivastava, Lakshya Bhat

Abstract:

Distributed generation has indeed become a major area of interest in recent years. Distributed Generation can address large number of loads in a power line and hence has better efficiency over the conventional methods. However there are certain drawbacks associated with it, increase in voltage being the major one. This paper addresses the voltage control at the buses for an IEEE 30 bus system by regulating reactive power. For carrying out the analysis, the suitable location for placing distributed generators (DG) is identified through load flow analysis and seeing where the voltage profile is dipping. MATLAB programming is used to regulate the voltage at all buses within +/-5% of the base value even after the introduction of DG’s. Three methods for regulation of voltage are discussed. A sensitivity based analysis is later carried out to determine the priority among the various methods listed in the paper.

Keywords: distributed generators, distributed system, reactive power, voltage control

Procedia PDF Downloads 473
4107 Silicon Nanostructure Based on Metal-Nanoparticle-Assisted Chemical Etching for Photovoltaic Application

Authors: B. Bouktif, M. Gaidi, M. Benrabha

Abstract:

Metal-nano particle-assisted chemical etching is an extraordinary developed wet etching method of producing uniform semiconductor nanostructure (nanowires) from the patterned metallic film on the crystalline silicon surface. The metal films facilitate the etching in HF and H2O2 solution and produce silicon nanowires (SiNWs). Creation of different SiNWs morphologies by changing the etching time and its effects on optical and optoelectronic properties was investigated. Combination effect of formed SiNWs and stain etching treatment in acid (HF/HNO3/H2O) solution on the surface morphology of Si wafers as well as on the optical and optoelectronic properties are presented in this paper.

Keywords: semiconductor nanostructure, chemical etching, optoelectronic property, silicon surface

Procedia PDF Downloads 363
4106 Electromagnetic Energy Harvesting by Using a Rectenna with a Metamaterial Lens

Authors: Ursula D. C. Resende, Fabiano S. Bicalho, Sandro T. M. Gonçalves

Abstract:

The growing demand for cheap and clean energy sources have been motivated by the study and development of distinct technologies and devices able to provide different amounts of energy. In order to supply energy for small loads, the energy from the electromagnetic spectrum can be harvested. This possibility is particularly interesting because this kind of energy is constantly available in the environment and the number of radiofrequency sources is permanently increasing, due to advances in telecommunications services. A rectenna, which is a combination of an antenna and a rectifier circuit, is an equipment that can efficiently perform the electromagnetic energy harvesting. However, since the amount of electromagnetic energy available in the environment is very small, limited values of power can be harvested by the rectenna. Therefore, several technical strategies have been investigated in order to increase this amount of power. In this work, a metamaterial electromagnetic lens is used to improve the electromagnetic energy harvesting. The rectenna investigated was designed and optimized to charge a Li-Ion battery using the electromagnetic energy from an internet Wi-Fi commercial router model TL-WR841HP operating in 2.45 GHz with maximal output power equal to 18 dBm. The rectenna consists of a high directive antenna, a double voltage rectifier circuit and a metamaterial lens. The printed antenna, constituted of two rectangular radiator elements, was projected and optimized by using the Computer Simulation Software (CST) in order to obtain high directivities and values of S11 parameter below -10 dB in 2.45 GHz. The antenna was printed over a double-sided copper fiberglass substrate, FR4, with characterized relative electric permittivity εr = 4.3 and tangent of losses δ = 0.01. The rectifier circuit, which incorporates a circuit for impedance matching and uses the Schottky diode HSMS-2852, was projected and optimized by using Advanced Design Software (ADS) and built over the same FR4 substrate. The metamaterial cell is composed of two Square Split Ring Resonator (S-SRR) and a thin wire in order to operate with negative values of εr and relative magnetic permeability in 2.45 GHz. In order to evaluate the performance of the purposed rectenna two experimental charging tests were performed, one without and other with the metamaterial lens. The result obtained demonstrate that the electromagnetic lens was able to significantly increase the levels of electric current delivered to the battery, approximately 44%.

Keywords: electromagnetic energy harvesting, electromagnetic lens, metamaterial, rectenna

Procedia PDF Downloads 119
4105 Silicon Carbide (SiC) Crystallization Obtained as a Side Effect of SF6 Etching Process

Authors: N. K. A. M. Galvão, A. Godoy Jr., A. L. J. Pereira, G. V. Martins, R. S. Pessoa, H. S. Maciel, M. A. Fraga

Abstract:

Silicon carbide (SiC) is a wide band-gap semiconductor material with very attractive properties, such as high breakdown voltage, chemical inertness, and high thermal and electrical stability, which makes it a promising candidate for several applications, including microelectromechanical systems (MEMS) and electronic devices. In MEMS manufacturing, the etching process is an important step. It has been proved that wet etching of SiC is not feasible due to its high bond strength and high chemical inertness. In view of this difficulty, the plasma etching technique has been applied with paramount success. However, in most of these studies, only the determination of the etching rate and/or morphological characterization of SiC, as well as the analysis of the reactive ions present in the plasma, are lowly explored. There is a lack of results in the literature on the chemical and structural properties of SiC after the etching process [4]. In this work, we investigated the etching process of sputtered amorphous SiC thin films on Si substrates in a reactive ion etching (RIE) system using sulfur hexafluoride (SF6) gas under different RF power. The results of the chemical and structural analyses of the etched films revealed that, for all conditions, a SiC crystallization occurred, in addition to fluoride contamination. In conclusion, we observed that SiC crystallization is a side effect promoted by structural, morphological and chemical changes caused by RIE SF6 etching process.

Keywords: plasma etching, plasma deposition, Silicon Carbide, microelectromechanical systems

Procedia PDF Downloads 60
4104 Effect of Manual Progressive Ischemic Pressure versus Post Isometric Facilitation in the Treatment of Latent Myofascial Trigger Points in Mechanical Neck Pain

Authors: Mohamed M. Diab, Fahmy E. Mohamed, Alaa Balbaa

Abstract:

Background: Myofascial pain syndrome a common type of non-articular musculoskeletal pain, is a condition associated with regional pain and muscle tenderness characterized by the presence of hypersensitive nodules. Objectives: the purpose of this study is to compare between the effects of manual progressive ischemic pressure versus the effect of post isometric facilitation in the treatment of Rhomboid latent myofascial trigger points. Methods: six patients had participated in this study. Patients divided into two groups. Group A treated by manual progressive ischemic pressure and traditional physical therapy program. Group B treated by post isometric facilitation and traditional physical therapy program. Treatment program was for 6 sessions over two week’s period. Result: Statistical analysis revealed that there is no significant difference in post treatment from pretreatment in pain severity (VAS) in myofascial trigger points with Rhomboid muscles) and Pain pressure threshold (PPT) for tenderness at both groups (A,B). Conclusion: ischemic pressure technique appear to be no more effective than post isometric facilitation in treatment of rhomboids latent myofacial trigger point.

Keywords: Rhmoiboid trigger point, myofacila trigger point, ischemic pressure, post isometric facilitation

Procedia PDF Downloads 285
4103 Vertically Coupled III-V/Silicon Single Mode Laser with a Hybrid Grating Structure

Authors: Zekun Lin, Xun Li

Abstract:

Silicon photonics has gained much interest and extensive research for a promising aspect for fabricating compact, high-speed and low-cost photonic devices compatible with complementary metal-oxide-semiconductor (CMOS) process. Despite the remarkable progress made on the development of silicon photonics, high-performance, cost-effective, and reliable silicon laser sources are still missing. In this work, we present a 1550 nm III-V/silicon laser design with stable single-mode lasing property and robust and high-efficiency vertical coupling. The InP cavity consists of two uniform Bragg grating sections at sides for mode selection and feedback, as well as a central second-order grating for surface emission. A grating coupler is etched on the SOI waveguide by which the light coupling between the parallel III-V and SOI is reached vertically rather than by evanescent wave coupling. Laser characteristic is simulated and optimized by the traveling-wave model (TWM) and a Green’s function analysis as well as a 2D finite difference time domain (FDTD) method for the coupling process. The simulation results show that single-mode lasing with SMSR better than 48dB is achievable, and the threshold current is less than 15mA with a slope efficiency of around 0.13W/A. The coupling efficiency is larger than 42% and possesses a high tolerance with less than 10% reduction for 10 um horizontal or 15 um vertical dislocation. The design can be realized by standard flip-chip bonding techniques without co-fabrication of III-V and silicon or precise alignment.

Keywords: III-V/silicon integration, silicon photonics, single mode laser, vertical coupling

Procedia PDF Downloads 128
4102 Fabrication and Properties of Al2O3/Si Quantum Well-Structured Silicon Solar Cells

Authors: Kwang-Ho Kim, Kwan-Hong Min, Pyungwoo Jang, Chisup Jung, Kyu Seomoon

Abstract:

By restricting the dimensions of silicon to less than Bohr radius of bulk crystalline silicon (∼5 nm), quantum confinement causes its effective bandgap to increase. Therefore, silicon quantum wells (QWs) using these quantum phenomena could be a good candidate to achieve high performance silicon solar cells. The Al2O3/Si QW structures were fabricated by using the successive deposition technique, as a quantum confinement device to increase the effective energy bandgap and passivation effect in Si surface for the 3rd generation solar cell applications. In Si/Al2O3 QWs, the thicknesses of Si layers and Al2O3 layers were varied between 1 to 5 nm, respectively. The roughness of deposited Si on Al2O3 was less than 4 Å in the thickness of 2 nm. By using the Al2O3/Si QW structures on Si surfaces, the lifetime measured by u-PCD technique increased as a result of passivated surface effects. The discussion about the other properties such as electrical and optical properties of the QWs structures as well as the fabricated solar cells will be presented in this paper.

Keywords: Al2O3/Si quantum well, quantum confinement, solar cells, third generation, successive deposition technique

Procedia PDF Downloads 311
4101 High-Quality Flavor of Black Belly Pork under Lightning Corona Discharge Using Tesla Coil for High Voltage Education

Authors: Kyung-Hoon Jang, Jae-Hyo Park, Kwang-Yeop Jang, Dongjin Kim

Abstract:

The Tesla coil is an electrical resonant transformer circuit designed by inventor Nikola Tesla in 1891. It is used to produce high voltage, low current and high frequency alternating current electricity. Tesla experimented with a number of different configurations consisting of two or sometimes three coupled resonant electric circuits. This paper focuses on development and high voltage education to apply a Tesla coil to cuisine for high quality flavor and taste conditioning as well as high voltage education under 50 kV corona discharge. The result revealed that the velocity of roasted black belly pork by Tesla coil is faster than that of conventional methods such as hot grill and steel plate etc. depending on applied voltage level and applied voltage time. Besides, carbohydrate and crude protein increased, whereas natrium and saccharides significantly decreased after lightning surge by Tesla coil. This idea will be useful in high voltage education and high voltage application.

Keywords: corona discharge, Tesla coil, high voltage application, high voltage education

Procedia PDF Downloads 299
4100 Numerical Investigation Including Mobility Model for the Performances of Piezoresistive Sensors

Authors: Abdelaziz Beddiaf

Abstract:

In this work, we present an analysis based on the study of mobility which is a very important electrical parameter of a piezoresistor and which is directly bound to the piezoresistivity effect in piezoresistive pressure sensors. We determine how the temperature affects mobility when the electric potential is applied. For this, a theoretical approach based on mobility in a p-type Silicon piezoresistor with that of a finite difference model for self-heating is developed. So, the evolution of mobility has been established versus time for different doping levels and with temperature rise provoked by self-heating using a numerical model combined with that of mobility. Furthermore, it has been calculated for some geometrical parameters of the sensor, such as membrane side length and thickness. Also, it is computed as a function of bias voltage. It was observed that mobility is strongly affected by the temperature rise induced by the applied potential when the sensor is actuated for a prolonged time as a consequence of drifting in the output response of the sensor. Finally, this work makes it possible to predict their temperature behavior due to self-heating and to improve this effect by optimizing the geometric properties of the device and by reducing the voltage source applied to the bridge.

Keywords: Sensors, Piezoresistivity, Mobility, Bias voltage

Procedia PDF Downloads 68