Search results for: immediate neighbors
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 152

Search results for: immediate neighbors

62 Controlling Fear: Jordanian Women’s Perceptions of the Diagnosis and Surgical Treatment of Early Stage Breast Cancer

Authors: Rana F. Obeidat, Suzanne S. Dickerson, Gregory G. Homish, Nesreen M. Alqaissi, Robin M. Lally

Abstract:

Background: Despite the fact that breast cancer is the most prevalent cancer among Jordanian women, practically nothing is known about their perceptions of early stage breast cancer and surgical treatment. Objective: To gain understanding of the diagnosis and surgical treatment experience of Jordanian women diagnosed with early stage breast cancer. Methods: An interpretive phenomenological approach was used for this study. A purposive sample of 28 Jordanian women who were surgically treated for early stage breast cancer within 6 months of the interview was recruited. Data were collected using individual interviews and analyzed using Heideggerian hermeneutical methodology. Results: Fear had a profound effect on Jordanian women’s stories of diagnosis and surgical treatment of early stage breast cancer. Women’s experience with breast cancer and its treatment was shaped by their pre-existing fear of breast cancer, the disparity in the quality of care at various health care institutions, and sociodemographic factors (e.g., education, age). Conclusions: Early after the diagnosis, fear was very strong and women lost perspective of the fact that this disease was treatable and potentially curable. To control their fears, women unconditionally trusted God, the health care system, surgeons, family, friends, and/or neighbors, and often accepted treatment offered by their surgeons without questioning. Implications for practice: Jordanian healthcare providers have a responsibility to listen to their patients, explore meanings they ascribe to their illness, and provide women with proper education and support necessary to help them cope with their illness.

Keywords: breast cancer, early stage, Jordanian, experience, phenomenology

Procedia PDF Downloads 325
61 Proposal for a Monster Village in Namsan Mountain, Seoul: Significance from a Phenomenological Perspective

Authors: Hyuk-Jin Lee

Abstract:

Korea is a country with thousands of years of history, like its neighbors China and Japan. However, compared to China, which is famous for its ancient fantasy novel "Journey to the West", and Japan, which is famous for its monsters, its “monster culture” is not actively used for tourism. The reason is that the culture closest to the present, from the 17th to 20th centuries, was the Joseon Dynasty, when Neo-Confucianism, which suppressed a monster culture, was the strongest. This trend became stronger after Neo-Confucianism became dogmatic in the mid-17th century. However, Korea, which has a history of Taoism for thousands of years, clearly has many literatures on monsters that can be used as tourism resources. The problem is that these data are buried in texts and are unfamiliar even to Koreans. This study examines the possibility of developing them into attractive tourism resources based on the literary records of the so-called 'monsters densely located in Namsan Mountain, located in the center of Seoul' buried in texts from the 16th to early 17th centuries. In particular, we introduce the surprising consistency in the description of the area north of Namsan Mountain in terms of 'feng shui geography', an oriental philosophy, in a contemporary Korean newspaper. Finally, based on the theoretical foundation through the phenomenological classification table of cultural heritage, we examine phenomenologically how important this ‘visualization of imaginary or text-based entities’ is to changes in the perception of specific cultural resources in a society. In addition, we will deeply analyze related cases, including Japan's ninja culture.

Keywords: monster culture, Namsan mountain, neo-confucianism, phenomenology, tourism

Procedia PDF Downloads 32
60 A Spatial Hypergraph Based Semi-Supervised Band Selection Method for Hyperspectral Imagery Semantic Interpretation

Authors: Akrem Sellami, Imed Riadh Farah

Abstract:

Hyperspectral imagery (HSI) typically provides a wealth of information captured in a wide range of the electromagnetic spectrum for each pixel in the image. Hence, a pixel in HSI is a high-dimensional vector of intensities with a large spectral range and a high spectral resolution. Therefore, the semantic interpretation is a challenging task of HSI analysis. We focused in this paper on object classification as HSI semantic interpretation. However, HSI classification still faces some issues, among which are the following: The spatial variability of spectral signatures, the high number of spectral bands, and the high cost of true sample labeling. Therefore, the high number of spectral bands and the low number of training samples pose the problem of the curse of dimensionality. In order to resolve this problem, we propose to introduce the process of dimensionality reduction trying to improve the classification of HSI. The presented approach is a semi-supervised band selection method based on spatial hypergraph embedding model to represent higher order relationships with different weights of the spatial neighbors corresponding to the centroid of pixel. This semi-supervised band selection has been developed to select useful bands for object classification. The presented approach is evaluated on AVIRIS and ROSIS HSIs and compared to other dimensionality reduction methods. The experimental results demonstrate the efficacy of our approach compared to many existing dimensionality reduction methods for HSI classification.

Keywords: dimensionality reduction, hyperspectral image, semantic interpretation, spatial hypergraph

Procedia PDF Downloads 306
59 Local Interpretable Model-agnostic Explanations (LIME) Approach to Email Spam Detection

Authors: Rohini Hariharan, Yazhini R., Blessy Maria Mathew

Abstract:

The task of detecting email spam is a very important one in the era of digital technology that needs effective ways of curbing unwanted messages. This paper presents an approach aimed at making email spam categorization algorithms transparent, reliable and more trustworthy by incorporating Local Interpretable Model-agnostic Explanations (LIME). Our technique assists in providing interpretable explanations for specific classifications of emails to help users understand the decision-making process by the model. In this study, we developed a complete pipeline that incorporates LIME into the spam classification framework and allows creating simplified, interpretable models tailored to individual emails. LIME identifies influential terms, pointing out key elements that drive classification results, thus reducing opacity inherent in conventional machine learning models. Additionally, we suggest a visualization scheme for displaying keywords that will improve understanding of categorization decisions by users. We test our method on a diverse email dataset and compare its performance with various baseline models, such as Gaussian Naive Bayes, Multinomial Naive Bayes, Bernoulli Naive Bayes, Support Vector Classifier, K-Nearest Neighbors, Decision Tree, and Logistic Regression. Our testing results show that our model surpasses all other models, achieving an accuracy of 96.59% and a precision of 99.12%.

Keywords: text classification, LIME (local interpretable model-agnostic explanations), stemming, tokenization, logistic regression.

Procedia PDF Downloads 47
58 Automatic Staging and Subtype Determination for Non-Small Cell Lung Carcinoma Using PET Image Texture Analysis

Authors: Seyhan Karaçavuş, Bülent Yılmaz, Ömer Kayaaltı, Semra İçer, Arzu Taşdemir, Oğuzhan Ayyıldız, Kübra Eset, Eser Kaya

Abstract:

In this study, our goal was to perform tumor staging and subtype determination automatically using different texture analysis approaches for a very common cancer type, i.e., non-small cell lung carcinoma (NSCLC). Especially, we introduced a texture analysis approach, called Law’s texture filter, to be used in this context for the first time. The 18F-FDG PET images of 42 patients with NSCLC were evaluated. The number of patients for each tumor stage, i.e., I-II, III or IV, was 14. The patients had ~45% adenocarcinoma (ADC) and ~55% squamous cell carcinoma (SqCCs). MATLAB technical computing language was employed in the extraction of 51 features by using first order statistics (FOS), gray-level co-occurrence matrix (GLCM), gray-level run-length matrix (GLRLM), and Laws’ texture filters. The feature selection method employed was the sequential forward selection (SFS). Selected textural features were used in the automatic classification by k-nearest neighbors (k-NN) and support vector machines (SVM). In the automatic classification of tumor stage, the accuracy was approximately 59.5% with k-NN classifier (k=3) and 69% with SVM (with one versus one paradigm), using 5 features. In the automatic classification of tumor subtype, the accuracy was around 92.7% with SVM one vs. one. Texture analysis of FDG-PET images might be used, in addition to metabolic parameters as an objective tool to assess tumor histopathological characteristics and in automatic classification of tumor stage and subtype.

Keywords: cancer stage, cancer cell type, non-small cell lung carcinoma, PET, texture analysis

Procedia PDF Downloads 326
57 Relevant Stakeholders in Environmental Management Organization: The Case of Industries Três Rios/RJ

Authors: Beatriz dos Anjos Furtado, Marina Barreiros Lamim, Camila Avozani Zago, Julianne Alvim Milward-de-Azevedo, Luís Cláudio Meirelles de Medeiros

Abstract:

The intense process of economic acceleration, expansion of industrial activities and capitalism, combined with population growth, while promoting the development, bring environmental consequences and dynamics of locations. It can be seen that society is seeking to break with old paradigms of capitalist society, seeking to reconcile growth with sustainable development, with a change of mentality of the stakeholders of the production process (shareholders, employees, suppliers, customers, governments, and neighbors, groups citizens and the public in general). In this context, this research aims to map the stakeholders interested in environmental management in industries located in the city of Três Rios/RJ. The city of Três Rios is located in South-Central region of the state of Rio de Janeiro - Brazil. Methodological resources used refer to descriptive and field research, whose nature is qualitative and quantitative. It is also of multicases studies in the study area, and the data collection occurred by means of semi-structured questionnaires and interviews with employees related to the environmental area of the industries located in Três Rios and registered at the Federation of Industries the State of Rio de Janeiro - FIRJAN in the version of 2013 and active in federal revenue. Through this research it observed, among other things, the stakeholders involved in the environmental management process of “Três Rios” industry respondents, and those responding to the demands of environmental management.

Keywords: stakeholders, environmental management, industry, state, customer

Procedia PDF Downloads 487
56 Ontology-Driven Knowledge Discovery and Validation from Admission Databases: A Structural Causal Model Approach for Polytechnic Education in Nigeria

Authors: Bernard Igoche Igoche, Olumuyiwa Matthew, Peter Bednar, Alexander Gegov

Abstract:

This study presents an ontology-driven approach for knowledge discovery and validation from admission databases in Nigerian polytechnic institutions. The research aims to address the challenges of extracting meaningful insights from vast amounts of admission data and utilizing them for decision-making and process improvement. The proposed methodology combines the knowledge discovery in databases (KDD) process with a structural causal model (SCM) ontological framework. The admission database of Benue State Polytechnic Ugbokolo (Benpoly) is used as a case study. The KDD process is employed to mine and distill knowledge from the database, while the SCM ontology is designed to identify and validate the important features of the admission process. The SCM validation is performed using the conditional independence test (CIT) criteria, and an algorithm is developed to implement the validation process. The identified features are then used for machine learning (ML) modeling and prediction of admission status. The results demonstrate the adequacy of the SCM ontological framework in representing the admission process and the high predictive accuracies achieved by the ML models, with k-nearest neighbors (KNN) and support vector machine (SVM) achieving 92% accuracy. The study concludes that the proposed ontology-driven approach contributes to the advancement of educational data mining and provides a foundation for future research in this domain.

Keywords: admission databases, educational data mining, machine learning, ontology-driven knowledge discovery, polytechnic education, structural causal model

Procedia PDF Downloads 62
55 Evaluation of the Urban Landscape Structures and Dynamics of Hawassa City, Using Satellite Images and Spatial Metrics Approaches, Ethiopia

Authors: Berhanu Terfa, Nengcheng C.

Abstract:

The study deals with the analysis of urban expansion and land transformation of Hawass City using remote sensing data and landscape metrics during last three decades (1987–2017). Remote sensing data from Various multi-temporal satellite images viz., TM (1987), TM (1995), ETM+ (2005) and OLI (2017) were used to examine the urban expansion, growth types, and spatial isolation within the urban landscape to develop an understanding the trends of built-up growth in Hawassa City, Ethiopia. Landscape metrics and built-up density were employed to analyze the pattern, process and overall growth status. The area under investigation was divided into concentric circles with a consecutive circle of 1 km incremental radius from the central pixel (Central Business District) for analysis. The result exhibited that the built-up area had increased by 541.32% between 1987 and 2017and an extension growth types (more than 67 %) was observed. The major growth took place in north-west direction followed by north direction in haphazard manner during 1987–1995 period, whereas predominant built-up development was observed in south and southwest direction during 1995–2017 period. Land scape metrics result revealed that the of urban patches density, total edge and edge density increased, while mean nearest neighbors’ distance decreased showing the tendency of sprawl.

Keywords: landscape metrics, spatial patterns, remote sensing, multi-temporal, urban sprawl

Procedia PDF Downloads 286
54 Innovative Predictive Modeling and Characterization of Composite Material Properties Using Machine Learning and Genetic Algorithms

Authors: Hamdi Beji, Toufik Kanit, Tanguy Messager

Abstract:

This study aims to construct a predictive model proficient in foreseeing the linear elastic and thermal characteristics of composite materials, drawing on a multitude of influencing parameters. These parameters encompass the shape of inclusions (circular, elliptical, square, triangle), their spatial coordinates within the matrix, orientation, volume fraction (ranging from 0.05 to 0.4), and variations in contrast (spanning from 10 to 200). A variety of machine learning techniques are deployed, including decision trees, random forests, support vector machines, k-nearest neighbors, and an artificial neural network (ANN), to facilitate this predictive model. Moreover, this research goes beyond the predictive aspect by delving into an inverse analysis using genetic algorithms. The intent is to unveil the intrinsic characteristics of composite materials by evaluating their thermomechanical responses. The foundation of this research lies in the establishment of a comprehensive database that accounts for the array of input parameters mentioned earlier. This database, enriched with this diversity of input variables, serves as a bedrock for the creation of machine learning and genetic algorithm-based models. These models are meticulously trained to not only predict but also elucidate the mechanical and thermal conduct of composite materials. Remarkably, the coupling of machine learning and genetic algorithms has proven highly effective, yielding predictions with remarkable accuracy, boasting scores ranging between 0.97 and 0.99. This achievement marks a significant breakthrough, demonstrating the potential of this innovative approach in the field of materials engineering.

Keywords: machine learning, composite materials, genetic algorithms, mechanical and thermal proprieties

Procedia PDF Downloads 54
53 From Ondoy to Habagat: Comparison of the Community Coping Strategies between Barangay Tumana and Provident Village, Marikina City

Authors: Dinnah Feye H. Andal, Ann Laurice V. Salonga

Abstract:

The paper investigates the flooding event that was experienced by Marikina City residents during the onslaught of Tropical Storm Ondoy on September 26, 2009 and during the heavy downpour caused by the southwest monsoon (Habagat) on August 1-8, 2012. Typhoon Ketsana, locally known as Tropical Storm Ondoy, devastated the whole of Marikina City, displacing a lot of people from their homes and damages properties as well, as flood rose at a very short period of time. Meanwhile, the massive amount of rain water brought by the southwest monsoon lasted for a week that also caused flooding to different parts of Metro Manila including Marikina City. This paper examines how the respondents’ experiences of the flooding caused by Tropical Storm Ondoy informed the coping strategies that the households in Barangay Tumana and Provident Village employed during the flooding brought by the southwest monsoon rains. Specifically, the research compares the coping strategies to flood hazards between residents of Barangay Tumana and Provident Village before, during and after the flooding caused by the southwest monsoon rains. Both study sites have relatively low elevation and are located along rivers and creeks which make them highly susceptible to flood. Interviews with affected residents were undertaken to understand how a household's coping strategies contribute to the development of community coping strategies at the respective neighborhood level. Based from the findings, income levels, local politics, religion and social relations between and among neighbors affect the way household and community coping strategies differ in the two case study sites.

Keywords: community coping strategies, Habagat, Marikina, Ondoy

Procedia PDF Downloads 315
52 A Study in Optimization of FSI(Floor Space Index) in Kerala

Authors: Anjali Suresh

Abstract:

Kerala is well known for its unique settlement pattern; comprising the most part, a continuous spread of habitation. The notable urbanization trend in Kerala is urban spread rather than concentration which points out the increasing urbanization of peripheral areas of existing urban centers. This has thrown a challenge for the authorities to cater the needs of the urban population like to provide affordable housing and infrastructure facilities to sustain their livelihood; which is a matter of concern that needs policy attention in fixing the optimum FSI value. Based on recent reports (Post Disaster Need Analysis –PDNA) from the UN, addressing the unsafe situation of the carpet FAR/FSI practice in the state showcasing the varying geological & climatic conditions should also be the matter of concern. The FSI (Floor space index- the ratio of the built-up space on a plot to the area of the plot) value is certainly one of the key regulation factors in checking the land utilization for the varying occupancies desired for the overall development of a state with limitation in land availability when compared to its neighbors. The pattern of urbanization, physical conditions, topography, etc., varies within the state and can change remarkably over time which identifies that the practicing FSI norms in Kerala does not fulfils the intended function. Thus the FSI regulation is expected to change dynamically from location to location. So for determining the optimum value of FSI /FAR of a region in the state of Kerala, the government agencies should consider the optimum land utilization for the growing urbanization. On the other hand, shall keep in check the overutilization of the same in par with environmental and geographic nature. Therefore the study identifies parameters that should be considered for assigning FSI within the Kerala context, and through expert surveys; opinions arrive at a methodology for assigning an optimum FSI value of a region in the state of Kerala.

Keywords: floor space index, urbanization, density, civic pressure, optimization

Procedia PDF Downloads 100
51 3+3 Regional Cooperation Format and the South Caucasus

Authors: Eka Darbaidze

Abstract:

Due to its important geopolitical location and strategic economic situation, the South Caucasus has been a region that has been a crossroads of interests between different states and empires since ancient times. Over the centuries, the forms of international relations with regard to the South Caucasus region have been constantly changing, however, the national interests of the Caucasian nations as well as the interests of the regional hegemonic powers in relation to the countries of the South Caucasus have remained almost unchanged. The conflict-ridden South Caucasus's attempt to create a new format of regional cooperation has a rather rich history, dating back to the collapse of the Soviet Union. However, despite the diversity of initiatives, they do not deviate from the format of political statements and it is natural that the case was never settled before their implementation, as none of the previous cooperation initiatives was able to reach all members of the region. The current regional co-operation platform is linked to the name of Turkish President Recep Tayyip Erdogan, who spoke out about the initiative during a visit to Azerbaijan. The so-called 3 + 3 platform for regional cooperation involves cooperation between three countries in the South Caucasus (Armenia, Azerbaijan and Georgia) and three "big neighbors" - Russia, Turkey and Iran. Very soon, the initiative received a positive response from the authorities of Azerbaijan, Iran and Armenia. According to them, this cooperation platform will strengthen cooperation between the countries involved in the regional platform and will focus on security, economic and transport issues. Our goal is to determine the interests of the main regional actors involved in the South Caucasus Cooperation Platform (3 + 3): Iran, Russia and Turkey. Our goal is also to determine what threats, risks or benefits may be associated with the involvement of the three countries of the South Caucasus: Azerbaijan, Armenia and Georgia in this platform and what will be the consequences for Georgia, whose 20% of its internationally recognized borders are still occupied by Russia and whose territory is still under creeping occupation.

Keywords: South Caucasus, Georgia's interest, the interests of Iran, the interests of Turkey, Russian interests, Georgia's occupation

Procedia PDF Downloads 208
50 Search for APN Permutations in Rings ℤ_2×ℤ_2^k

Authors: Daniel Panario, Daniel Santana de Freitas, Brett Stevens

Abstract:

Almost Perfect Nonlinear (APN) permutations with optimal resistance against differential cryptanalysis can be found in several domains. The permutation used in the standard for symmetric cryptography (the AES), for example, is based on a special kind of inversion in GF(28). Although very close to APN (2-uniform), this permutation still contains one number 4 in its differential spectrum, which means that, rigorously, it must be classified as 4-uniform. This fact motivates the search for fully APN permutations in other domains of definition. The extremely high complexity associated to this kind of problem precludes an exhaustive search for an APN permutation with 256 elements to be performed without the support of a suitable mathematical structure. On the other hand, in principle, there is nothing to indicate which mathematically structured domains can effectively help the search, and it is necessary to test several domains. In this work, the search for APN permutations in rings ℤ2×ℤ2k is investigated. After a full, exhaustive search with k=2 and k=3, all possible APN permutations in those rings were recorded, together with their differential profiles. Some very promising heuristics in these cases were collected so that, when used as a basis to prune backtracking for the same search in ℤ2×ℤ8 (search space with size 16! ≅244), just a few tenths of a second were enough to produce an APN permutation in a single CPU. Those heuristics were empirically extrapolated so that they could be applied to a backtracking search for APNs over ℤ2×ℤ16 (search space with size 32! ≅2117). The best permutations found in this search were further refined through Simulated Annealing, with a definition of neighbors suitable to this domain. The best result produced with this scheme was a 3-uniform permutation over ℤ2×ℤ16 with only 24 values equal to 3 in the differential spectrum (all the other 968 values were less than or equal 2, as it should be the case for an APN permutation). Although far from being fully APN, this result is technically better than a 4-uniform permutation and demanded only a few seconds in a single CPU. This is a strong indication that the use of mathematically structured domains, like the rings described in this work, together with heuristics based on smaller cases, can lead to dramatic cuts in the computational resources involved in the complexity of the search for APN permutations in extremely large domains.

Keywords: APN permutations, heuristic searches, symmetric cryptography, S-box design

Procedia PDF Downloads 159
49 Comparison of Deep Learning and Machine Learning Algorithms to Diagnose and Predict Breast Cancer

Authors: F. Ghazalnaz Sharifonnasabi, Iman Makhdoom

Abstract:

Breast cancer is a serious health concern that affects many people around the world. According to a study published in the Breast journal, the global burden of breast cancer is expected to increase significantly over the next few decades. The number of deaths from breast cancer has been increasing over the years, but the age-standardized mortality rate has decreased in some countries. It’s important to be aware of the risk factors for breast cancer and to get regular check- ups to catch it early if it does occur. Machin learning techniques have been used to aid in the early detection and diagnosis of breast cancer. These techniques, that have been shown to be effective in predicting and diagnosing the disease, have become a research hotspot. In this study, we consider two deep learning approaches including: Multi-Layer Perceptron (MLP), and Convolutional Neural Network (CNN). We also considered the five-machine learning algorithm titled: Decision Tree (C4.5), Naïve Bayesian (NB), Support Vector Machine (SVM), K-Nearest Neighbors (KNN) Algorithm and XGBoost (eXtreme Gradient Boosting) on the Breast Cancer Wisconsin Diagnostic dataset. We have carried out the process of evaluating and comparing classifiers involving selecting appropriate metrics to evaluate classifier performance and selecting an appropriate tool to quantify this performance. The main purpose of the study is predicting and diagnosis breast cancer, applying the mentioned algorithms and also discovering of the most effective with respect to confusion matrix, accuracy and precision. It is realized that CNN outperformed all other classifiers and achieved the highest accuracy (0.982456). The work is implemented in the Anaconda environment based on Python programing language.

Keywords: breast cancer, multi-layer perceptron, Naïve Bayesian, SVM, decision tree, convolutional neural network, XGBoost, KNN

Procedia PDF Downloads 75
48 Governance Challenges of Consolidated Destinations. The Case of Barcelona

Authors: Montserrat Crespi-Vallbona; Oscar Mascarilla-Miró

Abstract:

Mature destinations have different challenges trying to attract tourism and please its citizens. Hence, they have to maintain their touristic interest to standard demand and also not to undeceive those tourists with more advanced experiences. Second, they have to be concerned for the daily life of citizens and avoid the negative effects of touristification. This balance is quite delicate and often has to do with the sensitivity and commitment of the party in the local government. However, what is a general consensus is the need for destinations to differentiate from the homogeneous rest of regions and create new content, consumable resources or marketing events to guarantee their positioning. In this sense, the main responsibility of destinations is to satisfy users, tourists and citizens. Hence, its aim has to do with holistic experiences, which collect these wide approaches. Specifically, this research aims to analyze the volume and growth of tourist houses in the central touristic neighborhoods of Barcelona (this is Ciutat Vella) as the starting point to identify the behavior of tourists regarding their interests in searching for local heritage attractiveness and community atmosphere. Then, different cases are analyzed in order to show how Barcelona struggles to keep its attractive brand for the visitors, as well as for its inhabitants. Methodologically, secondary data used in this research comes from official registered tourist houses (Catalunya Government), Open Data (Barcelona municipality), the Airbnb tourist platform, from the Incasol Data and Municipal Register of Inhabitants. Primary data are collected through in-depth interviews with neighbors, social movement managers and political representatives from Turisme de Barcelona (local DMO, Destination Management Organization). Results show what the opportunities and priorities are for key actors to design policies to find a balance between all different interests.

Keywords: touristification, tourist houses, governance, tourism demand, airbnbfication

Procedia PDF Downloads 65
47 Liability Aspects Related to Genetically Modified Food under the Food Safety Legislation in India

Authors: S. K. Balashanmugam, Padmavati Manchikanti, S. R. Subramanian

Abstract:

The question of legal liability over injury arising out of the import and the introduction of GM food emerges as a crucial issue confronting to promote GM food and its derivatives. There is a greater possibility of commercialized GM food from the exporting country to enter importing country where status of approval shall not be same. This necessitates the importance of fixing a liability mechanism to discuss the damage, if any, occurs at the level of transboundary movement or at the market. There was a widespread consensus to develop the Cartagena Protocol on Biosafety and to give for a dedicated regime on liability and redress in the form of Nagoya Kuala Lumpur Supplementary Protocol on the Liability and Redress (‘N-KL Protocol’) at the international context. The national legal frameworks based on this protocol are not adequately established in the prevailing food legislations of the developing countries. The developing economy like India is willing to import GM food and its derivatives after the successful commercialization of Bt Cotton in 2002. As a party to the N-KL Protocol, it is indispensable for India to formulate a legal framework and to discuss safety, liability, and regulatory issues surrounding GM foods in conformity to the provisions of the Protocol. The liability mechanism is also important in the case where the risk assessment and risk management is still in implementing stage. Moreover, the country is facing GM infiltration issues with its neighbors Bangladesh. As a precautionary approach, there is a need to formulate rules and procedure of legal liability to discuss any kind of damage occurs at transboundary trade. In this context, the proposed work will attempt to analyze the liability regime in the existing Food Safety and Standards Act, 2006 from the applicability and domestic compliance and to suggest legal and policy options for regulatory authorities.

Keywords: commercialization, food safety, FSSAI, genetically modified foods, India, liability

Procedia PDF Downloads 355
46 A Statistical Approach to Predict and Classify the Commercial Hatchability of Chickens Using Extrinsic Parameters of Breeders and Eggs

Authors: M. S. Wickramarachchi, L. S. Nawarathna, C. M. B. Dematawewa

Abstract:

Hatchery performance is critical for the profitability of poultry breeder operations. Some extrinsic parameters of eggs and breeders cause to increase or decrease the hatchability. This study aims to identify the affecting extrinsic parameters on the commercial hatchability of local chicken's eggs and determine the most efficient classification model with a hatchability rate greater than 90%. In this study, seven extrinsic parameters were considered: egg weight, moisture loss, breeders age, number of fertilised eggs, shell width, shell length, and shell thickness. Multiple linear regression was performed to determine the most influencing variable on hatchability. First, the correlation between each parameter and hatchability were checked. Then a multiple regression model was developed, and the accuracy of the fitted model was evaluated. Linear Discriminant Analysis (LDA), Classification and Regression Trees (CART), k-Nearest Neighbors (kNN), Support Vector Machines (SVM) with a linear kernel, and Random Forest (RF) algorithms were applied to classify the hatchability. This grouping process was conducted using binary classification techniques. Hatchability was negatively correlated with egg weight, breeders' age, shell width, shell length, and positive correlations were identified with moisture loss, number of fertilised eggs, and shell thickness. Multiple linear regression models were more accurate than single linear models regarding the highest coefficient of determination (R²) with 94% and minimum AIC and BIC values. According to the classification results, RF, CART, and kNN had performed the highest accuracy values 0.99, 0.975, and 0.972, respectively, for the commercial hatchery process. Therefore, the RF is the most appropriate machine learning algorithm for classifying the breeder outcomes, which are economically profitable or not, in a commercial hatchery.

Keywords: classification models, egg weight, fertilised eggs, multiple linear regression

Procedia PDF Downloads 87
45 A Machine Learning Approach for Detecting and Locating Hardware Trojans

Authors: Kaiwen Zheng, Wanting Zhou, Nan Tang, Lei Li, Yuanhang He

Abstract:

The integrated circuit industry has become a cornerstone of the information society, finding widespread application in areas such as industry, communication, medicine, and aerospace. However, with the increasing complexity of integrated circuits, Hardware Trojans (HTs) implanted by attackers have become a significant threat to their security. In this paper, we proposed a hardware trojan detection method for large-scale circuits. As HTs introduce physical characteristic changes such as structure, area, and power consumption as additional redundant circuits, we proposed a machine-learning-based hardware trojan detection method based on the physical characteristics of gate-level netlists. This method transforms the hardware trojan detection problem into a machine-learning binary classification problem based on physical characteristics, greatly improving detection speed. To address the problem of imbalanced data, where the number of pure circuit samples is far less than that of HTs circuit samples, we used the SMOTETomek algorithm to expand the dataset and further improve the performance of the classifier. We used three machine learning algorithms, K-Nearest Neighbors, Random Forest, and Support Vector Machine, to train and validate benchmark circuits on Trust-Hub, and all achieved good results. In our case studies based on AES encryption circuits provided by trust-hub, the test results showed the effectiveness of the proposed method. To further validate the method’s effectiveness for detecting variant HTs, we designed variant HTs using open-source HTs. The proposed method can guarantee robust detection accuracy in the millisecond level detection time for IC, and FPGA design flows and has good detection performance for library variant HTs.

Keywords: hardware trojans, physical properties, machine learning, hardware security

Procedia PDF Downloads 146
44 The Negative Use of the Concept of Agape Love in the New Testament

Authors: Marny S. Menkes Lemmel

Abstract:

Upon hearing or reading the term agape love in a Christian context, one typically thinks of God's love for people and the type of love people should have for God and others. While C.S. Lewis, a significant propagator of this view, and others with a similar opinion are correct in their knowledge of agape in the New Testament in most occurrences, nonetheless, examples of this term appear in the New Testament having quite a different sense. The New World Encyclopedia, regarding the verb form of agape, 'agapao,' comments that it is occasionally used also in a negative sense, but here and elsewhere, there is no elaboration on the significance of these negative instances. If intensity and sacrifice are the crucial constituents of God's agape love and that of his followers, who are commanded to love as God does, the negative instances of this term in the New Testament conceivably indicate that a person's love for improper recipients is likewise intense and sacrificial. This is significant because one who has chosen to direct such love neither to God nor his "neighbors," but to inanimate things or status, clearly shows his priorities, having decided to put all his energy and resources into them while demeaning those for whom God has required such love, including God himself. It is not merely a matter of a person dividing his agape love among several proper objects of that love, but of directing it toward improper targets. Not to heed God's commands regarding whom to love is to break God's entire law, and not to love whom one should, but to love what one should not, is not merely a matter of indifference, but is disloyalty and loathing. An example of such use of the term agape occurs in Luke 11:43 where the Pharisees do not and cannot love God at the same time as loving a place of honor in the synagogues and greetings in the public arena. The exclamation of their dire peril because of their love for the latter reveals that the previously mentioned love objects are not in God's gamut of proper recipients. Furthermore, it appears to be a logical conclusion that since the Pharisees love the latter, they likewise despise God and those whom God requires his people to love. Conversely, the objects of the Pharisees' love in this verse should be what followers of God ought to despise and avoid. In short, appearances of the use of the verb agapao in a negative context are blatant antitheses to what God expects and should alert the reader or listener to take notice. These negative uses are worthy of further discussion than a brief aside by scholars of their existence without additional comment.

Keywords: agape love, divine commands, focus, new testament context, sacrificial

Procedia PDF Downloads 231
43 Ecotourism Development as an Alternative Livelihood for Guassa Community, Ethiopia

Authors: Abraham Kidane

Abstract:

The study aims at assessing the prospects and challenges of community-based ecotourism development in and around the Guassa Community Conservation Area (GCCA) for the establishment of alternative sources of livelihood for local people and the conservation of natural resources. The Guassa area and its surrounding area are endowed with natural, cultural, and religious tourism resources. The study is descriptive in its design and uses both qualitative and quantitative research methods. Interviews and questionnaires were used as an instrument for data gathering. The interview was undertaken with government officials, NGO officials, and experts, with three local community representatives. The three Kebeles of Guassa were chosen using purposive sampling because of the fact that they are immediate neighbors to GCCA, and hence, 150 questionnaires were administered proportionally to the household numbers in each kebeles. The perspectives of the MoCT, EWCA, and some Tour Operation agencies were uncovered through questionnaires; for each of them, five questionnaires were administered, and all the returns were used in the analysis. Frequency, percentage, average mean, One Way-ANOVA, and independent t-test are used to analyze quantitative data. The findings revealed that food insecurity is commonplace in the study area. The local people's reliance on the conservation area’s resources has been increasing, and the area size is also dwindling from time to time. On the other hand, the local people's levels of awareness about Community-Based Ecotourism (CBET) are low. In addition, the local capacity in relation to conservation and CBET development is also low, even though there is inadequate training offered by the government and NGOs. In general, tourism is not yet considered an alternative source of income and a means of conserving natural resources. In addition, the challenges for CBET development apart from low awareness level about CBET and low capacity, poor infrastructure, and poor tourism facilities were also identified as challenges in the study area.

Keywords: ecotourism, CBET, alternative livelihood, conservation

Procedia PDF Downloads 98
42 Exploring Perceptions of Local Stakeholders in Climate Change Adaptation in Central and Western Terai, Nepal

Authors: Shree Kumar Maharjan

Abstract:

Climate change has varied impacts on diverse livelihood sectors, which is more prominent at the community level. The stakeholders and local institutions have been supporting the communities either by building adaptive capacities and resilience or minimizing the impacts of different adaptation interventions. Some of these interventions are effective, whereas others need further dynamisms and exertions considering the complexity of the risks and vulnerabilities. Hence, consolidated efforts of concerned stakeholders are required to minimize and adapt the present and future impacts. This study digs out and analyses the perceptions of local stakeholders in climate change adaptation in Madi and Deukhuri valleys of Nepal through a questionnaire survey. The study has categorized the local stakeholders into 5 groups in the study sites – Farmers groups and cooperatives, Government, I/NGOs, Development banks and education and other organizations. The local stakeholders revealed flood, drought, cold wave and riverbank erosion as the major climatic risks and hazards found in the sites eventually impacting on the loss of agricultural production, loss of agricultural land and properties, loss of livestock, the emergence of diseases and pest. The stakeholders believed that most of the farmers dealing with these impacts based on their traditional knowledge and practices, followed by with the support of NGOs and with the help of neighbors and community. The major supports of the stakeholders to deal with these impacts were on training and awareness, risk analysis and minimization, livelihood improvement, financial support, coordination and networking and facilitation in policy formulation. The stakeholders emphasized primarily on capacity building, appropriate technologies, community-based planning and monitoring, prioritization to the poor and the marginalized and establishment of community fund respectively for building adaptive capacities.

Keywords: climate change adaptation, local stakeholders, Madi, Deukhuri, Nepal

Procedia PDF Downloads 179
41 KTiPO4F: The Negative Electrode Material for Potassium Batteries

Authors: Vahid Ramezankhani, Keith J. Stevenson, Stanislav. S. Fedotov

Abstract:

Lithium-ion batteries (LIBs) play a pivotal role in achieving the key objective “zero-carbon emission” as countries agreed to reach a 1.5ᵒC global warming target according to the Paris agreement. Nowadays, due to the tremendous mobile and stationary consumption of small/large-format LIBs, the demand and consequently the price for such energy storage devices have been raised. The aforementioned challenges originate from the shrinkage of the major applied critical materials in these batteries, such as cobalt (Co), nickel (Ni), Lithium (Li), graphite (G), and manganese (Mn). Therefore, it is imperative to consider alternative elements to address issues corresponding to the limitation of resources around the globe. Potassium (K) is considered an effective alternative to Li since K is a more abundant element, has a higher operating potential, a faster diffusion rate, and the lowest stokes radius in comparison to the closest neighbors in the periodic table (Li and Na). Among all reported materials for metal-ion batteries, some of them possess the general formula AMXO4L [A = Li, Na, K; M = Fe, Ti, V; X = P, S, Si; L= O, F, OH] is of potential to be applied both as anode and cathode and enable researchers to investigate them in the full symmetric battery format. KTiPO4F (KTP structural material) has been previously reported by our group as a promising cathode with decent electronic properties. Herein, we report a synthesis, crystal structure characterization, morphology, as well as K-ion storage properties of KTiPO4F. Our investigation reveals that KTiPO4F delivers discharge capacity > 150 mAh/g at 26.6 mA/g (C/5 current rate) in the potential window of 0.001-3 V. Surprisingly, the cycling performance of C-KTiPO4F//K cell is stable for 1000 cycles at 130 mA/g (C current rate), presenting capacity > 130 mAh/g. More interestingly, we achieved to assemble full symmetric batteries where carbon-coated KTiPO4F serves as both negative and positive electrodes, delivering >70 mAh/g in the potential range of 0.001-4.2V.

Keywords: anode material, potassium battery, chemical characterization, electrochemical properties

Procedia PDF Downloads 220
40 Advancements in Predicting Diabetes Biomarkers: A Machine Learning Epigenetic Approach

Authors: James Ladzekpo

Abstract:

Background: The urgent need to identify new pharmacological targets for diabetes treatment and prevention has been amplified by the disease's extensive impact on individuals and healthcare systems. A deeper insight into the biological underpinnings of diabetes is crucial for the creation of therapeutic strategies aimed at these biological processes. Current predictive models based on genetic variations fall short of accurately forecasting diabetes. Objectives: Our study aims to pinpoint key epigenetic factors that predispose individuals to diabetes. These factors will inform the development of an advanced predictive model that estimates diabetes risk from genetic profiles, utilizing state-of-the-art statistical and data mining methods. Methodology: We have implemented a recursive feature elimination with cross-validation using the support vector machine (SVM) approach for refined feature selection. Building on this, we developed six machine learning models, including logistic regression, k-Nearest Neighbors (k-NN), Naive Bayes, Random Forest, Gradient Boosting, and Multilayer Perceptron Neural Network, to evaluate their performance. Findings: The Gradient Boosting Classifier excelled, achieving a median recall of 92.17% and outstanding metrics such as area under the receiver operating characteristics curve (AUC) with a median of 68%, alongside median accuracy and precision scores of 76%. Through our machine learning analysis, we identified 31 genes significantly associated with diabetes traits, highlighting their potential as biomarkers and targets for diabetes management strategies. Conclusion: Particularly noteworthy were the Gradient Boosting Classifier and Multilayer Perceptron Neural Network, which demonstrated potential in diabetes outcome prediction. We recommend future investigations to incorporate larger cohorts and a wider array of predictive variables to enhance the models' predictive capabilities.

Keywords: diabetes, machine learning, prediction, biomarkers

Procedia PDF Downloads 55
39 Analysis of Biomarkers Intractable Epileptogenic Brain Networks with Independent Component Analysis and Deep Learning Algorithms: A Comprehensive Framework for Scalable Seizure Prediction with Unimodal Neuroimaging Data in Pediatric Patients

Authors: Bliss Singhal

Abstract:

Epilepsy is a prevalent neurological disorder affecting approximately 50 million individuals worldwide and 1.2 million Americans. There exist millions of pediatric patients with intractable epilepsy, a condition in which seizures fail to come under control. The occurrence of seizures can result in physical injury, disorientation, unconsciousness, and additional symptoms that could impede children's ability to participate in everyday tasks. Predicting seizures can help parents and healthcare providers take precautions, prevent risky situations, and mentally prepare children to minimize anxiety and nervousness associated with the uncertainty of a seizure. This research proposes a comprehensive framework to predict seizures in pediatric patients by evaluating machine learning algorithms on unimodal neuroimaging data consisting of electroencephalogram signals. The bandpass filtering and independent component analysis proved to be effective in reducing the noise and artifacts from the dataset. Various machine learning algorithms’ performance is evaluated on important metrics such as accuracy, precision, specificity, sensitivity, F1 score and MCC. The results show that the deep learning algorithms are more successful in predicting seizures than logistic Regression, and k nearest neighbors. The recurrent neural network (RNN) gave the highest precision and F1 Score, long short-term memory (LSTM) outperformed RNN in accuracy and convolutional neural network (CNN) resulted in the highest Specificity. This research has significant implications for healthcare providers in proactively managing seizure occurrence in pediatric patients, potentially transforming clinical practices, and improving pediatric care.

Keywords: intractable epilepsy, seizure, deep learning, prediction, electroencephalogram channels

Procedia PDF Downloads 84
38 Risk Factors Associated with Outbreak of Cerebrospinal Meningitis in Kano State- Nigeria, March-May 2017

Authors: Visa I. Tyakaray, M. Abdulaziz, O. Badmus, N. Karaye, M. Dalhat, A. Shehu, I. Bello, T. Hussaini, S. Akar, G. Effah, P. Nguku

Abstract:

Introduction: Nigeria has recorded outbreaks of meningitis in the past, being in the meningitis belt. A multi-state outbreak of Cerebrospinal Meningitis (CSM) from Neisseria meningitides occurred in 2017 involving 24 states, and Kano State reported its first two confirmed CSM cases on 22nd March, 2017. We conducted the outbreak investigation to characterize the outbreak, determine its associated risk factors and institute appropriate control measures. Method: We conducted an unmatched Case-control study with ratio 1:2. A case was defined as any person with sudden onset of fever (>38.5˚C rectal or 38.0˚C axillary) and one of the following: neck stiffness, altered consciousness or bulging fontanelle in toddlers while a control was defined as any person who resides around the case such as family members, caregivers, neighbors, and healthcare personnel. We reviewed and validated line list and conducted active case search in health facilities and neighboring communities. Descriptive, bivariate, stratified and multivariate analysis were performed. Laboratory confirmation was by Latex agglutination and/or Culture. Results: We recruited 48 cases with median age of 11 years (1 month – 65 years), attack rate was 2.4/100,000 population with case fatality rate of 8%; 34 of 44 local government areas were affected.On stratification, age was found to be a confounder. Independent factors associated with the outbreak were age (Adjusted Odds Ratio, AOR =6.58; 95% Confidence Interval (CI) =2.85-15.180, history of Vaccination (AOR=0.37; 95% CI=0.13-0.99) and history of travel (AOR=10.16; (1.99-51.85). Laboratory results showed 22 positive cases for Neisseria meningitides types C and A/Y. Conclusion: Major risk factors associated with this outbreak were age (>14years), not being vaccinated and history of travel. We sensitized communities and strengthened case management. We recommended immediate reactive vaccination and enhanced surveillance in bordering communities.

Keywords: cerebrospinal, factors, Kano-Nigeria, meningitis, risk

Procedia PDF Downloads 215
37 Changing Patterns of Marriage and Sexual Relations among Young Single Female Workers in Garment Factories in Gazipur, Bangladesh

Authors: Runa Laila

Abstract:

In Bangladesh, migration and employment opportunities in the ready-made garment factories presented an alternative to early and arranged-marriage to many young women from the countryside. Although the positive impact of young women’s labour migration and employment in the garment industry on economic independence, increased negotiation power, and enhancement of self-esteem have been well documented, impact of employment on sexual norms and practices remained under-researched. This ethnographic study comprising of an in-depth interview of 21 single young women working in various garment factories in Gazipur, Dhaka, explores the implication of work on sexual norms and practices. This study found young single garment workers experience a range of consensual and coercive sexual relations. The mixed-sex work environment in the garment manufacturing industry and private housing arrangements provide young single women opportunities to develop romantic and sexual relationships in the transient urban space, which was more restricted in the rural areas. The use of mobile phones further aids lovers to meet in amusement parks, friends’ houses, or residential hotels beyond the gaze of colleagues and neighbors. Due to sexual double standard, men’s sexual advantage is seen as natural and accepted, while women are being blamed as immoral for being engaged in pre-marital sex. Although self-choice marriage and premarital relations reported to be common among garment workers, stigma related to premarital sex lead young single women to resort to secret abortion practices. Married men also use power position to lure women in a subordinate position in coerce sexual relations, putting their reproductive and psychological health at risk. To improve sexual and reproductive health and wellbeing of young female garment workers, it is important to understand these changing sexual practices which otherwise remain taboo in public health discourses.

Keywords: female migration, ready-made garment, reproductive health, sexual practice

Procedia PDF Downloads 186
36 A Study on Neighborhood of Dwelling with Historical-Islamic Architectural Elements

Authors: M.J. Seddighi, Moradchelleh, M. Keyvan

Abstract:

The ultimate goal in building a city is to provide pleasant, comfortable and nurturing environment as a context of public life. City environment establishes strong connection with people and their surrounding habitant, acting as relevance in social interactions between citizens itself. Urban environment and appropriate municipal facilities are the only way for proper communication between city and citizens and also citizens themselves.There is a need for complement elements between buildings and constructions to settling city life through which the move, comfort, reactions and anxiety will adjust and reflect the spirit to the city. In the surging development of society, urban’ spaces are encountered evolution, sometimes causing the symbols to fade and waste, and as a result, leading to destroy belongs among humans and their physical liquidate. Houses and living spaces exhibit materialistic reflection of life style. In the other words, way of life makes the symbolic essence of living spaces. In addition, it is of sociocultural factor of lifestyle, consisting the concepts and culture, morality, worldview, and national character. Culture is responsible for some crucial meaningful needs which can be wide because they depend on various causes such as perception and interpretation of believes, philosophy of life, interaction with neighbors and protection against climate and enemies. The bi-lateral relationship between human and nature is the main factor that needs to be properly addressed. It is because of the fact that the approach which is taken against landscape and nature has a pertinent influence on creation and shaping the structure of a house. The first response of human in tackling the environment is to build a “shelter” and place as dwelling. This has been a crucial factor in all time periods. In the proposed study, dwelling in Khorasgan’ Stream, as an area located in one of the important historical city of Iran, has been studied. Khorasgan’ Stream is the basic constituent elements of the present architectural form of Isfahan. The influence of Islamic spiritual culture and neighborhood with the historical elements on the dwelling of the selected location, subsequently on other regions of the town are presented.

Keywords: dwelling, neighborhood, historical, Islamic, architectural elements

Procedia PDF Downloads 411
35 A Dataset of Program Educational Objectives Mapped to ABET Outcomes: Data Cleansing, Exploratory Data Analysis and Modeling

Authors: Addin Osman, Anwar Ali Yahya, Mohammed Basit Kamal

Abstract:

Datasets or collections are becoming important assets by themselves and now they can be accepted as a primary intellectual output of a research. The quality and usage of the datasets depend mainly on the context under which they have been collected, processed, analyzed, validated, and interpreted. This paper aims to present a collection of program educational objectives mapped to student’s outcomes collected from self-study reports prepared by 32 engineering programs accredited by ABET. The manual mapping (classification) of this data is a notoriously tedious, time consuming process. In addition, it requires experts in the area, which are mostly not available. It has been shown the operational settings under which the collection has been produced. The collection has been cleansed, preprocessed, some features have been selected and preliminary exploratory data analysis has been performed so as to illustrate the properties and usefulness of the collection. At the end, the collection has been benchmarked using nine of the most widely used supervised multiclass classification techniques (Binary Relevance, Label Powerset, Classifier Chains, Pruned Sets, Random k-label sets, Ensemble of Classifier Chains, Ensemble of Pruned Sets, Multi-Label k-Nearest Neighbors and Back-Propagation Multi-Label Learning). The techniques have been compared to each other using five well-known measurements (Accuracy, Hamming Loss, Micro-F, Macro-F, and Macro-F). The Ensemble of Classifier Chains and Ensemble of Pruned Sets have achieved encouraging performance compared to other experimented multi-label classification methods. The Classifier Chains method has shown the worst performance. To recap, the benchmark has achieved promising results by utilizing preliminary exploratory data analysis performed on the collection, proposing new trends for research and providing a baseline for future studies.

Keywords: ABET, accreditation, benchmark collection, machine learning, program educational objectives, student outcomes, supervised multi-class classification, text mining

Procedia PDF Downloads 172
34 Adaptive Process Monitoring for Time-Varying Situations Using Statistical Learning Algorithms

Authors: Seulki Lee, Seoung Bum Kim

Abstract:

Statistical process control (SPC) is a practical and effective method for quality control. The most important and widely used technique in SPC is a control chart. The main goal of a control chart is to detect any assignable changes that affect the quality output. Most conventional control charts, such as Hotelling’s T2 charts, are commonly based on the assumption that the quality characteristics follow a multivariate normal distribution. However, in modern complicated manufacturing systems, appropriate control chart techniques that can efficiently handle the nonnormal processes are required. To overcome the shortcomings of conventional control charts for nonnormal processes, several methods have been proposed to combine statistical learning algorithms and multivariate control charts. Statistical learning-based control charts, such as support vector data description (SVDD)-based charts, k-nearest neighbors-based charts, have proven their improved performance in nonnormal situations compared to that of the T2 chart. Beside the nonnormal property, time-varying operations are also quite common in real manufacturing fields because of various factors such as product and set-point changes, seasonal variations, catalyst degradation, and sensor drifting. However, traditional control charts cannot accommodate future condition changes of the process because they are formulated based on the data information recorded in the early stage of the process. In the present paper, we propose a SVDD algorithm-based control chart, which is capable of adaptively monitoring time-varying and nonnormal processes. We reformulated the SVDD algorithm into a time-adaptive SVDD algorithm by adding a weighting factor that reflects time-varying situations. Moreover, we defined the updating region for the efficient model-updating structure of the control chart. The proposed control chart simultaneously allows efficient model updates and timely detection of out-of-control signals. The effectiveness and applicability of the proposed chart were demonstrated through experiments with the simulated data and the real data from the metal frame process in mobile device manufacturing.

Keywords: multivariate control chart, nonparametric method, support vector data description, time-varying process

Procedia PDF Downloads 299
33 Living at Density: Resident Perceptions in Auckland, New Zealand

Authors: Errol J. Haarhoff

Abstract:

Housing in New Zealand, particularly in Auckland, is dominated by low-density suburbs. Over the past 20 years, housing intensification policies aimed to curb outward low-density sprawl and to concentrate development within an urban boundary have been implemented. This requires the greater deployment of attached housing typologies such apartments, duplexes and terrace housing. There has been strong market response and uptake for higher density development, with the number of building approvals received by the Auckland Council for attached housing units increasing from around 15 percent in 2012/13, to 54 percent in 2017/18. A key question about intensification and strong market uptake in a city where lower density has been the norm, is whether higher density neighborhoods will deliver necessary housing satisfaction? This paper reports on the findings to a questionnaire survey and focus group discussions probing resident perceptions to living at higher density in relation to their dwellings, the neighborhood and their sense of community. The findings reveal strong overall housing satisfaction, including key aspects such as privacy, noise and living in close proximity to neighbors. However, when residents are differentiated in terms of length of tenure, age or whether they are bringing up children, greater variation in satisfaction is detected. For example, residents in the 65-plus age cohort express much higher levels of satisfaction, when compared to the 18-44 year cohorts who more likely to be binging up children. This suggests greater design sensitivity to better accommodate the range of household types. Those who have live in the area longer express greater satisfaction than those with shorter duration, indicating time for adaption to living at higher density. Findings strongly underpin the instrumental role that the public amenities play in overall housing satisfaction and the emergence of a strong sense of community. This underscores the necessity for appropriate investment in the public amenities often lacking in market-led higher density housing development. We conclude with an evaluation of the PPP model, and its part in delivering housing satisfaction. The findings should be of interest to cities, housing developers and built environment professional pursuing housing policies promoting intensification and higher density.

Keywords: medium density, housing satisfaction, neighborhoods, sense of community

Procedia PDF Downloads 137